§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0908200516171100
DOI 10.6846/TKU.2005.00128
論文名稱(中文) 金屬氧化物修飾電極發展環境及生醫感測器
論文名稱(英文) Development of Metal Oxide Modified Electrodes for Environmental and Biomedical Sensors
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系博士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 呂晃志
研究生(英文) Hoang-Jyh Leu
學號 890170011
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2005-07-25
論文頁數 352頁
口試委員 指導教授 - 林孟山(mslin@mail.tku.edu.tw)
委員 - 陳壽椿
委員 - 黃承文
委員 - 傅明仁
委員 - 張經霖
關鍵字(中) 金屬氧化物
感測器
神經傳導物質
多巴胺
尿酸
肌酸酐
菸鹼醯胺腺嘌呤雙核苷酸
乳酸脫氫酶
關鍵字(英) metal oxide
sensor
neurotransmitter
dopamine
uric acid
creatinine
NADH
LDH
第三語言關鍵字
學科別分類
中文摘要
本研究主要利用不同金屬氧化物的氧化力及催化力開發環境及生醫相關的電化學檢測模式,並藉由流動注射分析、旋轉電極等系統配合各式電極表面修飾技術,建立具可行性的電化學偵測平台,用以發展具高度應用性之化學及生化檢測系統。
    各種金屬氧化物的氧化力順序首先藉由電位法在各種溶液環境中快速評估,其結果與安培法所得結果直接進行對照,顯示其具有高度相關性,而本實驗所建立的金屬氧化物的氧化力順序,可提供本研究、後續實驗及其他電化學分析領域的參考與應用。
    多巴胺在神經傳導機制中扮演相當重要的角色,但是體內的神經傳導物質極多,需兼具檢測上的高專一性,利用LiMn2O4對於多巴胺進行選擇性氧化之特性,可在雙電極的電化學流注分析系統中,建立低干擾的還原偵測模式,先以LiMn2O4進行氧化前處理,隨後再以空白玻璃碳電極施加還原電位偵測,不但能有效降低易氧化物質干擾,並能避免其他神經傳導物質的影響。
    尿酸為生理上重要的核酸代謝產物,透過Pb3O4修飾電極之氧化力及催化力,即可在流動注射系統下建立單電極還原偵測模式,實驗上藉由Pb3O4修飾電極進行氧化反應,並隨即電催化氧化後之中間產物進行還原偵測,能有效降低環境中易氧化物質的干擾,發展非酵素型高專一性的快速檢測模式。
    銨根為人體及環境之重要代謝物,利用Cu2O修飾電極之電催化特性,可在流注系統發展低電位氧化模式偵測,此機制亦可對於組織胺進行氧化模式偵測,或搭配共價修飾技術,結合creatinine deiminase酵素發展肌酸酐生化感測器,另外,在雙電極系統的上游電極修飾PbO2進行氧化前處理,可以避免環境中易氧化干擾物的影響。
    乳酸去氫酶(LDH)是重要的血液生化檢驗項目,主要透過NADH的量測進而定量酵素活性,利用Mn3O4修飾電極的電催化特性,搭配旋轉電極系統,對於NADH建立低電位的氧化偵測模式,並藉由塗佈Nafion®高分子薄膜,即可有效降低易氧化物質的干擾;此外,將NAD+藉由選擇性高分子薄膜固定於修飾電極上,即可利用定電位安培偵測模式,快速定量LDH的酵素活性。
    總而言之,本研究主要建立環境與生醫相關物質的檢測機制,藉由金屬氧化物的氧化及催化特性,發展簡易、靈敏、快速、低干擾的電化學檢測模式,有助於化學及生化感測器的發展,由於兼具實際應用的價值,可因應未來各種環境及生醫樣品的檢測需求;最後,本研究所建立的金屬氧化物氧化力表,也將提供未來在相關感測器開發及工業處理上的應用。
英文摘要
By using the chemical properties of metal oxides, the environmental and biomedical related electrochemical sensors have been developed in this research. The detecting schemes are based on the different oxidative or catalytic ability of metal oxide modified electrodes for ammonia ion, uric acid, creatinine, some well-known neurotransmitters, NADH and LDH, respectively. Either flow injection analysis system or rotating disk electrode system was used for the quantification of these analytes in this dissertation.
    At the beginning of this research, various metal oxide modified electrodes were quickly evaluated the sequence of oxidative strength by potentiometry under various solution conditions. The potential versus Ag/AgCl was recorded to contrast the amperometric response by flow injection analysis, and a good correlation was found between these two methods. Therefore, the sequence of oxidative strength among metal oxides can be easily consulted and used throughout this research.
    Dopamine, an important neurotransmitter in central nervous, was detected with limited interference in this experiment. The LiMn2O4 modified electrode was modified in upstream electrode to oxidize dopamine, and then the product was reduced in bare downstream glassy carbon electrode. This electrode can be easily fabricated by LiMn2O4 modified electrode and has the advantage of selective oxidation to avoid all the analogous neurotransmitters in biological applications.
    Uric acid, an important metabolite form nucleic acid, can get a reductive response on Pb3O4 modified electrode. This modified electrode was used to oxidize the uric acid and then catalyzed the reduction of above intermediate on the same modified electrode. This method can effectively reduce the interferences without enzyme modification in the biomedical application.
    Based on environmental and biomedical requirements, Cu2O was utilized to detect the ammonia ion in oxidative mode by flow injection analysis. This scheme was also used for histamine detection and the creatinine biosensor application. The creatinine deiminase for creatinine biosensor was modified onto the upstream of dual electrode. In order to obtain a limited interference system, PbO2 was used to pre-oxidize the easily oxidative compounds and also modified onto the upstream electrode in these biomedical or chemical sensors.
    Because of the importance of dehydrogenase based sensors, the Mn3O4 was used to catalyze the oxidation of NADH in steady-state amperometry by rotating disk electrode. And this system was employed for the LDH activity evaluation by several electrode modification processes. This scheme can provide the advantages of rapid way and limit interference to obtain the result of enzyme activity through permselective membrane and Nafion® coating electrodes.
