淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0908201111460600
中文論文名稱 甲醇微燃料處理系統之模擬分析
英文論文名稱 Simulation Study of a Methanol Micro Fuel Processing System
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 江浩彰
研究生英文姓名 Hao-Chang Chiang
學號 699400015
學位類別 碩士
語文別 中文
口試日期 2011-07-22
論文頁數 160頁
口試委員 指導教授-張煖
委員-陳逸航
委員-程學恆
中文關鍵字 微反應器  甲醇燃料系統  燃料電池 
英文關鍵字 fuel processor  methanol  hydrogen  microreactor  fuel cell 
學科別分類
中文摘要 使用微裝置之液態甲醇微燃料處理系統可以臨場提供氫氣,是應用可攜式燃料電池之重要技術。本論文以模擬方式探討甲醇微燃料處理系統之性能與控制。本研究在Aspen Custom Modeler平台上,建立了蒸氣重組器、優先氧化器、燃燒器、熱交換器、蒸發氣與燃料電池模組之數學模式,並探討系統之穩態特性、控制架構與啟動操作模式。
穩態特性分析結果顯示,蒸氣重組器進口流量與燃燒器進口流量對於整體系統之產氫量與系統之各限制條件有重大顯著之影響。控制系統之研究顯示,雙前饋/單回饋加上30秒延遲之控制架構可以獲得快速、穩定且符合需求之表現,是最佳控制架構。本研究提出之使用外界輔助燃料供應以預熱系統,並結合初始燃料流量調整之啟動操作模式,可以於38秒完成啟動操作。
英文摘要 The methanol fuel processing system using micro devices is capable of providing in-situ hydrogen gas and is important to the applications of portable fuel cells. This thesis investigates the performance and control of a micro methanol fuel processing system by simulation analysis. Simulation models of individual components, including steam reformer, preferential oxidation reactor, combustor, heat exchanger, evaporator and fuel cell module, as well as the overall system are built on Aspen Custom Modeler platform. The model is utilized to study the steady state performance, control system design and start-up operation.
The steady state analysis reveals that both steam reformer inlet flow rate and combustor inlet flow rate are significant to the hydrogen production rate and the constraint conditions of the system. For the control system, adopting the Dual Feed forward/ Feedback control structure with a 30 second delay can provide fast and stable response which meets the demanded change. The start-up operation strategy proposed uses external preheating for initial fuel supply and followed by flow rate adjustment for combustor. With the optimized operating parameters, the system needs 38 seconds for start-up.
論文目次 目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 XIII
第一章 前言 1
第二章 文獻回顧 4
2.1 微化學技術 4
2.2 微燃料處理系統 8
第三章 單元模式建立 15
3.1 微裝置之數學模式 15
3.1.1 基本假設 15
3.1.2 模式方程式 17
3.1.3 輸送性質 29
3.1.3.1 熱傳導係數 29
3.1.3.2 黏度 31
3.1.3.3 擴散係數 33
3.1.3.4 熱傳係數 34
3.1.3.5 質傳係數 35
3.1.4 模式之求解 36
3.2 蒸氣重組器設定與驗證 37
3.3 優先氧化器設定與驗證 42
3.4 燃燒器設定與驗證 46
3.5 燃料電池模式與驗證 55
