淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0908201005070100
中文論文名稱 代理人基股票市場:記憶、學習與市場效率
英文論文名稱 Agent-Based Stock Market: Memory, Learning and Market Efficiency
校院名稱 淡江大學
系所名稱(中) 產業經濟學系碩士班
系所名稱(英) Department of Industrial Economics
學年度 99
學期 2
出版年 100
研究生中文姓名 劉凱倫
研究生英文姓名 Kai-Lun Liu
學號 697540218
學位類別 碩士
語文別 中文
口試日期 2010-07-10
論文頁數 40頁
口試委員 指導教授-池秉聰
委員-葉佳炫
委員-戴中擎
中文關鍵字 記憶長度  代理人基股票市場  市場效率 
英文關鍵字 Memory  Agent-Based Stock Market  Market Efficiency 
學科別分類 學科別社會科學經濟學
中文摘要 本論文延伸Levy, Levy, and Solomon (2000)模型架構,藉由其模型探討兩種情況。第一,本論文希望能觀察在不同情況下,投資者的記憶長度對市場的影響;第二,當市場上投資者彼此間差異性越小時,是否會如同Levy, Levy, and Solomon (1994)一樣的情況使市場上的價格變動更為劇烈。為探討以上兩種情況進行了四種實驗的模擬,(一)增加效率市場信徒的投資者(Efficient market believer, EMB)比例(二)改變效率市場信徒的效用函數(三)改變投資者記憶長度的參數(四)減少投資者彼此間的差異。其結果:當在第一種情況下記憶長度較短的更快掌握市場,而第二和第三則記憶長度較短的投資者最後雖仍掌握市場,但是掌握市場的時間延後了;當減少投資者彼此間的差異時,市場上的價格如同Levy, Levy, and Solomon (1994)一樣。
英文摘要 This paper extends Levy, Levy, and Solomon (2000) model framework, and investigates two cases of the model. First, we want to observe under different circumstances, investors’ memory impact on the market; second, The smaller difference between the investors, the greater the price volatility, whether as Levy, Levy, and Solomon (1994) the situation as the market price changes is more violent.
To explore the above two experiments conducted four simulations, (a) increasing the efficient market believers investors (EMB) ratio (b) change the efficient market believers investors’ utility function (c) change the memory length of the investors parameter (d) reduce the differences among investors. The result: in the first case, when the increase the number of efficient market believers investors, the short memory investors become faster to grasp the market;in the second and the third case, the shorter memory investors still control the market in the last, but they spent more time to grasping the market; the last case, when we reduced differences between investors, the market price as the Levy, Levy, and Solomon (1994) as become more violent.
論文目次 目錄I
表目錄II
圖目錄III
第一章 緒論1
11研究動機與目的1
12 本文架構5
第二章 LLS模型的設定6
21環境設定6
22投資者設定7
23交易設定9
第三章 模擬結果1
31標竿模型的結果11
32 LLS模型包含少量的EMB投資者14
321同質性EMB投資人15
322兩種EMB投資人18
323異質性的EMB投資者21
33 損失趨避EMB投資者和原始投資者之比較24
34 兩種EMB投資人之延伸與探討27
341增加EMB投資者的比例27
342變更效用函數 29
343改變長短期記憶長度的參數32
35 干擾項之標準差不同比較35
第四章 結論37
參考文獻 39

表 1 期初設每位投資者參數設定10