    The results of these sensors can meet the requirements of biological and environmental applications. The unique strategies of metal oxide modified electrodes can provide the features of electrochemical schemes in various areas of analysis. And the sequence of oxidative strength among metal oxides can provide for the further application in other fields.
第三語言摘要
論文目次
目錄 :
論文提要內容:	I
ABSTRACT:	III
目錄	I
圖目錄	I
表目錄	VII
第一章	緒論	1
1-1	化學感測器與生化感測器	2
1-1-1	感測器的發展與應用	3
1-1-2	化學感測器	5
1-1-3	化學修飾電極	6
1-1-4	修飾電極的特性與功能	11
1-1-5	生化感測器	13
1-1-6	生化感測器的分類	15
1-1-7	電化學生化感測器	18
1-1-8	電化學生化感測器在辨識元固定上的技術	22
1-1-9	干擾物的排除與分析特性提升技術	26
1-1-10	感測器的應用與發展	34
1-2	金屬氧化物	35
1-2-1	金屬氧化物的晶體結構	37
1-2-2	金屬、陶瓷與玻璃	38
1-2-3	複合材料、半導體材料及磁性材料	39
1-3	硼摻雜奈米鑽石電極	40
1-3-1	簡介	40
1-3-2	鑽石薄膜的特性	41
1-3-3	鑽石薄膜之合成	43
1-4	流動注射系統	47
1-4-1	簡介	47
1-4-2	流動注射分析系統的發展與原理	49
1-4-3	儀器組件之組成與選用	49
1-4-4	流動注射分析系統的應用技術	52
1-4-5	流動注射分析系統的未來發展	54
1-5	含氮化合物的重要性	55
1-5-1	簡介	55
1-5-2	環境的氮循環	55
1-5-3	人體的氮代謝	56
1-6	銨根與苯胺	57
1-6-1	簡介	57
1-6-2	銨根的重要性	58
1-6-3	苯胺的應用與毒性	59
1-7	尿酸與肌酸酐	60
1-7-1	簡介	60
1-7-2	尿酸的形成與代謝	60
1-7-3	肌酸酐的形成與代謝	63
1-8	神經傳導物質	66
1-8-1	簡介	66
1-8-2	單一神經元內的訊息傳導	67
1-8-3	神經元與神經元之間的訊息傳遞	69
1-9	菸鹼醯胺腺嘌呤雙核苷酸與去氫酶	72
1-9-1	簡介	72
1-9-2	菸鹼醯胺腺嘌呤雙核苷酸的重要性	72
1-9-3	乳酸脫氫酶	73
1-10	本研究之目的	74
第二章	金屬氧化物之氧化力評估	75
2-1	簡介	75
2-1-1	奈米金屬及金屬氧化物	75
2-1-2	金屬氧化物的反應性	76
2-1-3	氧化力	78
2-1-4	本實驗之研究目的	80
2-2	實驗部分	80
2-2-1	儀器	80
2-2-2	藥品	81
2-2-3	實驗步驟	81
2-3	結果與討論	83
2-3-1	電位法	83
2-3-2	安培法	88
2-3-3	金屬氧化物氧化力表	100
2-3-4	結論	102
第三章	以鋰錳氧化物修飾電極發展多巴胺化學感測器	104
3-1	簡介	104
3-1-1	多巴胺的發現與相關神經傳導物研究	104
3-1-2	多巴胺與其偵測	107
3-1-3	鋰錳氧化物及其應用	109
3-1-4	本實驗之目的	111
3-2	實驗部分	112
3-2-1	儀器	112
3-2-2	藥品	112
3-2-3	實驗步驟	113
3-3	結果與討論	115
3-3-1	本系統的偵測機制	115
3-3-2	金屬氧化物最佳化探討	117
3-3-3	系統操作條件最佳化	118
3-3-4	系統的分析特性探討	128
3-3-5	結論與未來展望	131
第四章	以四氧化三鉛修飾電極發展尿酸化學感測器	133
4-1	簡介	133
4-1-1	尿酸的發現及相關研究	133
4-1-2	尿酸的偵測	134
4-1-3	四氧化三鉛的性質及其應用	140
4-1-4	本實驗之目的	142
4-2	實驗部份	143
4-2-1	儀器	143
4-2-2	藥品	144
4-2-3	實驗步驟	144
4-3	結果與討論	147
4-3-1	金屬氧化物的最佳化	147
4-3-2	偵測機制探討	149
4-3-3	修飾電極的最佳化製備條件	157
4-3-4	操作條件最佳化	159
4-3-5	系統的分析特性探討	167
4-3-6	結論與未來展望	169
第五章	以一氧化二銅修飾電極檢測銨根及組織胺並應用於肌酸酐生化感測器	171
5-1	簡介	171
5-1-1	銨根的相關研究及偵測	172
5-1-2	組織胺的相關研究及偵測	179
5-1-3	肌酸酐的相關研究及偵測	183
5-1-4	一氧化二銅的性質及應用	188
5-1-5	本實驗之目的	191
5-2	實驗部份	192
5-2-1	儀器	192
5-2-2	藥品	192
5-2-3	實驗步驟	193
5-3	結果與討論:銨根化學感測器	196
5-3-1	金屬氧化物對於銨根偵測的催化特性評估	196
5-3-2	電化學偵測機制的探討	198
5-3-3	銨根感測器的最佳化製備條件探討	202
5-3-4	銨根化學感測器的操作條件最佳化	203
5-3-5	銨根化學感測器的分析特性	211
5-4	結果與討論:組織胺化學感測器	214
5-4-1	金屬氧化物對於組織胺的催化特性評估	214
5-4-2	電化學偵測機制的探討	216
5-4-3	組織胺感測器的最佳化製備條件探討	218
5-4-4	組織胺化學感測器操作條件最佳化	220
5-4-5	組織胺化學感測器的分析特性	226
5-5	結果與討論:肌酸酐生化感測器	230
5-5-1	金屬氧化物對於肌酸酐的催化特性評估	230
5-5-2	電化學偵測機制的探討	232
5-5-3	肌酸酐感測器的最佳化製備條件探討	235
5-5-4	肌酸酐生化感測器的操作條件最佳化	237
5-5-5	肌酸酐生化感測器的分析特性探討	243
5-6	結論與未來展望	247
第六章	以四氧化三錳修飾電極發展NADH化學感測器及乳酸脫氫酶生化感測器	249
6-1	簡介	249
6-1-1	菸鹼醯胺腺嘌呤雙核苷酸的相關研究及其偵測	250
6-1-2	乳酸脫氫酶的相關研究及其活性偵測	257
6-1-3	四氧化三錳的性質及應用	261
6-1-4	本實驗之目的	263
6-2	實驗部份	264
6-2-1	儀器	264
6-2-2	藥品	265
6-2-3	實驗步驟	266
6-3	結果與討論:NADH化學感測器	269
6-3-1	金屬氧化物的催化特性評估	269
6-3-2	電化學偵測機制探討	272
6-3-3	修飾電極的最佳化製備條件	275
6-3-4	操作條件最佳化	277
6-3-5	系統的分析特性探討	284
6-3-6	結論與未來展望	287
6-4	結果與討論:LDH酵素活性感測器	288
6-4-1	電化學偵測機制的建立	288
6-4-2	修飾電極的最佳化製備條件	291
6-4-3	操作條件最佳化	294
6-4-4	系統的分析特性探討	300
6-4-5	結論與未來展望	303
第七章	結論	305
符號對照表	309
參考資料:	311

圖目錄 :
( 1 ) 圖1-1  場效應電晶體元件應用於電位法的量測模式示意圖。	19
( 2 ) 圖1-2  環境中的氮循環示意圖。	55
( 3 ) 圖1-3  與尿酸相關的相關循環及代謝過程	62
( 4 ) 圖2-1  電位法量測之簡單示意圖及相關電極、儀器架設。	83
( 5 ) 圖2-2(A)  電位量測法中,金屬氧化物( PbO2 )組成探討,實驗在0.1 M pH 7的磷酸鹽下進行,並添加0.1 M 氯化鈉。	84
( 6 ) 圖2-2(B)  電位量測法中,氯化鈉電解質的添加濃度探討,實驗在0.1 M pH 7的磷酸鹽下進行,指示電極修飾90 % PbO2。	85
( 7 ) 圖2-3  電化學流動注射分析系統及其雙電極形式與運用。	88
( 8 ) 圖2-4  在安培法中,金屬氧化物( PbO2 )的組成探討,在施加–0.2 V的電位下,以0.1 M pH 7的磷酸鹽並添加0.1 M 氯化鈉的溶液進行實驗,而流速及樣品體積分別為0.75 mL/min及50 μL,注入0.5 mM的亞鐵氰化鉀進行分析。	90
( 9 ) 圖2-5  在安培法中,亞鐵氰化鉀分析濃度探討,以90 % PbO2修飾電極,在施加–0.2 V的電位下,以0.1 M pH 7的磷酸鹽並添加0.1 M 氯化鈉的溶液進行實驗,而流速及樣品注射體積分別為0.75 mL/min及50 μL。	91
( 10 ) 圖2-6  在安培法中,下游電極施加電位探討。以90 % PbO2修飾電極,分析0.5 mM亞鐵氰化鉀,以0.1 M pH 7的磷酸鹽並添加0.1 M 氯化鈉的溶液進行實驗,而流速及樣品體積為0.75 mL/min及50 μL。	93
( 11 ) 圖2-7  在安培法中,電解質流速探討。以90 % PbO2修飾電極,分析0.5 mM亞鐵氰化鉀,在–0.2V偵測電位,以0.1 M pH 7的磷酸鹽並添加0.1 M 氯化鈉的溶液進行實驗,而樣品體積為50 μL。	96
( 12 ) 圖2-8  在安培法中,分析物注射體積探討。以90 % PbO2修飾電極,分析0.5 mM亞鐵氰化鉀,在–0.2V偵測電位,以0.1 M pH 7的磷酸鹽並添加0.1 M 氯化鈉的溶液進行,而流速為0.75 mL/min。	97
( 13 ) 圖2-9  在安培法中,亞鐵氰化鉀的校正曲線及實際響應。以90 % PbO2修飾電極,分析0.5 mM亞鐵氰化鉀,在–0.2V偵測電位,以0.1 M pH 7的磷酸鹽並添加0.1 M 氯化鈉的溶液進行,而流速及樣品體積為0.75 mL/min及50 μL。	99
( 14 ) 圖2-10  pH 3的環境下,兩電化學技術所得氧化力的相關性。	101
( 15 ) 圖2-11  pH 7的環境下,兩電化學技術所得氧化力的相關性。	101
( 16 ) 圖2-12  pH 11的環境下,兩電化學技術所得氧化力的相關性。	102
( 17 ) 圖3-1  以空白玻璃碳電極對於5 mM多巴胺掃描的循環伏安圖,溶液配置於0.1 M pH 7電解質中,掃描速率為50 mV/s。	115
( 18 ) 圖3-2  上游修飾電極鋰錳氧化物之組成探討。偵測系統以50 μL注射體積、0.5 mL/min流速,在下游電極外加–0.1V電壓,以0.05M pH 6的磷酸鹽外加0.1M氯化鈉的溶液進行偵測。	119
( 19 ) 圖3-3  安培法量測中,下游電極偵測電位探討。偵測系統以50 μL注射體積、0.5 mL/min流速,在上游電極修飾90 % LiMn2O4,以0.05M pH 6的磷酸鹽外加0.1M氯化鈉的溶液進行偵測。	121
( 20 ) 圖3-4  安培法量測中,緩衝溶液pH值探討。偵測系統以50 μL注射體積、0.5 mL/min流速,在上游電極修飾90 % LiMn2O4,下游電極施加–0.1V工作電位,以0.05M的磷酸鹽外加0.1M氯化鈉的溶液進行偵測。	123