第四章 穩態系統模擬 61
4.1 基本個案分析 61
4.1.1 流程說明 61
4.1.2 裝置規格 65
4.1.3 模擬結果與性能分析 70
4.2 操作條件影響分析 79
4.2.1 性能指標 79
4.2.2 蒸氣重組器燃料與蒸氣進料流量之影響 80
4.2.2.1 蒸氣重組器進料流量之影響 80
4.2.2.2 蒸氣重組器進口氣碳比之影響 82
4.2.3 優先氧化處理器進料流量比之影響 83
4.2.4 燃燒器燃料與空氣流量之影響 85
4.2.4.1 燃燒器進口流量之影響 85
4.2.4.2 燃燒器進口氣燃比之影響 87
4.2.5 燃料電池陰極壓力之影響 89
4.2.6 操作條件影響結果彙整 91
第五章 動態分析與控制系統 92
5.1 動態特性 92
5.2 控制策略與架構 96
5.2.1 前饋控制 96
5.2.2 回饋控制 104
5.2.3 前饋與回饋控制 108
5.3 溫度擾動之影響 125
5.4 啟動操作 136
5.4.1 啟動策略 136
5.4.2 啟動參數最佳化 139
5.4.3 啟動模擬結果 141
第六章 結論 148
符號說明 150
參考文獻 155


圖目錄
圖1.1 微反應器(IMM catalogs) 2
圖1.2 典型之甲醇重組微燃料處理系統(IMM catalogs) 2
圖2.1 整合式微反應/熱交換器(MRHE) 7
圖2.2 應用整合式微裝置之微燃料處理系統 7
圖2.3 板翅式微裝置 8
圖3.1 板翅型微裝置 16
圖3.2 微通道截面 20
圖3.3 蒸發器內部配置 24
圖3.4 蒸發器內之溫度變數 24
圖3.5 微蒸氣重組器(Park et al., 2005) 38
圖3.6 蒸氣重組器驗證個案之通道邊界條件 39
圖3.7 蒸氣重組器驗證個案反應器內部組成之模擬結果 41
圖3.8優先氧化器驗證個案之一氧化碳轉化率 44
圖3.9優先氧化器驗證個案之一氧化碳選擇率 45
圖3.10 燃燒器驗證個案流量對產生能量與甲醇轉化率之影響(Won et al., 2006) 48
圖3.11 燃燒器驗證個案流量對甲醇轉化率影響之模擬結果 48
圖3.12 燃燒器驗證個案流量對產生能量影響之模擬結果 49
圖3.13 整合式燃燒器與蒸氣重組器之裝置與物流 49
圖3.14 整合式燃燒器與蒸氣重組器之內部配置 50
圖3.15 整合式燃燒器與蒸氣重組器驗證個案燃燒器進口流量對進出口溫度之影響(Won et al., 2006) 53
圖3.16 整合式燃燒器與蒸氣重組器驗證個案燃燒器進口流量對進出口溫度影響之模擬結果 54
圖3.17 質子交換膜燃料電池膜極組 55
圖3.18 燃料電池驗證個案各變數隨位置之變化 (a)固體層溫度; (b)電流密度; (c)陰極氣態水; (d)陰極液態水 60
圖4.1 微燃料處理系統流程 65
圖4.2蒸氣重組甲醇進料流量對各性能之影響 81
圖4.3蒸氣重組氣碳比對各性能之影響 82
圖4.4優先氧化處理氧碳比對各性能之影響 84
圖4.5燃燒器甲醇進料流量對各性能之影響 86
圖4.6燃燒器氣燃比對各性能之影響 88
圖4.7燃燒器氣燃比對各性能之影響 90
圖5.1 蒸氣重組進口流量改變之動態影響(實線與虛線分別為+10%與-10%之流量改變) 94
圖5.2 燃燒器進口流量之動態影響(實線與虛線分別為+10%與-10%之流量改變) 95
圖5.3 前饋控制架構 96
圖5.4 最佳蒸氣重組器進口流量與電壓關係 99
圖5.5 最佳燃燒器進口流量與電壓關係 99
圖5.6 系統效率與電壓關係圖 100
圖5.7 前饋控制架構模擬結果-電壓由0.55V提升至0.675V 102
圖5.8 前饋控制架構模擬結果-電壓由0.675V降至0.55V 103
圖5.9 多變數閉環控制系統 106
圖5.10 雙前饋/雙回饋控制圖5.11雙前饋/單回饋控制架構 110
圖5.11雙前饋/單回饋控制架構 110
圖5.12 單前饋/單回饋控制架構 111
圖5.13 雙前饋/雙回饋控制架構FB_TC_1之替續回饋測試 112
圖5.14 雙前饋/雙回饋控制架構FB_TC_2之替續回饋測試 (a) PV; (b) OP 113
圖5.15 雙前饋/單回饋控制架構FB_TC_2之替續回饋測試 114
圖5.16 雙前饋/單回饋控制架構FB_TC_2之替續回饋測試 114
圖5.17使用替續回饋調諧控制參數之電壓模擬結果-0.55V提升至0.675V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 117
圖5.18 使用替續回饋調諧控制參數之電壓模擬結果-0.675V降至0.55V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 117
圖5.19使用最佳化控制參數之電壓模擬結果-0.55V提升至0.675V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 120
圖5.20 使用最佳化控制參數之氫氣產量模擬結果-0.55V提升至0.675V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 120
圖5.21 使用最佳化控制參數之一氧化碳濃度模擬結果-0.55V提升至0.675V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 121
