淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0908200615164800
中文論文名稱 運用FDTD法在植入式生醫裝置的RF傳輸模擬
英文論文名稱 Simulation of the RF Transmission for Implantable Biomedical Devices Using the FDTD Method
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 陳政煌
研究生英文姓名 Jeng-Hung Chen
學號 693340027
學位類別 碩士
語文別 中文
口試日期 2006-07-27
論文頁數 71頁
口試委員 指導教授-李宗翰
委員-沈燕士
委員-洪祖昌
中文關鍵字 時域有限差分法  無線射頻技術  植入式生醫裝置 
英文關鍵字 FDTD  RF  Implantable bio-medical derivce 
學科別分類 學科別應用科學機械工程
中文摘要 植入式生醫裝置在現代醫學中已獲得了廣泛的應用。將微型低功耗的生醫裝置植入人體內,對各種生理資訊進行檢測,或對器官、組織進行控制,更可作為植入式藥物釋放系統。因為裝置不需要通過皮膚或腸胃,各種干擾因素也大大減少,保證了與人體間良好的匹配性,並具有使用方便、舒適,尤其對器官和組織可作即時性的調控,對於恢復身體機能或控制病情有相當大的助益。
近年來,微機電設計和製造技術的進步,促進了植入式生醫裝置的發展,不僅讓生醫元件微型化,也使得無線射頻技術運用在植入式生醫裝置的研發有所突破,控制和回饋的參數、以及用於診斷和治療的資訊也增加很多,這些長足的進展拓寬了植入式生醫裝置應用發展的領域。本研究中主要是探討以無線射頻技術作為植入式生醫元件及裝置所需的能量來源及資料傳輸的方式。藉由分析植入式生醫裝置使用的射頻功率強度、發射頻率、傳輸距離;人體組織的介電係數、導電率;裝置植入部位等因素,研究藉由MRI所建立的醫學掃瞄影像來獲得人體組織分佈,配合不同的人體組織電磁參數,再導入時域有限差分法(FDTD)建立出人體電磁場模型,來模擬植入式生醫裝置傳輸射頻能量時,體內外的SAR值分佈,用於評估植入式生醫裝置在不同設定下的能量傳輸效率。
英文摘要 The implantable bio-medical device has been broadly applied in modern medical science. Implanting the microscopy, low energy consumption devices which can release medicine automatically into human body and get all kinds of physiology information to control organs and tissues. Because this device does not necessary pass through skin and stomach, then several disturbance factors are reduced. Therefore, this device has not only well matching but also a lot of advantages, included convenient usage and comfort, the major function is adjusting quantity of medicine real time to restrain disease and recover faculty of organs.
In recent years, the improvements of micro electro mechanical design and manufacturing technology promote development of implanted. These technologies not only microminiaturized the bio-medical element but also made RF technology have great evolution. Control parameters, feedback parameters, diagnosis information and cure information increasing a lot. Remarkable advances have been made in the field of implanted bio-medical device.
This paper studies on methods of power supply and data transmission on implantable bio-medical element by RF technology. Analyzing relations between radio power intensity, radio frequency, transmission distance of implantable bio-medical device, permittivity and conductivity of human tissue. This paper utilize human tissue distribution image by MRI related to different dielectric parameter of human beings to establish human electromagnetic field model with FDTD method, which can simulate transmission energy of RF and SAR distribution inward and outward parts of body. Furthermore, this method could estimate energy transmission efficiency in different conditions.