( 21 ) 圖3-5  在安培法量測中,電解質緩衝溶液之流速探討。偵測系統以50 μL注射體積,在上游電極修飾90 % LiMn2O4,下游電極施加–0.1V工作電位,以0.05M pH 6的磷酸鹽外加0.1M氯化鈉的溶液進行偵測。	126
( 22 ) 圖3-6 在安培法量測中,樣品取樣體積探討。偵測系統以0.5 mL/min流速,在上游電極修飾90 % LiMn2O4,下游電極施加–0.1V工作電位,以0.05M pH 6的磷酸鹽外加0.1M氯化鈉的溶液進行電化壆偵測。	127
( 23 ) 圖3-7  在安培法量測中,多巴胺的校正曲線及實際響應訊號。偵測系統以0.5 mL/min流速及50 μL注射體積,在上游電極修飾90 % LiMn2O4,下游電極施加–0.1V工作電位,以0.05 M pH 6的磷酸鹽外加0.1 M氯化鈉的溶液進行偵測。	129
( 24 ) 圖3-8  在流注系統中對於0.5 mM多巴胺進行定電位連續式偵測,觀察(a)飽和溶氧、(b)一般溶氧及(c)除氧環境下,訊號響應的變化。偵測系統以0.5 mL/min流速,在上游電極修飾90 % LiMn2O4,下游電極施加–0.1V工作電位進行偵測,並以0.05 M pH 6的磷酸鹽外加0.1 M氯化鈉作為電解質溶液。	131
( 25 ) 圖4-1  以空白玻璃碳電極對於0.5mM尿酸(B)及空白溶液(A)進行掃描的伏安圖,溶液條件為0.1 M pH 7磷酸鹽電解質溶液。	147
( 26 ) 圖4-2  尿酸在水溶液中進行氧化降解相關反應之結構變化示意圖。	150
( 27 ) 圖4-3  以流注系統搭配雙電極模式證明偵測機制。每次注射尿酸0.5mM,在緩衝溶液帶動下由左側電極流至右側電極,實線箭頭表示施加– 0.1 V偵測電位,虛線箭頭表示施加0.8 V氧化電位。	151
( 28 ) 圖4-4  以流注系統搭配單電極偵測模式在Pb3O4修飾電極上探討干擾物。每次注射不同分析樣品0.5 mM,實線箭頭表示施加–0.1 V偵測電位。	153
( 29 ) 圖4-5  以旋轉雙電極系統證明偵測機制可行性,以三種情況分別探討(A)空白環電極施加– 0.1 V偵測;(B)50 % Pb3O4修飾環電極施加– 0.1 V偵測;(C)空白盤電極施加0.8 V氧化處理電位,50 % Pb3O4修飾環電極施加– 0.1 V偵測。在0.1 M pH 6磷酸緩衝溶液下,轉速固定為625 rpm,連續注入尿酸0.5 mM進行分析。	155
( 30 ) 圖4-6  在本實驗中,尿酸還原偵測的電子傳遞機制示意圖。	156
( 31 ) 圖4-7  以循環伏安法探討尿酸偵測的可行性,修飾電極為50 % Pb3O4,靜置情況下連續添加0.5 mM尿酸分析物於0.1 M pH 6磷酸緩衝溶液中,掃描速率50 mV/s。	156
( 32 ) 圖4-8  Pb3O4修飾比例組成探討,在– 0.1 V工作電壓下注射尿酸進行分析,溶液為0.1 M pH 6磷酸鹽溶液,流速與樣品注射體積固定為0.5 mL/min與100 μL。	158
( 33 ) 圖4-9  系統偵測電位探討,以90 % Pb3O4修飾電極對於0.5 mM尿酸進行分析,溶液為0.1 M pH 6磷酸鹽溶液,流速與樣品注射體積固定為0.5 mL/min與100 μL。	160
( 34 ) 圖4-10  溶液酸鹼值探討,以90 % Pb3O4修飾電極在– 0.1 V施加電位下對於0.5 mM尿酸進行分析,溶液為0.1 M磷酸鹽溶液,流速與樣品注射體積固定為0.5 mL/min與100 μL。	162
( 35 ) 圖4-11  系統流速探討,以90 % Pb3O4修飾電極在– 0.1 V施加電位下對於0.5 mM尿酸進行分析,溶液為0.1 M pH 6磷酸鹽溶液,樣品注射體積為100 μL。	164
( 36 ) 圖4-12  系統注射分析樣品體積探討,以90 % Pb3O4修飾電極在– 0.1 V施加電位下對於0.5 mM尿酸進行分析,溶液為0.1 M pH 6磷酸鹽溶液,溶液流速為0.25 mL/min。	166
( 37 ) 圖4-13  本系統對於尿酸分析的校正曲線及實際響應訊號,以90 % Pb3O4修飾電極在– 0.1 V施加電位下,對於各種尿酸濃度進行分析,溶液為0.1 M pH 6磷酸鹽溶液,流速與樣品注射體積固定為0.5 mL/min與100 μL。	168
( 38 ) 圖5-1  以循環伏安法探討在50 % Cu2O修飾電極下(B)及空白玻璃碳電極下(A)的電化學行為,系統靜置於0.1 M pH 7磷酸鹽緩衝溶液中,掃描速率固定為50 mV/s。	199
( 39 ) 圖5-2  以循環伏安法探討在50 % Cu2O修飾電極下,偵測銨根的可行性,而系統靜置於0.1 M pH 10磷酸鹽緩衝溶液中,並連續添加1 mM氯化銨,掃描速率為50 mV/s。	200
( 40 ) 圖5-3  本實驗中利用Cu2O催化氨進行氧化偵測的電子傳遞機制示意圖。	201
( 41 ) 圖5-4  Cu2O修飾比例組成探討,在0.15 V工作電壓下注射0.5 mM氯化銨進行分析,溶液為0.05 M pH 10碳酸鹽溶液,流速與樣品注射體積固定為0.5mL/min與20 μL。	202
( 42 ) 圖5-5  系統偵測電位探討,以60 % Cu2O修飾電極對0.5 mM氯化銨進行分析,溶液為0.05 M pH 10碳酸鹽溶液,流速與樣品注射體積固定為0.5mL/min與20μL。	204
( 43 ) 圖5-6  緩衝溶液酸鹼值探討,以60 % Cu2O修飾電極對0.5 mM氯化銨進行分析,在操作電位150 mV下,溶液為0.05 M 的碳酸鹽溶液,流速與樣品注射體積固定為0.5mL/min與20μL。	206
( 44 ) 圖5-7  系統流速探討,以60 % Cu2O修飾電極對0.5 mM氯化銨進行分析,在操作電位150 mV下,溶液為0.05 M pH 10的碳酸鹽溶液,樣品注射體積固定為20μL。	208
( 45 ) 圖5-8  注射樣品體積探討,以60 % Cu2O修飾電極對0.5 mM氯化銨進行分析,在操作電位150 mV下,溶液為0.05 M pH 10的碳酸鹽溶液,溶液流速固定為0.5 mL/min。	210
( 46 ) 圖5-9  銨根化學感測器的校正曲線及訊號響應圖,以60 % Cu2O修飾電極在150 mV施加電位下,對各種銨根濃度進行分析,溶液環境為0.05 M pH 10碳酸鹽溶液,流速與樣品注射體積固定為0.5 mL/min與20 μL。	212
( 47 ) 圖5-10  以循環伏安法探討在50 % Cu2O修飾電極下,偵測組織胺的可行性,而系統靜置於0.1 M pH 10磷酸鹽緩衝溶液中,並連續添加0.5 mM組織胺,掃描速率為50 mV/s。	217
( 48 ) 圖5-11  本實驗中利用Cu2O催化組織胺進行氧化偵測的電子傳遞機制示意圖。	217
( 49 ) 圖5-12  Cu2O修飾比例組成探討,在0.2 V工作電壓下注射0.5 mM組織胺進行分析,溶液為0.2 M pH 10磷酸鹽溶液,流速與樣品注射體積固定為0.5mL/min與20 μL。	219
( 50 ) 圖5-13  系統偵測電位探討,以50 % Cu2O修飾電極對0.5 mM組織胺進行分析,溶液為0.2 M pH 10磷酸鹽溶液,流速與樣品注射體積固定為0.5mL/min與20μL。	220
( 51 ) 圖5-14  溶液酸鹼值探討,以50 % Cu2O修飾電極對0.5 mM組織胺進行分析,在200 mV偵測電位下,溶液為0.2 M磷酸鹽溶液,流速與樣品注射體積則固定為0.5mL/min與20μL。	222
( 52 ) 圖5-15  系統流速探討,以50 % Cu2O修飾電極對0.5 mM組織胺進行分析,在200 mV偵測電位下,溶液為0.2 M pH 10磷酸鹽溶液,樣品注射體積固定為20μL。	224
( 53 ) 圖5-16  系統流速探討,以50 % Cu2O修飾電極對0.5 mM組織胺進行分析,在200 mV偵測電位下,溶液為0.2 M pH 10磷酸鹽溶液,溶液流速固定為0.5 mL/min。	226
( 54 ) 圖5-17  組織胺化學感測器的校正曲線及實際響應訊號,系統以50 % Cu2O修飾電極在200 mV施加電位下對各種組織胺濃度進行分析,溶液環境為0.2 M pH 10磷酸鹽溶液,流速與樣品注射體積為0.5 mL/min與20 μL。	227
( 55 ) 圖5-18  以氧化模式進行肌酸酐偵測的電子傳遞機制示意圖,本偵測系統利用creatinine deiminase結合Cu2O修飾電極所發展的生化感測器。	234
( 56 ) 圖5-19  creatinine deiminase修飾組成探討,在0.15 V工作電壓下注射0.5 mM肌酸酐進行分析,溶液為0.05 M pH 10碳酸鹽溶液,流速與樣品注射體積固定為0.5mL/min與100 μL。	235
( 57 ) 圖5-20  固定酵素為0.5 unit下,1 % BSA及2 % glutaraldehyde交聯體積比例組成探討,在0.15 V工作電壓下注射0.5 mM肌酸酐進行分析,溶液為0.05 M pH 10碳酸鹽溶液,流速與樣品注射體積固定為0.5mL/min與100 μL。	237
( 58 ) 圖5-21  緩衝溶液酸鹼值探討,在最佳化電極製備條件下,對於0.5 mM肌酸酐進行分析,在操作電位150 mV下,溶液為0.05 M 的碳酸鹽溶液,流速與樣品注射體積固定為0.5 mL/min與100 μL。	239
( 59 ) 圖5-22系統流速探討,在最佳化電極製備條件下,對於0.5 mM肌酸酐進行分析,在操作電位150 mV下,溶液為0.05 M pH 10的碳酸鹽溶液,樣品注射體積固定為100 μL。	241
( 60 ) 圖5-23  注射分析樣品體積探討,在最佳化電極製備條件下,對於0.5 mM肌酸酐進行分析,在操作電位150 mV下,溶液為0.05 M pH 10的碳酸鹽溶液,溶液流速固定為0.5 mL/min。	243
( 61 ) 圖5-24  肌酸酐生化感測器的校正曲線,以60 % Cu2O修飾電極在150 mV施加電位下對各種肌酸酐濃度進行分析,溶液環境為0.05 M pH 10碳酸鹽溶液,流速與樣品注射體積固定為0.5 mL/min與100 μL。	244
( 62 ) 圖6-1  以循環伏安法探討在空白碳墨修飾旋轉玻璃碳工作電極下,對於空白緩衝溶液(A)及1 mM NADH(B)進行掃描,並觀察其電化學行為,系統靜置於0.1 M pH 7.5磷酸鹽緩衝溶液中,掃描速率為50 mV/s。	270
( 63 ) 圖6-2  本實驗中利用Mn3O4修飾電極催化NADH進行氧化偵測的電子傳遞機制示意圖。	273