圖5.22 使用最佳化控制參數之SR進口溫度模擬結果-0.55V提升至0.675V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 121
圖5.23 使用最佳化控制參數之CB出口溫度模擬結果-0.55V提升至0.675V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 122
圖5.24 使用最佳化控制參數之電壓模擬結果-0.675V降至0.55V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋之電壓變化 122
圖5.25使用最佳化控制參數之氫氣產量模擬結果-0.675V降至0.55V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 123
圖5.26使用最佳化控制參數之一氧化碳濃度模擬結果-0.675V降至0.55V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 123
圖5.27 使用最佳化控制參數之SR進口溫度模擬結果-0.675V降至0.55V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 124
圖5.28 使用最佳化控制參數之CB出口溫度模擬結果-0.675V降至0.55V (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 124
圖5.29 進料溫度升高之電壓變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 126
圖5.30 進料溫度升高之氫氣產量變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 126
圖5.31 進料溫度升高之一氧化碳濃度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 127
圖5.32 進料溫度升高之SR進口溫度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 127
圖5.33進料溫度升高之CB出口溫度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 128
圖5.34 使用最佳化控制參數於進料溫度升高時之電壓變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 128
圖5.35 使用最佳化控制參數於進料溫度升高時之氫氣產量變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 129
圖5.36 使用最佳化控制參數於進料溫度升高時之一氧化碳濃度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 129
圖5.37使用最佳化控制參數於進料溫度升高時之SR進口溫度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 130
圖5.38 使用最佳化控制參數於進料溫度升高時之CB出口溫度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 130
圖5.39進料溫度降低之電壓變化,(a)雙前饋/雙回饋;(b)雙前饋/單回饋;(c)單回饋/單前饋 131
圖5.40 進料溫度降低之氫氣產量變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 131
圖5.41 進料溫度降低之一氧化碳濃度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 132
圖5.42進料溫度降低之SR進口溫度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 132
圖5.43 進料溫度降低之CB出口溫度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 133
圖5.44 使用最佳化控制參數於進料溫度降低時之電壓變化,(a)雙前饋/雙回饋;(b)雙前饋/單回饋;(c)單回饋/單前饋 133
圖5.45 使用最佳化控制參數於進料溫度降低時之氫氣產量變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 134
圖5.46 使用最佳化控制參數於進料溫度降低時之一氧化碳濃度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 134
圖5.47 使用最佳化控制參數於進料溫度降低時之SR進口溫度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 135
圖5.48 使用最佳化控制參數於進料溫度降低時之CB出口溫度變化 (a)雙前饋/雙回饋; (b)雙前饋/單回饋; (c)單回饋/單前饋 135
圖5.49 啟動操作系統流程 138