表 2 市場參數設定10
表 3 報酬率自我相關,標竿模型12
表 4 報酬率自我相關, 5%EMB 投資者(m = 10);95%RII 投資者16
表 5 價格波動, 2% EMB(m = 5),2% EMB(m = 15);96% RII 18
表 6 報酬自我相關, 22% EMB(m = 5),2% EMB(m = 15);96% RII 19
表 7 報酬率自我相關, 10%EMB 投資者,90%RII,投資,m= 40,mσ= 10;90%RII 投資者22
表 8 絕對報酬率和交易量回歸結果異質性的EMB 投資者(10%EMB 投
資者,90%RII 投資者) 24
表 9 價格波動比較,損失趨避EMB投資者和原始的EMB投資者(5%異質性EMB) 25
表 10 交易量和絕對報酬比較, 5%異質性損失趨避EMB 投資者和原始異質性EMB 投資者25
表 11 報酬率自我相關,原始的EMB 投資者損失趨避EMB 投資者(5%異質性EMB 投資者)26
表 12 價格波動比較, 損失趨避2% EMB(m = 5),2% EMB(m = 15);96% RII 30
表 13 報酬率自我相關,損失趨避EMB 投資者2% EMB(m = 5),2%,EMB(m = 15);96% RII 30
表 14 價格波動, 2% EMB(m = 15),2% EMB(m = 30);96% RII 32
表 15 報酬率自我相關, 2% EMB(m = 15),2% EMB(m = 30);96% RII 33
表 16 不同干擾項下之價格波動比較 (異質性EMB 投資者10%) 36
表 17 不同干擾項下之交易量比較, (異質性EMB 投資者10%) 36
表 18 異質性EMB 投資者在不同干擾項之交易量和絕對報酬比較(異質性EMB 投資者10%) 36

圖1 價格動態,標竿模型12
圖 2 報酬自我相關,標竿市場13
圖3 價格動態,同質性EMB 投資者,5%EMB(m = 10)投資者;95%RII投資者16
圖4 價格動態,同質性EMB 投資者,兩個模擬情形-和圖3 一樣參數,股利形成過程相同16
圖 5 報酬率自我相關,5%EMB(m = 10)投資者;95%RII 投資者18
圖 6 價格動態, 2% EMB(m = 5),2% EMB(m = 15);96% RII 19
圖 7 投資者占總資產比例, 2% EMB(m = 5),2% EMB(m = 15);96% RII 19
圖 8 報酬率自我相關, 2% EMB(m = 5),2% EMB(m = 15);96% RII 21
圖 9 價格動態, 異質性的EMB 投資者(10%EMB 投資者,90%RII 投資者) 21
圖 10 報酬率自我相關,10%EMB(m = 10)投資者,90%RII 投資者23
圖 11 價格動態,原始EMB 投資者和損失趨避EMB 投資者比較(5%異質EMB 投資者) 25
圖 12 報酬自我相關,損失趨避EMB投資者和原始EMB投資者比較(5%異質EMB 投資者) 27
圖 13 投資者占總資產比例, 4% EMB(m = 5),4% EMB(m = 15);92%RII 28
圖 14 投資者占總資產比例, 8% EMB(m = 5),8% EMB(m = 15);84%RII 28
圖 15 投資者占總資產比例, 16% EMB(m = 5),16% EMB(m = 15);68% RII 28
圖 16 投資者占總資產比例, 32% EMB(m = 5),32% EMB(m = 15);36% RII 29
圖 17 報酬率自我相關, 以EMB 投資者不同比例29
圖 18 價格動態, 損失趨避2% EMB(m = 5),2% EMB(m = 15);96% RII 30
圖 19 投資者佔總資產比例, 損失趨避2% EMB(m = 5),2%EMB(m = 15);96% RII 30
圖 20 報酬率自我相關, 損失趨避2% EMBm = 5 ,2% EMBm = 15 ;RII:96% 32
圖 21 價格動態, 2% EMB(m = 15),2% EMB(m = 30);96% RII 32
圖 22 佔總資產比例, 2% EMB(m = 15),2% EMB(m = 30);96% RII 33
圖 23 報酬率自我相關, 2% EMB(m = 15),2% EMB(m = 30);96% RII 34
圖 24 交易量率自我相關比較, 2% EMB(m = 5),2% EMB(m = 15)和2% EMB(m = 15),2% EMB(m = 30)36
圖25 交易量和絕對報酬之比較, 2% EMB(m = 5),2% EMB(m = 15)和2% EMB(m = 15),2% EMB(m = 30)36
圖 26 報酬自我相關,異質性投資者在不同干擾項下的比較 37
參考文獻 Admati, A. and P. Pfleiderer (1988). “A theory of intraday patterns: volume and price variability.” Review of Financial Studies, 1:1, pp.3-40.
Arifovic, Jasmina. (1994)"Genetic Algorithm Learning and the Cobweb Model." J. Econ. Dynamics and Control 18 (January): pp.3-28.