( 64 ) 圖6-3  以循環伏安法探討在50 % Mn3O4修飾電極下,於0.1 M pH 7.5磷酸鹽緩衝溶液中,觀察NADH偵測的可行性;其中(A)為空白緩衝溶液,(B)到(E)為連續添加0.5 mM NADH所得,掃描速率固定為50 mV/s。	274
( 65 ) 圖6-4  Mn3O4修飾比例組成探討,在0.2 V工作電壓下注入0.1 mM NADH進行分析,溶液為0.1M pH 7.5磷酸鹽溶液,電極轉速為625 rpm。	276
( 66 ) 圖6-5  系統偵測電位探討,以70 % Mn3O4修飾電極對於0.1 mM NADH進行分析,溶液為0.1 M pH 7.5磷酸鹽溶液,電極轉速為625 rpm。	278
( 67 ) 圖6-6  抗壞血酸的偵測電位探討,以70 % Mn3O4修飾電極對於0.1 mM 抗壞血酸進行分析,其他操作條件同上圖所述。	279
( 68 ) 圖6-7  Nafion®覆蓋體積探討,以70 % Mn3O4修飾電極覆蓋不同體積的5 % Nafion®,在0.2 V施加電位下對於0.1 mM NADH(A)及抗壞血酸(B)進行分析,溶液為0.1 M pH 7.5磷酸鹽溶液,電極轉速為625 rpm。	280
( 69 ) 圖6-8  溶液酸鹼值探討,以70 % Mn3O4修飾電極,在0.2 V施加電位下對於0.1 mM NADH進行分析,配製各種pH的0.1 M磷酸鹽溶液,電極轉速固定為625 rpm。	281
( 70 ) 圖6-9  電極轉速探討,以70 % Mn3O4修飾電極,在0.2 V施加電位下探討各轉速下的訊號響應,溶液為0.1 M pH 7.5磷酸鹽,並對於相同的0.1 mM NADH溶液偵測。	284
( 71 ) 圖6-10  NADH化學感測器的校正曲線及實際響應,以70 % Mn3O4修飾電極在200 mV施加電位下連續添加50 mM NADH進行偵測,溶液環境為0.1 M pH 7.5磷酸鹽溶液,電極轉速625 rpm。	285
( 72 ) 圖6-11  以氧化模式進行LDH酵素活性量測的電子傳遞機制示意圖,本偵測系統透過定電位安培法建立LDH的直接量測模型。	291
( 73 ) 圖6-12  0.1 M NAD+修飾體積探討,在0.25 V工作電位下注射2 units LDH於添加有10 mM乳酸的10 mL 0.1 M pH 7.5磷酸鹽溶液中進行分析,電極轉速固定為625 rpm。	292
( 74 ) 圖6-13  1 % PEI修飾體積探討,在0.25 V工作電位下注射2 units LDH於添加有10 mM乳酸的10 mL 0.1 M pH 7.5磷酸鹽溶液中進行分析,電極轉速固定為625 rpm。	293
( 75 ) 圖6-14  1 % Glutaraldehyde修飾體積探討,在0.25 V工作電位下注射2 units LDH於添加有10 mM乳酸的10 mL 0.1 M pH 7.5磷酸鹽溶液中進行分析,電極轉速固定為625 rpm。	294
( 76 ) 圖6-15  系統偵測電位探討,以70 % Mn3O4為主的最佳化組成修飾電極,在各探討的工作電位下注射2 units LDH,並於添加有10 mM乳酸的10 mL 0.1 M pH 7.5磷酸鹽溶液中進行分析,電極轉速固定為625 rpm。	295
( 77 ) 圖6-16  溶液酸鹼值探討,以70 % Mn3O4為主的最佳化組成修飾電極,在0.25 V工作電位下注射2 units LDH,並於添加有10 mM乳酸的10 mL 0.1 M各pH下的磷酸鹽溶液進行分析,電極轉速固定為625 rpm。	297
( 78 ) 圖6-17  電極轉速探討,以70 % Mn3O4為主的最佳化組成修飾電極,在0.25 V工作電位下對於各種電極轉速進行探討,並注射2 units LDH於添加有10 mM乳酸的10 mL 0.1 M pH 7.5的磷酸鹽溶液進行分析。	300
( 79 ) 圖6-18  LDH酵素活性感測器的校正曲線及實際響應訊號,以70 % Mn3O4為主的最佳化組成修飾電極,在0.25 V工作電位下連續注射LDH酵素,並於添加有10 mM乳酸的10 mL 0.1 M pH 7.的磷酸鹽溶液進行分析,電極轉速固定為625 rpm。	301

表目錄 :
[ 1 ] 表2-1  以電位法對各種金屬氧化物在pH 3、7、11溶液下所得的電位響應值(單位:V),實驗在0.1 M的磷酸鹽溶液下進行,並添加0.1 M 氯化鈉,金屬氧化物皆修飾90 %於指示電極上。	87
[ 2 ] 表2-2  安培法對各種金屬氧化物在各pH的量測結果(單位:μA)	100
[ 3 ] 表3-1  各種金屬氧化物對於各種分析物的偵測效果評估表。	117
[ 4 ] 表3-2  以本系統相較於其他強氧化劑修飾電極系統,對於多巴胺及各種干擾物的偵測響應比值,單位:%。	130
[ 5 ] 表4-1  固定50%組成條件的各種金屬氧化物修飾電極,在不同偵測電位下(vs. Ag/AgCl),對於0.5mM的尿酸樣品進行分析。	148
[ 6 ] 表5-1  50 %組成的各種金屬氧化物修飾電極,在不同偵測電位下(vs. Ag/AgCl),對於0.5 mM氯化銨進行分析;其他操作條件:0.1 M pH 7磷酸鹽緩衝溶液,樣品體積20μL,流速0.5 mL/min。	197
[ 7 ] 表5-2  銨根化學感測系統的最佳化製備、操作條件及系統分析特性。	213
[ 8 ] 表5-3  銨根化學感測系統的干擾物探討,並比較經PbO2氧化處理後的效果。	214
[ 9 ] 表5-4  50 %組成的各種金屬氧化物修飾電極,在不同偵測電位下(vs. Ag/AgCl),對於0.5 mM組織胺進行分析;其他操作條件:0.1 M pH 7磷酸鹽緩衝溶液,樣品體積20μL,流速0.5 mL/min。	215
[ 10 ] 表5-5  組織胺化學感測系統的最佳化製備、操作條件及系統分析特性。	228
[ 11 ] 表5-6  組織胺化學感測系統的干擾物探討,並比較氧化處理的效果。	229
[ 12 ] 表5-7  50 %組成的各種金屬氧化物修飾電極,在不同偵測電位下(vs. Ag/AgCl),對於0.5 mM肌酸酐進行分析;其他操作條件:0.1 M pH 7磷酸鹽緩衝溶液,樣品體積20μL,流速0.5 mL/min。	231
[ 13 ] 表5-8  在雙電極流動注射分析模式下,各式酵素固定方式對於肌酸酐偵測時靈敏度與再現性的比較與探討;其他操作條件:50 % Cu2O修飾電極、施加150 mV偵測電位、0.05 M pH 7磷酸鹽緩衝溶液,樣品體積100 μL,流速0.5 mL/min。	233
[ 14 ] 表5-9  肌酸酐生化感測系統的最佳化製備、操作條件及系統分析特性。	245
[ 15 ] 表5-10  肌酸酐生化感測系統的干擾物探討,並比較氧化處理後的效果。	246
[ 16 ] 表6-1  50 %組成的各種金屬氧化物修飾電極,在不同偵測電位下(vs. Ag/AgCl),對於0.1 mM NADH進行分析;其他操作條件:0.1 M pH 7.5磷酸鹽緩衝溶液,轉速625 rpm。	271
[ 17 ] 表6-2  NADH化學感測器的最佳化製備、操作條件及系統分析特性。	286
[ 18 ] 表6-3  在旋轉電極系統中,各種NAD+固定方式對於LDH酵素偵測時靈敏度與再現性的比較與探討;其他操作條件:70 % Mn3O4修飾電極並覆蓋5 μL 5 % Nafion®及5 μL 0.1 M NAD+,在施加200mV偵測電位,625 rpm 轉速下,置於含有10 mM乳酸的0.1 M pH 7.5磷酸鹽溶液中偵測。	290
[ 19 ] 表6-4  LDH酵素活性感測器的最佳化製備、操作條件及系統分析特性。	302
參考文獻
J. D. Enderle, S. M. Blanchard, J. D. Bronzeno, Introduction to biomedical engineering, San Diego: Academic Press, (2000).
  J. Wang, Amperometeric biosensors for clinical and therapeutic drug monitoring: a review, J. Pharm. Biomed. Anal. 19 (1999) 47-53.
  G. M. Masters, Introduction to environmental engineering and Science, 2nd ed., New Jersey: Prentice-Hall Inc., (1997).   
  C. A. Galán-Vidal, J. Muñoz, C. Dominguez, S. Alegret, Chemical sensors, biosensors and thick-film technology, Trends Anal. Chem. 14 (1995) 225-231.
  J. Janata, Chemical sensor, Anal. Chem. 62 (1990) 33R-44R.
  L. D. Mello, L. T. Kubota, Review of the use of biosensors as analytical tools in the food and drink industries, Food Chem. 77 (2002) 237-256.
  D. G.. Buerk, Biosensors, Lancaster: Technomic Publishing Company Inc., (1993).
  J. Nosek, J. Zelenka, Quartz strip resonators as a temperature sensor, Ultrasonics 39 (2001) 465-468.
  A. M. Leach, R. A. Potyrailo, G. M. Hieftje, Design and characterization of a radioluminescent temperature sensor, Anal. Chem. Acta 412 (2000) 47-53.
  J. Zhang, S. O’Shea, Tuning forks as micromechanical mass sensitive sensors for bio- or liquid detection, Sens. Actuators B 94 (2003) 65-72.
  O.-W. Lau, B. Shao, Affinity mass sensors: concept and general considerations, Anal. Chim. Acta 407 (2000) 11-15.
  Eric Bakker, Electrochemical sensors, Anal. Chem. 76 (2004) 3285-3298.