圖5.50 啟動模擬之電壓變化 (a)X=1.2; (b) X=0.8; (c) X=0.4 143
圖5.51 啟動模擬之氫氣產量變化 (a)X=1.2; (b) X=0.8; (c) X=0.4
143
圖5.52 啟動模擬之蒸氣重組器甲醇轉化率變化 (a)X=1.2; (b) X=0.8; (c) X=0.4 144
圖5.53 啟動模擬之優先氧化器出口一氧化碳濃度變化 (a)X=1.2; (b) X=0.8; (c) X=0.4 144
圖5.54 啟動模擬之燃燒器出口甲醇濃度變化 (a)X=1.2; (b) X=0.8; (c) X=0.4 145
圖5.55 啟動模擬之蒸氣重組器溫度變化 (a)X=1.2; (b) X=0.8; (c) X=0.4 145
圖5.56 啟動模擬之優先氧化處理器溫度變化 (a)X=1.2; (b) X=0.8; (c) X=0.4 146
圖5.57 啟動模擬之燃燒器溫度變化 (a)X=1.2; (b) X=0.8; (c) X=0.4 146
圖5.58 啟動模擬之燃燒器進口流量變化 (a)X=1.2; (b) X=0.8; (c) X=0 147

表目錄
表3.1 模式之裝置參數計算 21
表3.2 氣體熱傳導係數參數 30
表3.3 液體熱傳導係數參數 30
表3.4 氣體黏度參數 31
表3.5 液體黏度參數 32
表3.6原子與官能基擴散體積增量 34
表3.7 甲醇蒸氣重組反應式與反應動力學 37
表3.8甲醇蒸氣重組之反應速率常數表 38
表3.9甲醇蒸氣重組之吸附係數 38
表3.10 蒸氣重組器驗證個案之裝置尺寸 39
表3.11 蒸氣重組器驗證個案之操作條件 40
表3.12 蒸氣重組器驗證個案之實驗與模擬結果 41
表3.13 優先氧化之反應式與反應動力學 42
表3.14 優先氧化器驗證個案之裝置尺寸 43
表3.15 優先氧化器驗證個案操作條件 44
表3.16 燃燒反應之反應式與反應動力學 46
表3.17 燃燒器驗證個案之裝置尺寸 47
表3.18 燃燒器驗證個案之操作條件 48
表3.19 整合式燃燒器與蒸氣重組器驗證個案之蒸氣重組器裝置尺寸 51
表3.20 整合式燃燒器與蒸氣重組器驗證個案之燃燒器裝置尺寸 52
表3.21 整合式燃燒器與蒸氣重組器驗證個案之蒸氣重組器操作條件 52
表3.22 整合式燃燒器與蒸氣重組器驗證個案之燃燒器操作條件 53
表4.1 系統設定條件與進料物流條件 66
表4.2 燃料電池之裝置規格 67
表4.3 微燃料處理系統各反應單元之裝置規格 68
表4.4 微燃料處理系統各熱交換單元之裝置規格 69
表4.5 基本個案之物流資料 71
表4.6 蒸氣重組器模擬結果 76
表4.7 優先氧化處理器模擬結果 76
表4.8 燃燒器模擬結果 77
表4.9 燃料電池模擬結果 77
表4.10 各主要裝置之能量消耗與供應 78
表4.11 整體系統之水平衡 78
表4.12 各變數對性能之影響 91
表5.1 最佳化分析之參數設定 98
表5.2 RGA測試之各改變量 107
表5.3 各控制架構之參數調諧 111
表5.4 控制參數之最佳化分析設定 115
表5.5 各控制架構之最佳化控制參數 116
表5.6 各反應器使用觸媒之操作範圍 136
表5.7 動態最佳化參數設定 140
表5.8 啟動操作最佳化結果 140

參考文獻 參考文獻
Arzamendi, G., Dieguez, P. M., Montes, M., Centeno, M.A., Odriozola, J.A., Gand, L.M., “Integration of methanol steam reforming and combustion in a microchannel reactor for H2 production: A CFD simulation study,” Catalysis Today, 2009, 143, 25-31.
Becht, S., Franke, R., Geiselmann, A., Hahn, H., “Micro process technology as a means of process intensification,” Chemical Engineering Technology, 2007, 30, 295-299.
Castaldi, M.J., Barrai, F., “An investigation into water and thermal balance for a liquid fueled fuel processor,” Catalysis Today, 2007, 129, 397-406
Chachuat, B., Mitsos, A., Barton, P.I., “Optimal design and steady-state operation of micro power generation employing fuel cell,” Chemical Engineering Science, 2005, 60, 4535-4556
Chen, Y.H., Yu, C.C., Liu, Y.C., Lee, C.H., “Start-up strategies of an experimental fuel processor,” Journal of Power Sources, 2006, 160, 1275-1286.