論文目次 <目錄>
中文摘要.....................................................................................I
英文摘要....................................................................................II
目錄...........................................................................................IV
圖目錄......................................................................................VI
表目錄....................................................................................VIII
第一章 序論................................................................................1
1-1 前言.......................................................................................1
1-2 研究背景...............................................................................3
1-3 研究動機與方法 ..................................................................6
第二章 文獻回顧........................................................................7
2-1 植入式生醫裝置之相關研究...............................................7
2-2 生物電磁學之相關研究.....................................................14
2-3 時域有限差分法(FDTD)之相關研究...........................20
第三章 時域有限差分法(FDTD) .............................................25
3-1 基本概念.............................................................................26
3-2 Maxwell方程式...................................................................28
3-3 時域有限差分法(FDTD)方程式...................................30
3-4 Courant的穩定條件............................................................34
3-5 激發源的處理.....................................................................38
3-6 吸收邊界條件(Absorbing Boundary Condition)............40
第四章 人體電磁模型的建模與驗證......................................42
4-1 特定吸收率(SAR)..........................................................43
4-2 人體模型的建模方法.........................................................45
4-3 行動電話電磁波對人體頭部的SAR值分佈......................49
第五章 RF應用於植入式生醫裝置的傳輸模擬......................55
5-1 402MHz偶極天線 ..............................................................56
5-2 利用RF進行人體全身模擬的重要性................................58
5-3 402MHz植入式生醫裝置的傳輸效率模擬.......................60
第六章 結論與未來方向..........................................................64
6-1 結論.....................................................................................64
6-2 未來方向.............................................................................66
參考文獻...................................................................................67
附錄A 人體組織電磁參數.......................................................69

<圖目錄>
圖1-1 植入式無線射頻生醫裝置架構示意圖...........................2
圖2-1植入性微刺激裝置圖........................................................8
圖2-2 裝置輸出電壓與距離的相對關係...................................8
圖2-3 系統效率與裝置的相對關係曲線圖...............................8
圖2-4 功率傳輸於豬肉實驗之示意圖.......................................9
圖2-5 Class-E無線功率傳輸系統於空氣中傳輸距離之比較...9
圖2-6 傳輸頻率(A) 658KHz,(B) 773KHz,(C)1.07MHz,
(D) 1.7MHz在空氣、豬里肌肉、豬肥油之功率衰減趨勢....10
圖2-7 Class D在空氣中之功率傳輸比較.................................10
圖2-8 BION計畫的植入式生物晶片........................................11
圖2-9 Olympus發表的膠囊型內視鏡.......................................12
圖2-10 典型生物組織的相對介電常數隨頻率的變化關係...17
圖3-1 基本空間單元上場分量圖.............................................31
圖3-2 FDTD電磁場計算時間步階圖.......................................33
圖3-3 Gaussian脈衝型的時域波形...........................................39
圖4-1 人體醫學影像.................................................................45
圖4-2 FDTD的人體建模步驟...................................................46
圖4-3人體醫學影像(a) (b)與人體電磁模型(c) (d)..................48
圖4-4 行動電話天線與頭部相對位置.....................................50
圖4-5 900MHz電磁波對人體頭部所產生的SAR值................51
圖4-6 1800MHz電磁波對人體頭部所產生的SAR值..............52
圖4-7 900MHz的1g組織平均重量之SAR分佈圖....................53
圖4-8 900MHz的10g組織平均重量之SAR分佈圖..................53
圖4-9 1800MHz的1g組織平均重量之SAR分佈圖..................54
圖4-10 1800MHz的10g組織平均重量之SAR分佈圖..............54
圖5-1 偶極天線之S11模擬結果 ..............................................56
圖5-2 偶極天線的模擬2D近場瞬間電場圖............................57
圖5-3 偶極天線的模擬3D近場瞬間電場圖............................57
圖5-4 頭部中心近電場強度分佈圖.........................................59
圖5-5 倒F型天線(PIFA).....................................................60
圖5-6 PIFA天線植入在人體電磁模型中的位置.....................61
圖5-7 PIFA天線在傳輸時的SAR分佈圖..................................62
圖5-8 PIFA天線在傳輸時的穩態電場圖.................................62
圖5-9 接收能量與距離的關係圖.............................................63

<表目錄>
表2-1 生物組織電磁參數.........................................................18
表2-2 生物組織電磁參數.........................................................19
表4-1 FCC與CENELEC的SAR值規範......................................44
表4-2 不同頻率下人體組織液的介電係數與與導電率.........49
表4-3 900MHz電磁波對人體頭部所產生的SAR值................51
表4-4 1800MHz電磁波對人體頭部所產生的SAR值..............52
表5-1 接收功率與輻射效率.....................................................59
參考文獻 [1]W. J. Heetderks, “RF powering of millimeter and submillimeter sized neural prosthetic implants,” IEEE Trans. Biomed. Eng. vol. 35, pp. 323-327, 1988.
[2]S. Bourret, M. Sawan, and R. Plamondon, “Programmable high-amplitude balanced stimulus current-source for implantable microstimulators,” IEEE Proc. Eng. Medicine and biology society, vol. 5, pp. 1938-1941, 1997.
[3]T. Akin, K. Najafi and R.M. Bradley, ”A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode,” IEEE Trans. Solid-State Circuits, vol. 33, pp. 109-118, 1998.