  O. S. Wolffbeis, Fiber-optic chemical sensors and biosensors, Anal. Chem. 76 (2004) 3269-3284.
  P. Bruschi, D. Navarrini, M. Piotto, A flow sensor for liquids based on a single temperature sensor operated in pulsed mode, Sens. Actuators B 110 (2004) 269-275.
  M.I.S. Veríssimo, P.Q. Mantas, A.M.R. Senos, J.A.B.P. Oliveira, M.T.S.R. Gomes, Suitability of PZT ceramics for mass sensors versus widespread used quartz crystals, Sens. Actuators B 95 (2003) 25-31.
  M. Penza, F. Antolini, M. Vittori-Antisari, Carbon nanotubes-based surface acoustic waves oscillating sensor for vapour detection, Thin Solid Films 472 (2005) 246-252.
  M. Yamada, S. S. Shiratori, Smoke sensor using mass controlled layer-by-layer self-assembly of polyelectrolytes films, Sens. Actuators B 64 (2000) 124-127.
  S. M. Marxer, M. H. Schoenfisch, Sol-gel derived potentiometric pH sensor, Anal. Chem. 77 (2005) 848-853.
  M. Colilla, M. Darder, P. Aranda, E. Ruiz-Hitzky, Amperometric sensors based on mercaptopyridine-Montmorillonite Intercalation Compounds, Chem. Mater. 17 (2005) 708-715.
  A. E. Shvarev, D. A. Rantsan, K. N. Mikhelson, Potassium-selective conductometric sensor, Sens. Actuators B 76 (2001) 500-505.
  G. J. Mohr, I. Klimant, U. E. Spichiger-Keller, O. S. Wolfbeis, Fluoro reactands and dual luminophore referencing: a technique to optically measure amines, Anal. Chem. 73 (2001) 1053-1056.
  X.-B. Zhang, C.-C. Guo, Z.-Z. Li, G.-L. Shen, R.-Q. Yu, An optical fiber chemical sensor for mercury ions based on a porphyrin dimer, Anal. Chem. 74 (2002) 821-825.
  H.-P. Lehr, M. Reimann, A. Brandenburg, G. Sulz, H. Klapproth, Real-time detection of nucleic acid interactions by total internal reflection fluorescence, Anal. Chem. 75 (2003) 2414-2420.
  R. W. Murray, A. G. Ewing, R. A. Durst, Chemically modified electrodes, Anal. Chem. 59 (1987) 379A-390A.
  H. Li, S. H. Park, J. H. Reif, T. H. LaBean, H. Yan, DNA-templated self-assembly of protein and nanoparticle linear arrays, J. Am. Chem. Soc, 126 (2004) 418-419.
  R. Liang, J. Qiu, P. Cai, A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique, Anal. Chim. Acta 534 (2005) 223-229.
  J. Won, S. K. Chae, J. H. Kim, H. H. Park, Y. S. Kang, H. S. Kim, Self-assembled DNA composite membrane, J. Membr. Sci. 249 (2005) 113-117.
  C. H. Lim, C. D. Ki, T. H. Kim, J. Y. Chang, Use of aromatic polyimide as a non-cross-linked molecular imprinting material, Macromolecules 37 (2004) 6-8.
  F. Yin, Capacitive sensors using electropolymerized o-phenylenediamine film doped with ion-pair complex as selective elements, Talanta 63 (2004) 641-646.
  J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, Polyaniline nanofibers: facile synthesis and chemiacl sensors, J. Am. Chem. Soc. 125 (2003) 314-315.
  C. Drew, X. Liu, D. Ziegler, X. Wang, F. F. Bruno, J. Whitten, L. A. Samuelson, J. Kumar, Metal oxide-coated polymer nanofibers, Nano. Lett. 3 (2003) 143-147.
  L. Zernichow, W. Lund, Size exclusion chromatography of aluminium species in natural waters, Anal. Chim. Acta 300 (1995) 167-171.
  J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, J. Am. Chem. Soc. 125 (2003) 2408-2409.
  P. Tomcik, C. E. Banks, T. J. Davies, R. G. Compton, A self-catalytic carbon paste electrode for the detection of vitamin B12, Anal. Chem. 76 (2004) 161-165.
  K. R. Rogers, J. Y. Becker, J. Cembrano, Improved selective electrocatalytic oxidation of phenols by tyrosinase-based carbon paste electrode biosensor, Electrochim. Acta 45 (2000) 4373-4379.
  M. Ozsoz, A. Erdem, D. Ozkan, K. Kerman, T. J. Pinnavaia, Clay/sol-gel-modified electrodes for the selective electrochemical monitoring of 2,4-dichlorophenol, Langmuir 19 (2003) 4728-4732.
  S. M. Marxer, M. H. Schoenfisch, Sol-gel derived potentiometric pH sensors, Anal. Chem. 77 (2005) 848-853.
  A. Walcarius, Electrochemical applications of silica-based organic-inorganic hybrid materials, Chem. Mater. 13 (2001) 3351-3372.
  A. Abbaspour, M. A. Mehrgardi, Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films, Anal. Chem. 76 (2004) 5690-5696.
  F. Bender, A. Skrypnik, A. Voigt, J. Marcoll, M. Rapp, Selective detection of HFC and HCFC refrigerants using a surface acoustic wave sensor system, Anal. Chem. 75 (2003) 5262-5266.
  P. Perez, C. Teijeiro, D. Marin, Study on the adsorption properties of the drug mitomycin c by stripping voltammetry, Langmuir 18 (2002) 1760-1763.
  S. Jadhav, E. Bakker, Selectivity behavior and multianalyte detection capability of voltammetric ionophore-based plasticized polymeric membrane sensor, Anal. Chem. 73 (2001) 80-90.
  X. Jiang, R. Ferrigno, M. Mrksich, G. M. Whitesides, Electrochemical desorption of self-assembled monolayers noninvaaively releases patterned cells from geometrical confinements, J. Am. Chem. Soc. 125 (2003) 2366-2367.
  R. Jelinek, S. Kolusheva, Carbonhydrate biosensors, Chem. Rev. 104 (2004) 5987-6016.
  L.C. Clark, C.L. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N.Y. Acad. Sci. 102 (1962) 29-45.
  L. Zhu, Y. Li, G. Zhu, A novel renewable plant tissue-based electrochemiluminescent biosensor for glycolic acid, Sens. Actuators B 98 (2004) 115-121.
  R.M. Bunch, G. A. Rechnitz, Neuronal biosensors, Anal. Chem. 61 (1989) 533A-542A.
  P. Schroth, M.J. Schöning, S. Schütz, Ü Malkoc, A. Steffen, M. Marso, H.E. Hummel, P. Kordos, H. Lüth, Coupling of insect antennae to field-effect transistors for biochemical sensing, Electrochim. Acta 44 (1999) 3821-3826.
  Otto S. Wolfbeis, Fiber-optic chemical sensors and biosensors, Anal. Chem. 72 (2000) 81R-89R.
  K. Ramanathan, B. Danielsson, Principles and applications of thermal biosensors, Biosens. Bioelec. 16 (2001) 417–423.
  B. Xie, K. Ramanathan, B. Danielsson, Mini / micro thermal biosensors and other related devices for biochemical / clinical analysis and monitoring, Trends in Anal. Chem. 19 (2000) 340-349.
  A .Dittmar, Ph. Roussel,G. Delhomme, D. Barbier,V. Lysenko, V. Rossokhaty, V. Strikha, Oxidized porous silicon: A new approach in support thermal isolation of thermopile-based biosensors, Sens. and Actuators A 67 (1998) 205-210.
  K. Ramanathan, B.R. Jönsson, B. Danielsson, Sol–gel based thermal biosensor for glucose, Anal. Chim. Acta 427 (2001) 1–10.
  U. Harborn, B. Xie, R.Venkatesh, B. Danielsson, Evaluation of a miniaturized thermal biosensor for the determination of glucose in whole blood, Clin. Chim. Acta 267 (1997) 225-237.
  I. Karube, M. Shimohigoshi, Development of uric acid and oxalic acid sensors using a bio-thermochip, Sens. Actrators B 30 (1996) 17-21.
  C.G Marxer, M.C. Coen, H. Bissig, U. F. Greber, L. Schlapbach, Simultaneous measurement of the maximum oscillation amplitude and the transient decay time constant of the QCM reveals stiffness changes of the adlayer, Anal. Bioanal. Chem. 377 (2003) 570-577.
  S.A. Jackson, Biosensor, Chapman & Hall and Masson, London (1991). 
  P.L. Konash, G.J. Bastiaans, Piezoelectric crystals as detectors in liquid chromatography, Anal. Chem. 52 (1980) 1929-1931.
  S.J. Martin, G. C. Frye, A.J. Ricco, Effect of surface roughness on the response of thickness-shear mode resonators in liquids, Anal. Chem. 65 (1993) 2910-2922.
  S. Wei, F. Zhao, B. Zeng, Electrochemical behavior and determination of uric acid at single-walled carbon nanotube modified gold electrodes, Microchim. Acta 150 (2005) 219-224.
  T. R. I. Cataldi, A. Rubino, R. Ciriello, Sensitive quantification of iodide by ion-exchange chromatography with electrochemical detection at a modified platinum electrode, Anal. Bioanal. Chem. 382 (2005) 134-141.
  J. Wang, J. Farrell, Feasibility study for reductive destruction of carbon tetrachloride using bare and polymer coated nickel electrodes, J. Appl. Electrochem. 35 (2005) 243-248. 
  M.M. Ghoneim, W. Baumann, E. Hammam, A. Tawfik, Voltammetric behavior and assay of the contraceptive drug levonorgestrel in bulk, tablets, and human serum at a mercury electrode, Talanta 64 (2004) 857-864.
  E. R. Lowe, C. E. Banks, R. G. Compton, Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine, Anal. Bioanal. Chem. 382 (2005) 1169-1174.