Barberis, Nicholas, Andrei Shleifer, and Robert Vishny. (1998) “A Model of Investor Sentiment,” Journal of Financial Economics 49, 307−345.
Barberis, N., M. Huang, and T. Santos. (2001). “Prospect Theory and Asset Prices.” Quarterly Journal of Economics, 116, no. 1 (February): pp.1–53.
Daniel, K., D. Hirshleifer and A. Subrahmanyam (1998), “Investor psychology and security market under- and overreactions”, Journal of Finance 53: pp.1839−1885.
De Bondt, Werner, and Richard Thaler.(1985) “Does the Stock Market Overreact?” Journal of Finance 40, pp.793−808
Fama, E., and K. French.(1988) .”Permanent and Temporary Components of Stock Prices,” Journal of Political Economy 96, pp.246-273.
Gilovich, T., R. Vallone, and A. Tversky.(1985). “The Hot Hand in Basketball: On the Misperception of Random Sequences,” Cognitive Psychology 17, pp.295-314
Grossman, S., and J. Stiglitz.(1980). “On the Impossibility of Informationally Efficient Markets,” The American Economic Review, 70, No. 3 (Jun), pp. 393-408
Glosten, L. R., and P. R. Milgrom.(1985). “Bid, Ask, and Transaction Prices in a Specialist Market with Heterogeneously Informed Traders,” Journal of Financial Economics 14, pp.71–100
Gordon, Myron J. (1959). "Dividends, Earnings and Stock Prices". Review of Economics and Statistics, The MIT Press 41, pp.99–105
Hellwig, M. (1980). “On the Aggregation of Information in Competitive Markets,” JOURNAL OF ECONOMIC THEORY 22, pp.477-498
Jegadeesh, N., and S. Titman (1993). ‘‘Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency,’’ Journal of Finance, 48:1, pp.65-91.
Kahneman, Daniel, and Amos Tversky (1979). “Prospect Theory: An Analysis of Decision under Risk. ”Econometrica 47, pp.263–292.
Karpoff, Jonathan (1987). “The Relationship between Price Changes and Trading Volume: A Survey,” Journal of Financial and Quantitative Analysis, 22:1, pp.109-126
Kyle, Albert S.(1985). “Continuous Auctions and Insider Trading,” Econometrica, 53, No. 6 (Nov), pp. 1315-1335.
LeBaron, B. (2001a). “Empirical regularities from interacting long and short memory investors in an agent based stock market”. IEEE Transactions on Evolutionary Computation 5, pp.442–455.
LeBaron, B. (2001b), “Evolution and time horizons in an agent based stock market”, Macroeconomic Dynamics (2001), pp.225-254
Levy, M., Levy H., and S. Solomon.(1994). “A Microscopic Model of the Stock Market: Cycles, Booms, and Crashes,” Economics Letters, 45, pp.103-111.
Levy, M., Levy H., and S. Solomon.(1995). “Simulation of the Stock Market: The Effects of Microscopic Diversity,” Journal de Physique I, 5, pp.1087-1107
Levy, M., N. Persky, and S. Solomon.(1996). “The Complex Dynamics of a Simple Stock Market Model.” International Journal of High Speed Computing, 8, pp. 93-113
Levy, M., Levy H., and S. Solomon. (2000). Microscopic Simulation of Financial Markets: From Investor Behavior to Market Phenomena. Academic Press.
Poterba, J. M., and Summers, L. H. (1988). “Mean Reversion in Stock Returns: Evidence and Implications,” Journal of Financial Economics, 22, pp.27-59.
Shefrin, Hersh M., and Meir Statman.(1985) “The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theory and Evidence,” The Journal of Finance, 40, pp. 777-790
Shiller, Robert J. (1981) “Do Stock Returns Move Too Much to Be Justified by Subsequent Changes in Dividends?” The American Economic Review, 71, No. 3 (Jun., 1981), pp. 421-436
Solomon, S. (1995). “The microscopic representation of complex macroscopic phenomena.” In D. Stauffer, (ed.) Annual Reviews of Computational Physics II. Singapore: World Scientific.
Tversky, A., and Kahneman, D.(1981). “The Framing of Decisions and the Psychology of Choice,” Science, 211. no. 4481, pp. 453 - 458
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信