Chuang, C.C., Chen, Y.H., Ward, J.D., Yu, C.C., Liu, Y.C., Lee, C.H., “Optimal design of an experimental methanol fuel reformer,” Journal of Power Sources, 2008, 33, 7062-7073.
Choi, Y., Stenger, H.G., “Kinetics, simulation and insights for CO selective oxidation in fuel cell applications,” Journal of Power Sources, 2004, 129, 246-254.
Choudhary, T.V., Goodman, D.W., “CO-free fuel processing for fuel cell applications,” Catalysis Today, 2002, 77, 65-78.
Cipitı, F., Pino, L., Vita, A., Lagana, M., Recupero., V., “Model-based analysis of reactor geometrical configuration on CO preferential oxidation performance,” International Journal of Hydrogen Energy, 2009, 34, 4463-4474.
Cunha, J., Azevedo, J.L.T., “Modelling the integration of a compact plate steam reformer in a fuel cell system,” Journal of Power Sources, 2000, 86, 515-522.
Delsman, E.R., de Croon, M.H.J.M., Pierik, A., Kramer, G.J., Cobden, P.D., Hofmann, C., Cominos, V., Schouten, J.C., “Design and operation of a preferential oxidation microdevice for a portable fuel processor,” Chemical Engineering Science, 2004a, 59, 4795-4802.
Delsman, E.R., de Croon, M.H.J.M., Kramer, G.J., Cobden, P.D., Hofmann, C., Cominos, V., Schouten, J.C., “Experiments and modeling of an integrated preferential oxidation-heat exchanger microdevice,” Chemical Engineering Journal, 2004b, 101, 123-131.
Delsman, E. R., Laarhoven, J.P.F., de Croon, M.H.J.M., Kramer, G.J., Schouten, J.C., “Comparison between conventional fixed-bed and microreactor technology for a portable hydrogen production case,” Chemical Engineering Research and Design, 2005, 83, 1063-1075.
Delsman, E.R., Pierik, A., de Croon, M.H.J.M., Kramer, G.J., Schouten, J.C., “Microchannel plate geometry optimization for even flow distribution at high flow rates,” Institution of Chemical Engineers, 2004c, 82, 267-273.
de Smet, C.R.H., de Croon, M.H.J., Berger, M.R.J., Marin, G.B., Schouten, J.C., “Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells,” Chemical Engineering Science, 2001, 56, 4849-4861.
Doss, E.D., Kumar, R., Ahluwalia, R.K., Krumpelt, M, “Fuel processors for automotive fuel cell systems: a parametric analysis,” Journal of Power Sources, 2001, 102, 1-15.
Ehrfeld, W., Hessel, V., Lowe, H., Microreactors: New technology for modern chemistry, Wiley-VCH, Weinheim, 2000.
Ersoz, A., Olgun, H., Ozdogan, S., Gungor, C., Akgun, F., Tyrys, M, “Autothermal reforming as a hydrocarbon fuel processing option for PEM fuel cell,” Journal of Power Sources, 2003, 118, 384-392.
Fink, H., Hampe, M.J., “Designing and constructing microplants,” in: Proceedings of the Third International Conference on Microreaction Technology (IMRET 3), Springer-Verlag, Berlin, Germany, 2000, 664-673.
Godat, J., Marechal, F., “Optimization of a fuel cell system using process integration techniques,” Journal of Power Sources, 2003, 118, 411-423.
Gokhale, S.V., Tayal, R.K., Jayaraman, V.K., Kulkarni, B.D., “Microchannel reactors: applications and use in process development,” International Journal of Chemical Reactor Engineering, 2005, 3, Review R2.
Hagh, B. F., “Optimization of autothermal reactor for maximum hydrogen production,” International Journal of Hydrogen Energy, 2003, 28, 1369-1377.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part I,” Chemical Engineering and Technology, 2003a, 26, 1, 13-24.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part II,” Chemical Engineering and Technology, 2003b, 26, 4, 391-408.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part III,” Chemical Engineering and Technology, 2003c, 26, 5, 531-544.