  S. A. John, Simultaneous determination of uric acid and ascorbic acid using glassy carbon electrodes in acetate buffer solution, J. Electroanal. Chem. 579 (2005) 249-256.
  J. P. McEvoy, J. S. Foord, Direct electrochemistry of blue copper proteins at boron-doped diamond electrodes, Electrochim. Acta 50 (2005) 2933-2941.
  J. Zhang, M. Oyama, Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application, Anal. Chim Acta 540 (2005) 299-306.
  T. Vigassy, C. G. Huber, R. Wintringer, E. Pretsch, Monolithic capillary-based ion-selective electrodes, Anal. Chem, 77 (2005) 3966-3971.
  M. J. Schöning, A. Poghossian, Recent advances in biologically sensitive field-effect transistors, Analyst 127 (2002) 1137-1151.
  S. Toshinari, H. Yuzuru, Real-time monitoring of DNA polymerase reactions by a micro ISFET pH sensor, Anal. Chem. 64 (1992) 1996-1997.
  A.A. Shul’ga, M. Koudelka-Hep, N.F. de Roolj, Glucose-sensitive enzyme field effect transistor using potassium ferricyanide as an oxidizing substrate, Anal. Chem. 66 (1994) 205-210.
  Y. Miyahara, T. Maruzumi, S. Shiokawa, H. Matsuoka, I. Karube, S. Suzuki, Micro urea sensor using semiconductor and enzyme immobilizing technologies, Chem. Soc. Japan 6 (1983) 823-830. 
  T. D. Waite, F. M. M. Morel, Characterization of complexing agents in natural waters by copper(II)/copper(I) amperometry, Anal. Chem. 55 (1983) 1268-1274.
  J. Wang, J. Lopez Paz, M. Jiang, Probing the barrier properties of self-assembled monolayers using flow amperometry, Langmuir 15 (1999) 1884-1886.
  S.V. Dzyadevich, V.N. Arkhipova, A. P. Soldatkin, A. V. El’skaya, A. A. Shul’ga, Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent, Anal. Chim. Acta 374 (1998) 11-18.
  W.Y. Lee, S.R. Kim, T.H. Kim, K.S. Lee, M. C. Shin, J.K. Park, Sol–gel-derived thick-film conductometric biosensor for urea determination in serum, Anal. Chim. Acta 404 (2000) 195-203.
  N.F. Sheppard, D.J. Mears, Model of an immobilized enzyme conductimetric urea biosensor, Biosens. Bioelectron. 11 (1996) 967-979.
  M.M. Castillo-Ortega, D.E. Rodriguez, J.C. Encinas, M. Plascencia, F.A. Mendez-Velarde, R. Olayo, Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites, Sens. and Actuators B 85 (2002) 19-25.
  G.A. Zhylyak, S.V. Dzyadevich, Y.I. Korpan, A.P. Soldatkin, A.V. El’skaya, Application of urease conductometric biosensor for heavy-metal ion determination, Sens. and Actuators B 24-25 (1995) 145-148.
  S.V. Dzyadevych , J.M. Chovelon, A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique, Materials Science and Engineering C 21 (2002) 55–60.
  S.V. Dzyadevych, A.P. Soldatkin, J.M. Chovelon, Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors, Anal. Chim. Acta 459 (2002) 33–41.
  S.V. Dzyadevych, V.N. Arkhypova, Y.I. Korpan, A.V. El’skaya, A.P. Soldatkin, N.Jaffrezic-Renault, C. Martelet, Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics, Anal. Chim. Acta 445 (2001) 47–55.
  Z. Muhammad-Tahir, E.C. Alocilja, A conductometric biosensor for biosecurity, Biosens. Bioelectron. 18 (2003) 813-/819.
  K. Yagiuda, A. Hemmi, S. Ito, Y. Asano, Y. Fushinuki, C.Y. Chen, I. Karube, Development of a conductivity-based immunosensor for sensitive detection of methamphetamine(stimulant drug) in human urine, Biosens. Bioelectron. 11 (1996) 703-707.
  L. Dennany, R. J. Forster, J. F. Rusling, Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films, J. Am. Chem. Soc. 125 (2003) 5213-5218.
  T. Inoue, J. R. Kirchhoff, Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinine modified electrode, Anal Chem. 74 (2002) 1349-1354.
  N. S. Lawrence, R. P. Deo, J. Wang, Biocatalytic carbon paste sensors based on a mediator pasting liquid, Anal. Chem. 76 (2004) 3735-3739.
  Y. Sun, H. Buck, T. E. Mallouk, Combinatorial discovery of alloy electrocaytalysts for amperometric glucose sensor, Anal. Chem. 73 (2001) 1599-1604.
  D. Bouchat, N. Izaoumen, H. Zejli, M. El Kaoutit, K. R. Temsamani, Electroanalytical properties of a novel PPY/γ-cyclodextrin coated electrode, Anal. Lett. 38 (2005) 1019-1036.
  W. Tao, Y. Liu, D. Pan, L. Nie, S. Yao, Study on the enhancement of catalytic activity for hemoglobin by quinhydrone in poly(o-aminophenol) film, Bioelectrochem. 65 (2004) 51-58.
  H. Xue, Z. Shen, C. Li, Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline-polyacrylonitrile composite film, Biosens. Bioelectron. 20 (2005) 2330-2334.
  E. Caro, N. Masqué, R. M. Marcé, F. Borrull, P. A.G. Cormack, D. C. Sherrington, Non-covalent and semi-covalenct molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples, J. Chromatogr. A 963 (2002) 169-178.
  G. Roman, A. C. Pappas, D. Kovala-Demertzi, M. I. Prodromidis, Preparation of a 2-(4-fluorophenyl)indole-modified xerogel and its use for the fabrication of screen-printed electrodes for the electrocatalytic determination of sulfide, Anal. Chim. Acta 523 (2004) 201-207.
  X.-Z. Wu, R. Umeda, In-capillary preconcentration of proteins for capillary electrophoresis using a cellulose acetate-coated porous joint, Anal. Bioanal. Chem. 382 (2005) 848-852.
  V.K. Gupta, M. Al Khayat, A.K. Minocha, P. Kumar, Zinc(II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix, Anal. Chim. Acta 532 (2005) 153-158.
  F. Hua, T. Cui, Y. M. Lvov, Ultrathin cantilevers based on polymer-ceramic nanocomposite assembled through layer-by –layer adsorption, Nano Lett. 4 (2004) 823-825. 
  N. Rupcich, R. Nutiu, Y. Li, J. D. Brennan, Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica, Anal. Chem. 77 (2005) 4300-4307.
  K. Ravichandran, R. P. Baldwin, Phenylenediamine-containing chemically modified carbon paste electrodes as catalytic voltammetric sensors, Anal. Chem. 55 (1983) 1586-1591.
  J. Wang, P.V. A. Pamidi, D. S. Park, Screen-printable sol-gel enzyme-containing carbon inks, Anal. Chem. 68 (1996) 2705-2708.
  S. A. M. Marzouk, Improved electrodeposited iridium oxide pH sensor fabricated on etched titanium substrate, Anal. Chem. 75 (2003) 1258-1266.
  T. L. Panasyuk, V. M. Mirsky, S. A. Piletsky, O. S. Wolfbeis, Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors, Anal. Chem. 71 (1999) 4609-4613.
  K. N. Plunkett, M. L. Kraft, Q. Yu, J. S. Moore, Swelling kinetics of disulfide cross-linked microgels, Macromolecules, 36 (2003) 3960-3966.
  K. Sirkar, A. Revzin, M. V. Pishko, Glucose and lactate biosensors based on redox polymer/oxidoreductase nanocomposite thin films, Anal. Chem. 72 (2000) 2930-2936.
  H. R. Clark, T. A. Barbari, G. Rao, Modeling the response time of an in vivo glucose affinity sensor, Biotechnol. Prog. 15 (1999) 259-266.
  R. Sternberg, D. S. Bindra, G. S. Wilson, D. R. Thevenot, Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development, Anal. Chem. 60 (1988) 2781-2786.
  H. Bu, A. M. English, S. R. Mikkelsen, Modification of ferrocene-containing redox gel sensor performance by copolymerization of charged monomers, Anal. Chem. 68 (1996) 3951-3957.
  T. Matsumoto, A. Ohashi, N. Ito, H. Fujiwara and T. Matsumoto, A long-term lifetime amperometric glucose sensor with a perfluorocarbon polymer coating, Biosens. Bioelectron. 16 (2001) 271-276.
  J. J. Xu, Z. H. Yu, H. Y. Chen, Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion , Anal. Chim. Acta 463 (2002) 239-247.
  A. Kolmakov D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual Sno2 nanowires and nanobelts functionalized with pd catalyst particles, Nano Lett. 5 (2005) 667-673.
  H. Sakslund, J. Wang and O. Hammerich, Analysis of the factors determining the sensitivity of a miniaturized glucose biosensor made by codeposition of palladium and glucose oxidase onto an 8 μm carbon fiber, J. Electroanal. Chem. 402 (1996) 149-160.
  J. Wang, O. Chen, Enzyme Microelectrode Array Strips for Glucose and Lactate, Anal. Chem. 66 (1994) 1007-1011.
  T. Abe, Y. Y. Lau and A. G. Ewing, Characterization of glucose microsensors for intracellular measurements, Anal. Chem. 64 (1992) 2160-2163.
  Q. Chi and S. Dong, Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode, Anal. Chim. Acta 278 (1993) 17-23.
  H. Sakslund and J. Wang, O. Hammerich, A critical evaluation of a glucose biosensor made by codeposition of palladium and glucose oxidase on glassy carbon, J. Electroanal. Chem. 374 (1994) 71-79.
  J. Wang, N. Naser, L. Angnes, H. Wu and L. Chen, Metal-dispersed carbon paste electrodes, Anal. Chem. 64 (1992) 1285-1288.
  J. Wang, J. Liu, L. Chen and F. Lu, Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor, Anal. Chem. 66 (1994) 3600-3603.