[4]G. E. Loeb, F. J. R. Richmond, D. Olney, T. Cameron, A. C. Dupont, K. Hood, R. A. Peck, P. R. Troyk and H. Schulman, “BION/sup TM/. Bionic neurons for functional and therapeutic electrical stimulation”, Proc. IEEE 20th Int. Conf. Eng. Medicine and Biology Society, vol. 5, pp. 2305-2309, 1998.
[5]Q. Huang and M. Oberle, “A 0.5-mW passive telemetry IC for biomedical applications,” IEEE Trans. Solid-State Circuits, vol. 33, pp. 937 -946, 1998.
[6]Sayed-Amr EI-Hamamsy, “Design of high-efficiency RF class-D power Amplifier”, IEEE Transactions on Power Electronics, Vol. 9, No. 3, 1994.
[7]陳宏榮,「植入式生醫微型系統之無線電源傳輸製作與其電源傳輸於生物組織之探討」,中原大學醫學工程研究所,2004
[8]李世強,「應用於微刺激器之無線雙向傳輸電路之積體電路實現」,成功大學醫學工程研究所,2002
[9]陳忠鍇,「設計具無線傳輸資料與能量之神經環型電刺激系統」,成功大學醫學工程研究所,2002
[10]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas Propagat ., vol. AP-14, pp. 302-307, May 1966.
[11]D. M. Sheen, S. M. Ali, M. D. Abouzahra and J. A. Kong, “Application of the three-dimensional finite-difference time-domain method to the analysis of plannar microstrip circuits”, IEEE Trans. Microwave Theory Tech., vol. 38, pp. 849-857,July 1990.
[12]Yih-Feng Wei,“Finite-Difference Time-Domain (FDTD) Electromagnetic Computation for Wire Antennas and 3-D Body Objects.” Department of Electrical Engineering National Cheng Kung University Tainan, Taiwan, R.O.C. Thesis for Master of Science, June 1998.
[13]S. Haleem AS, Boehm F, Legatt AD, Kantrowitz A, Stone B, and Melman A. Sacral root stimulation for controlled maturation: Prevention of detrusor-external sphincter dyssynergia by intraoperative identification and selective section of sacral nerve branches. J. Urol., vol. 149:1607–1612, June 1993.
[14]Troyk PR, Brown IE, Moore WH, and Loeb GE. Development of BION technology for functional electrical stimulation: bi-directional telemetry.
[15]IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz,IEEE C95.1-1991.Ed, 1999.
[16]P.J. Dimbylow. FDTD calculations oft the SAR for a dipole closely coupled to the head at 900MHz and 1.9GHz. Phys. Med. Bio, 1993, 38:361~368.
[17]http://www.verichipcorp.com/
[18]http://www.medtronic.com
[19]S. Gabriel, R. Lau, and C. Gabriel, "The dielectric properties of biological tissues: I. Literature Survey", Phys. Med. Bio, vol.41, no.11, pp 2251-2269, 1996
[20]S. Gabriel, R. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurement in the frequency range 10Hz to 20GHz", Phys. Med. Bio, vol.41, no.11, pp 2251-2269, 1996
[21]S. Gabriel, R. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues", Phys. Med. Bio, vol.41, no.11, pp 2271-2293, 1996
[22]C. Gabriel, "Compilation of the dielectric properties of body tissues at RF and microwave frequencies", Armstrong Lab., Brooks Air Force Base. TX, brooks Air Force Base Tech. Rep. AL/OE -TR-1996-0037, 1996.
[23]Dimbylow, P.J., Mann, S.M. , "Sar calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz", Physics in Medicine and Biology, 39 (10), pp. 1537-1553, 1994
[24]Martinez-Burdalo, M., Martín, A., Anguiano, M., Villar, R. , "Comparison of FDTD-calculated specific absorption rate in adults and children when using a mobile phone at 900 and 1800 MHz", Physics in Medicine and Biology, 49 (2), pp. 345-354, 2004
[25]Soontornpipit, P., Furse, C.M., Chung, Y.C., "Design of implantable microstrip antenna for communication with medical implants", IEEE Transactions on Microwave Theory and Techniques, 52 (8 II), pp. 1944-1951., 2004
[26]http://www.olymus.com
論文使用權限
  • 不同意紙本論文無償授權給館內讀者為學術之目的重製使用。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信