Hessel, V., Lowe, H., Muller, A., Kolb, G., Chemical Micro Process Engineering, Wiley-VCH, Weinheim, 2005.
Hessel, V., Renken, A., Schouten, J.C., Yoshida, J., Micro Process Engineering: A Comprehensive Handbook, Vol. 1-3, Wiley-VCH, Weinheim, 2009.
Holladay, J.D., Jones, E.O., Dagle, R.A., Xia, G.G., Cao, C., Wang, Y., “High efficiency and low carbon monoxide micro-scale methanol processors,” Journal of Power Sources, 2004, 131, 69-72.
Hsueh, C.Y., Chu, H.S., Yan, W.M., Chen, C.H., Chang, M.H., “Numerical study of heat and mass transfer in the plate methanol steam,” Applied Thermal Engineering, 2010, 30, 1426-1437.
Hu, Y., Chmielewski, D., Papadias, D., “Autothermal reforming of gasoline for fuel cell applications: Controller design and analysis,” Journal of Power Sources, 2008, 182, 298-306..
Hung, A.J., Sung, L.Y., Chen, Y.H., Yu, C.C.,” Operation-relevant modeling of an experimental proton exchange membrane fuel cell”, Catalysis Today, 2007, 171, 728-737.
Ito, K, Choi, B.C., Fujita, O., “The start up characteristics of a catalytic combustor using a methanol mixture,” The Japan Society of Mechanical Engineers, 1990, 33(4), 778-784.
Jensen, K.F., “Microreaction engineering—is small better?,” Chemical Engineering Science, 2001, 56, 293-303.
Joshua, G., Daniel R.L., “Model-based control of fuel cells: (1) Regulatory control,” Journal of Power Sources, 2004, 135, 135-151.
Kashid, M.N., Lioubov, K.M., “Microstructured reactors for multiphase reactions: state of the art,” Industrial and Engineering Chemistry Research, 2009, 48, 6465-6485.
Kim, D.H., Lim, M.S.,” Kinetics of selective CO oxidation in hydrogen-rich mixtures on Pt/alumina catalysts,” Applied Catalysis A: General, 2002, 224, 27–38.
Kockmann, N., Brand, O., Fedder, G.K., Hierold, C., Korvink, J.G., Tabata, O., Micro Process Engineering: Fundamentals, Devices, Fabrication and Applications, Wiley-VCH, 2006.
Kolb, G., Hessel, V., “Micro-structured reactors for gas phase reactions,” Chemical Engineering Journal, 2004, 98, 1-38.
Korotkikh, O., Farrauto, R., “Selective Catalytic Oxidation of CO in H2: Fuel Cell applications,” Catalysis Today, 2000, 62, 249–254.
Lin, S.T., Chen, Y.H., Yu, C.C., Liu, Y.C., Lee, C.H., “Dynamic modeling and control structure design of an experimental fuel processor,” International Journal of Hydrogen Energy, 2006, 31, 413-426.
Lin, S.T., Chen, Y.H., Yu, C.C., Liu, Y.C., Lee, C.H., “Modeling of an experimental fuel processor,” Journal of Power Sources, 2005, 148, 43-53.
Lioubov, K.M., Renken, A., “Microstructured reactors for catalytic reactions,” Catalysis Today, 2005, 110, 2-14.
Lutza, A.E., Bradshawa, R.W., Kellera, J.O., Witmerb, D.E., “Thermodynamic analysis of hydrogen production by steam reforming,” International Journal of Hydrogen Energy, 2003, 28, 159-167.
Pan, M., Zeng, D., Tang, Y., Chen, D., “CFD-based study of velocity distribution among multiple parallel microchannels,” Journal of Computers, 2009, 4, 11, 1133-1138.