  F. Tian and G. Zhu, Sol–gel derived iridium composite glucose biosensor, Sens. Actuators B 86 (2002) 266-270.
  K. Itaya, N. Shoji, I. Uchida, Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes, J. Am. Chem. Soc. 106 (1984) 3423-3429.
  R. Garjonyte and A. Malinauskas, Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer, Sens. Actuators B 56 (1999) 85-92.
  R. Garjonyte and A. Malinauskas, Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly(o-phenylenediamine) films on a Prussian Blue-modified electrode, Sens. Actuators B 63 (2000) 122-128.
  Q. Chi, S. Dong, Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition, Anal. Chim. Acta 310 (1995) 429-436.
  R. Garjonyte and A. Malinauskas, Amperometric glucose biosensors based on Prussian Blue– and polyaniline–glucose oxidase modified electrodes , Biosens. Bioelectron. 15 (2000) 445-451.
  J. Wang, X. Zhang, M. Prakash, Glucose microsensors based on carbon paste enzyme electrodes modified with cupric hexacyanoferrate, Anal. Chim. Acta 395 (1999) 11-16.
  M.S. Lin, Y.C. Wu, B.I. Jan, Mixed-valence compound-based biosensor, Biotechnol. Bioeng. 62 (1999) 56-61.
  M.S. Lin, T.F. Tseng, W.C. Shih, Chromium(III) hexacyanoferrate(II)- based chemical sensor for the cathodic determination of hydrogen peroxide, Analyst 123 (1998) 159-163.
  M.S. Lin, W.C. Shih, Chromium hexacyanoferrate based glucose biosensor, Anal. Chim, Acta 381 (1999) 183-189.
  S. Milardovic, I. Kruhak, D. Ivekovic, V. Rumenjak, M. Tkalcec, B. S. Grabaric, Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode, Anal. Chim. Acta 350 (1997) 91-96.
  D. R. Shankaran, N. Uehara, T. Kato, A metal dispersed sol–gel biocomposite amperometric glucose biosensor, Biosens. Bioelectron. 18 (2003) 721-728.
  S. Cosnier, A. Senilou, M. Gratzel, P. Comte, N. Vlachopoulos, N. J. Renault, and C. Martelet, A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide, J. Electroanal. Chem. 469 (1999) 176-181.
  Y. Mishima, J. Motonaka, K. Maruyama, I. Nakabayashi, S. Ikeda, Glucose sensor based on titanium dioxide electrode modified with potassium hexacyanoferrate(III), Sens. Actuators B 65 (2000) 343-345.
  S. V. Dzyadevich, V. N. Arkhipova, A. P. Soldatkin, A. V. El’skaya, A. A. Shul’ga, Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent, Anal. Chim. Acta 374 (1998) 11-18.
  S. A. Jaffari, J. C. Pickup, Novel hexacyanoferrate (III)-modified carbon electrodes: application in miniaturized biosensors with potential for in vivo glucose sensing , Biosens. Bioelectro. 11 (1996) 1167-1175.
  I. L. Mattos, L. Gorton, T. Laurell, A. Malinauskas, A. A. Karyakin, Development of biosensors based on hexacyanoferrates, Talanta 52 (2000) 791-799. 
  R. S. Brown, J. H. T. Luong, A regenerable pseudo-reagentless glucose biosensor based on Nafion polymer and l,1'-dimethylferricinium mediator, Anal. Chim. Acta 310 (1995) 419-427.
  J. Losada, I. Cuadrado, M. Moran, C. M. Casado, B. Alonso, M. Barranco, Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors, Anal. Chim. Acta 338 (1997) 191-198.
  J. Katrlik, R. Brandsteter, J. Svorc, M. Rosenberg, S. Miertus, Mediator type of glucose microbial biosensor based on Aspergillus niger, Anal. Chim. Acta 356 (1997) 217-224.
  H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, D. Qi, Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase,  -galactosidase and mutarotase in  -cyclodextrin polymer, Anal. Chim. Acta 358 (1998) 137-144.
  F. Tian and G. Zhu, Bienzymatic amperometric biosensor for glucose based on polypyrrole/ceramic carbon as electrode material, Anal. Chim. Acta 451 (2002) 251-258.
  N.C. foulds, C.R. Lowe, Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers, Anal. Chem. 60 (1988) 2473-2478.
  P.C. Pandey, S. Upadhyay, N.K. Shukla, S. Sharma, Studies on the electrochemical performance of glucose biosensor based on ferrocene encapsulated ORMOSIL and glucose oxidase modified graphite paste electrode, Biosens. Bioelectron. 18 (2003) 1257-1268.
  J. Razumiene, A. Vilkanauskyte, V. Gureviciene, V. Laurinavicius, N.V. Roznyatovskaya, Y.V. Ageeva, M.D. Reshetova, A.D. Ryabov, New bioorganometallic ferrocene derivatives as efficient mediators for glucose and ethanol biosensors based on PQQ-dependent dehydrogenases, J.  Organometa. Chem. 668 (2003) 83-90.
  Z. Wu, B. Wang, S. Dong, E. Wang, Amperometric glucose biosensor based on lipid film, Biosens. & Bioelec. 15 (2000) 143-147.
  C. Sun, W. Song, D. Zhao, Q. Gao, H. Xu, Tetrabutylammonium– tetracyanoquinodimethane as electron-transfer mediator in amperometric glucose sensor, Microchem. 53 (1996) 296-302.
  D. Centonze, I. Losito, C. Malitesta, F. Palmisano, P.G. Zambonin, Electrochemical immobilisation of enzymes on conducting organic salt electrodes: characterisation of an oxygen independent and interference-free glucose biosensor, J. Electroanal. Chem. 435 (1997) 103-111.
  J. Kulys, The carbon paste electrode encrusted with a microreactor as glucose biosensor, Biosens. Bioelectro. 14 (1999) 473-479.
  T. Ikeda, T. Shibata, M. Senda, Amperometric enzyme electrode for maltose based on an oligosaccharide dehydrogenase-modified carbon paste electrode containing p-benzoquinone, J. Electroanal. Chem. 261 (1989) 351.
  P. Wang, S. Amarasinghe, J. Leddy, M. Arnold, J. S. dordick, Enzymatically prepared poly(hydroquinone) as a mediator for amperometric glucose sensors, Polymer 39 (1998) 123-127.
  T. J. Ohara, R. Rajagopalan, A. Heller, Glucose electrodes based on cross-linked bis(2,2'-bipyridine)chloroosmium(+/2+) complexed poly(1-vinylimidazole) films, Anal. Chem. 65 (1993) 3512-3517.
  M. Pravda, C. M. Jungar, E. I. Iwuoha, M. R. Smyth, K. Vytras, A. Ivaska, Evaluation of amperometric glucose biosensors based on co-immobilisation of glucose oxidase with an osmium redox polymer in electrochemically generated polyphenol films, Anal. Chim. Acta 304 (1995) 127-138.
  T. M. Park, E. I. Iwuoha, M. R. Smyth, R. Freaney, A. J. McShane, Sol-gel based amperometric biosensor incorporating an osmium redox polymer as mediator for detection of l-lactate, Talanta 44 (1997) 973-978.
  Y. Nakabayashi, A. Omayu, S. Morii, S. Yagi, Evaluation of osmium(II) complexes as mediators accessible for biosensors , Sens. Actuators B 66 (2000) 128-130.
  C. Danilowicz, E. Corton, F. Battaglini, E. J. Calvo, An Os(byp)2ClPyCH2NHPoly(allylamine) hydrogel mediator for enzyme wiring at electrodes, Electrochimica Acta 43 (1998) 3525-3531.
  C. Zhang, T. Haruyama, E. Kobatake, M. Aizawa, Evaluation of substituted-1,10-phenanthroline complexes of osmium as mediator for glucose oxidase of Aspergillus Niger, Anal. Chim. Acta 408 (2000) 225-232.
  C. Zhang, T. Haruyama, E. Kobatake, M. Aizawa, Disposable electrochemical capillary-fill device for glucose sensing incorporating a water-soluble enzyme/mediator layer, Anal. Chim. Acta 442 (2001) 257-265.
  S. Reiter, K. Habermuller, W. Schuhmann, A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films , Sens. Actuators B 79 (2001) 150-156.
  C. Zhang, Q. Gao, M. Aizawa, Flow injection analytical system for glucose with screen-printed enzyme biosensor incorporating Os-complex mediator, Anal. Chim. Acta 426 (2001) 33-41.
  A. Silber, N. Hampp, W. Schuhmann, Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors, Biosens. Bioelectron. 11 (1996) 215-223.
  H. Ju, Y. Ye, Y. Zhu, Interaction between nile blue and immobilized single- or double-stranded DNA and its application in electrochemical recognition, Electrochim. Acta 50 (2005) 1361-1367.
  L. Mao, K. Yamamoto, Glucose and choline on-line biosensors based on electropolymerized Meldola's blue, Talanta 51 (2000) 187-195.
  J.Kulys, H. E. Hansen T. B. Rasmussen, J. Wang, M. Ozsoz, Glucose biosensor based on the incorporation of Meldola Blue, Anal. Chim. Acta 288 (1994) 193-196.
  H. Liu, T. Ying, K. Sun, H. Li, D. Qi, Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode, Anal. Chim. Acta 344 (1997) 187-199.
  I. M. Alfaro, E. I. Pizarro, L. Rodriguez, E. M. Valdes, The role of catecholamines as mediators in the glucose oxidase / glucose system, Bioelectrochem. Bioenerg. 38 (1995) 307-313.
  E. Ohasshi, I. Karube, Development of a thin membrane glucose sensor using  -type crystalline chitin for implantable biosensor, J. Biotech. 40 (1995) 13-19.
  C. Saby, F. Mizutani, S. Yabuki, Glucose sensor based on carbon paste electrode incorporating poly(ethylene glycol) -modified glucose oxidase and various mediators, Anal. Chim. Acta 304 (1995) 33-39.