Park, G.G., Seo, D. J., Park, S.H., Yoon, Y.G., Kim, C.S., Yoon, W.L., “Development of microchannel methanol steam reformer,” Chemical Engineering Journal, 2004, 101, 87-92.
Pasel, J., Emonts, B., Peters, R., Stolten, D., “A structured test reactor for the evaporation of methanol on the basis of a catalytic combustion,” Catalysis Today, 2001, 69, 193-200.
Pepply, B.A., Amphlett, J.C., Kearns, L.M., Mann, R.F., “Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model,” Applied Catalysis A: General, 1999, 179, 31-49.
Pukrushpan, J., Stefanopoulou, A., Varigonda, S., Eborn, J., Haugstetter, C., “Control-oriented model of fuel processor for hydrogen generation in fuel cell applications,” Control Engineering Practice, 2006, 14, 277-293.
Qi, A., Peppley, B. , Karan,K. ,“ Integrated fuel processors for fuel cell application: A review,” Fuel Processing Technology, 2007, 88, 3-22.
Rebrov, E.V., De Croon, M.H.J.M., Schouten, J.C., “Design of a microstructured reactor with integrated heat-exchanger for optimum performance of a highly exothermic reaction,” Catalysis Today, 2001, 69, 183-192.
Reid, R. C., Prausnitz, J. M., Poling, B. E., The properties of gases and liquids, 4th ed., McGraw-Hill Book Company, New York, 1987.
Severin, C., Pischinger, S., Ogrzewalla, J., “Compact gasoline fuel processor for passenger vehicle APU,” Journal of Power Sources, 2005, 115, 675-682.
Shah, K., Besser, R.S., “Key issues in the microchemical systems-based methanol fuel processor: Energy density, thermal integration, and heat loss mechanisms,” Journal of Power Sources, 2007, 166, 177-193.
Shin, W.C., Besser, R.S., “Toward autonomous control of microreactor system for steam reforming of methanol,” Journal of Power Sources, 2007, 164, 328–335.
Shmed, S., Ahluwalia, R., Lee S.H.D., Lottes, S., “A gasoline fuel processor designed to study quick-start performance,” Journal of Power Sources, 2006, 154, 214-222.
Springmann, S., Bohnet, M., Docter, A., Lammd, A., Eigenberger, G., “Cold start simulations of a gasoline based fuel processor for mobile fuel cell applications,” Journal of Power Sources, 2004, 128, 13-24.
Tesser, R., Serio, M., Di, E., Santacesaria, E., “Methanol steam reforming: A comparison of different kinetics in the simulation of a packed bed reactor,” Chemical Engineering Journal, 2009, 154, 69-75.
Trimm, D.L., Onsan, Z.I., “Onboard fuel conversion for hydrogen fuel cell driven vehicles,” Catalyst Review Science Engineering, 2001, 43, 31–84.
Tsourapas, V., Stefanopoulou, A.G., Sun. J., “Model-based control of an integrated fuel cell and fuel processor with exhaust heat recirculation,” IEEE Transactions on Control Systems Technology, 2007, 15, 233-245.
Vahabi, M., Akbari, M.H., “Three-dimensional simulation and optimization of an isothermal PROX microreactor for fuel cell applications,” international Journal of Hydrogen Energy, 2009, 34, 1531-1541
Wallmark, C., Alvfors, P., “Design of stationary PEFC system configurations to meet heat and power demands,” Journal of Power Sources, 2002, 106, 83-92.
Yaws, C. L., Handbook of Viscosity, Gulf Pub., Houston, 1995.
Yi, J.S., Nguyen, T.V., “An along-the-channel model for proton exchange membrane fuel cells,” Journal of Electrochemical Society, 1998, 4, 1149-1159.
Yoshida, K., Tanaka, S., Hiraki, H., Esashi, M., “A micro fuel reformer integrated with a combustor and a microchannel evaporator,” Journal of Micromechanics and Microengineering, 2006, 16, S191-S197.
Zalc, J.M., Loffler, D.G., “Fuel processing for PEM fuel cells: transport and kinetic issues of system design,” Journal of Power Sources, 2002, 111, 58–64.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信