  M. Khayyami, G. Johansson, D. Kriz, B. Xie, P. O. Larsson, B. Danielsson, Flow-injection determination of trace hydrogen peroxide or glucose utilizing an amperometric biosensor based on glucose oxidase bound to a reticulated vitreous carbon electrode, Talanta 43 (1996) 957-962.
  G. Cui, S. J. Kim, S. H. Choi, H. Nam, and G. S. Cha, K. J. Paeng, A Disposable Amperometric Sensor Screen Printed on a Nitrocellulose Strip: A Glucose Biosensor Employing Lead Oxide as an Interference-Removing Agent, Anal. Chem. 72 (2000) 1925-1929.
  Y. Tang, E. C. Tehan, Z. Tao, F. V. Bright, Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability, Anal. Chem. 75 (2003) 2407-2413.
  E. Dominguez, O. Rincon, A. Narvaez, Electrochemiacl DNA sensors based on enzyme dendritic architectures: an approach for enhanced sensitivity, Anal. Chem. 76 (2004) 3132-3138.
  B. F. Johnson, J. G. Dorsey, Solute focusing in flow injection analysis: limits of detection and linear dynamic range, Anal. Chem. 62 (1990) 1392-1397.
  R. Krishnamurthy, D. J. Srolovitz, K. N. Kudin, R. Car, Effects of lanthanide dopants on oxygen diffusion in yttria-stabilized Zirconia, J. Am. Ceram. Soc. 88 (2005) 2143-2151.
  L. Burke, N. Naser, Mestability and electrocatalytic activity of ruthenium dioxide cathodes used in water electrolysis cells, J. Appl. Electrochem. 35 (2005) 931-938. 
  J. D. Ye, S. L. Gu, F. Qin, S. M. Zhu, S. M. Liu, X. Zhou, W. Liu, L. Q. Hu, R. Zhang, Y. Shi, Y. D. Zheng, Correlation between green uminescence and morphology evolution of ZnO films, Appl. Phys. A 81 (2005) 759-762.
  B. Y. Jibril, N. O. Elbashir, S. M. Al-Zahrani, A. E. Abasaeed, Oxidative dehydrogenation of isobutene on chromium oxide-based catalyst, Chem. Eng. Process. 44 (2005) 835-840.
  S. Ahlers, G. Müller, T. Doll, A rate equation approach to the gas sensitivity of thin film metal oxide materials, Sens. Actuators B 107 (2005) 587-599.
  J. Reed, G. Ceder, Role of electronic structure in the susceptibility of metastable transition metal oxide structures to transdormation, Chem. Rev. 104 (2004) 4513-4534.
  B. G. Daniels, R. Lindsay, G. Thornton, A review of quantitative structural determinations of adsorbateds on metal oxide surfaces, Surface Rev. Lett. 8 (2001) 95-120.
  L. G. Sneddon, M. J. Pender, K. M. Forsthoefel, U. Kusari, X. Wei, Design, syntheses and applications of chemical precursors to advanced ceramic materials in nanostructured forms, J. Eur. Ceram. Soc. 25 (2005) 91-97.
  G. Szenes, Ion-induced amorphization in ceramic materials, J. Nucl. Mater. 336 (2005) 81-89.
  F. Bondioli, T. Manfredini, C. Siligardi, A. M. Ferrari, New glass-ceramic inclusion pigment, J. Am. Ceram. Soc. 88 (2005) 1070-1071.
  J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Fermi-level band filling and band-gap renormalizationin Ga-doped ZnO, Appl. Phys. Lett. 86 (2005) 1120-1122.
  H. Shiroishi, T. Oda, I. Hamada, N. Fujima, Structure and magnetism of anion iron oxide clusters, Mol. Simul. 30 (2004) 911-915.
  A. Giraud, T. Jenny, E. Neroy, O. M. Kuttel, L. Schlapbach, P. Vanelle, L. Giraud, Chemical Nucleation for CVD Diamond Growth, J. Am. Chem. Soc. 123 (2001) 2271-2274.
  Y. Pleskov, Y. Evstefeeva, M. Krotova, P. Lim, H. Shih, V. Varnin, I. Teremetskaya, I. Vlasov, V. Ralchenko, Synthetic diamond electrodes: the effect of surface microroughness on the electrochemical properties of CVD diamond thin films on titanium, J. Appl. Electrochem. 35 (2005) 857-864.
  T. L. Lasseter, B. H. Clare, N. L. Abbott, R. J. Hamers, Covalently modified silicon and diamond surfaces: resistance to nonspecific protein adsorption and optimization for biosensing, J. Am. Chem. Soc. 126 (2004) 10220-10221.
  P. Krysiński, Y. Show, J. Stotter, G. J. Blanchard, Covalent adlayer growth on a diamond thin film surface, J. Am. Chem. Soc. 125 (2003) 12726-12728.
  Y. Sumikawa, T. Banno, K. Kobayashi, Y. Itoh, H. Umezawa, H. Kawarada, Memory effect of diamond in plane gated field effect transistors, Appl. Phys. Lett. 85 (2004) 139-141.
  P.C. Ricci, A. Anedda, C.M. Carbonaro, F. Clemente, R. Corpino, Electrochemically indiced surface modifications in boron-doped diamond films: a raman spectroscopy study, Thin Solid Films 482 (2005) 311-317.
  V. A. Sidorov, E.A. Ekimov, E.D. Bauer, N.N. Melnil, N.J. Curro, V. Fritsch, J. D. Thompson, S.M. Stishov, A.E. Alexenko, B.V. Spitsyn, Superconductivity in boron-doped diamond, Diamond Relat. Mater 14 (2005) 335-339.
  E.C. Almeida, A.V. Diniz, J.M. Rosolen, V.J. Trava-Airoldi, N.G. Ferreira, Structural and voltammetric studies at boron-doped diamond electrode grown on carbon felt produced from different temperatures, Diamond Relat. Mater. 14 (2005) 679-684. 
  C. A. Lu, Li Chang, Synthesis of diamond hexagonal nanoplatelets by microwave plasma chemical vapor deposition, Diamond Relat. Mater. 13 (2004) 2056-2062.
  C.-A. Lu, L. Chang, B.-R. Huang, Growth of diamond films with bias during microwave plasma chemical vapor deposition, Diamond Relat. Mater. 11 (2002) 523-526. 
  T. Teraji, K. Arima, H. Wada, T. Ito, High-quality boron-doped homoepitaxial diamond grown by high-power microwave-plasma chemical-vapor deposition, J. Appl. Phys. 96 (2004) 5906-5908.
  X. Tang, B. Y. Zhao, K. A. Hu, Using active carbon pellet as substract for deposition diamond by MPCVD, Mater. Lett. 59 (2005) 1673-1677.
  N. Kohmura, K. Sudoh, K. Sato, K.K. Hirakuri, K. Miyake, G. Friedbacher, Diamond growth on the high purity iron substrate using hot-filament CVD method, Diamond Relat. Mater. 14 (2005) 283-287.
  K. Subramanian, W.P. Kang, J.L. Davidson, W.H. Hofmeister, The effect of growth rate control on the morphology of nanocrystalline diamond, Diamond Relat. Mater. 14 (2005) 404-411.
  G. Cicala, P. Bruno, F. Bénédic, F. Silva, K. Hassouni, G.S. Senesi, Nucleation, growth and characterization of nanocrystalline diamond films, Diamond Relat. Mater. 14 (2005) 421-425.
  K. K. Hirakuri, M. Ohyama, N. Komura, K. Sudo, K. Sato, Diamond growth in solid substrate from gaseous source, J. Appl. Phys. 97 (2004) 325-329.
  S. Schwarz, C. Rottmair, J. Hirmke, S. Rosiwal, R.F. Singer, CVD-diamond single-crystal growth, J. Cryst. Growth 271 (2004) 425-434.
  A. Chayahara, Y. Mokuno, Y. Horino, Y. Takasu, H. Kato, H. Yoshikawa, N. Fujimori, The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD, Diamond Relat. Mater. 13 (2004) 1954-1958.
  C. G. Specht, O. A. Williams, R. B. Jackman, R. Achoepfer, Ordered growth of neurons on diamond, Biomater. 25 (2004) 4073-4078.
  A. Nomura, S. Shin, O. O. Mehdi, J. M. Kauffrnann, Preparation, characterization, and application of an enzyme-immobilized magnetic microreactor for flow injection analysis, Anal. Chem. 76 (2004) 5498-5502.
  N. O. Can, G. Altiokka, Determination of azapropazone in its pharmaceutical form by HPLC and flow injection analysis, J. Liq. Chrom. Relat. Tech. 28 (2005) 857-869.
  M. Miró, V. Cerdà, J. M. Estela, Multisyringe flow injection analysis: characterization and applications, Trends Anal. Chem. 21 (2002) 199-210.
  M. K. Carroll, J. F. Tyson, An experiment using time-based detection in flow injection analysis, J. Chem. Edu. 70 (1993) A210-A213.
  J.M. Mesaros, P.F. Gavin, Flow injection analysis using continuous channel electrophoresis, Anal. Chem. 68 (1996) 3441-3449.
  A. Safani, B. Haghighi, F. Peiravian, Flow injection analysis of sulfide by gas phase molecular adsorption UV/VIS spectrometry, Anal. Lett. 36 (2003) 479-492.
  K. Shrivas, K. S. Patel, P. Hoffmann, Flow injection analysis spectrophotometric determination of palladium, Anal. Lett. 37 (2004) 527-516.
  C. Sánchez-Pedreño, J. A. Ortuño, J. Hernández, Chronocoulometric flow injection analysis with solvent polymeric membrane ion sensors, Anal. Chim. Acta 459 (2002) 11-17.
  A. Wolf, A. Weber, R. Hüttl, J. Lerchner, G. Wolf, Sequential flow injection analysis of complex systems using calorimetric detection, Thermochim. Acta 382 (2002) 89-98.
  M. A. Z. Arruda, M. Gallego, Determination of aluminum in slurry and liquid phase of juices by flow injection analysis, Anal. Chem. 65 (1993) 3331-3335.
  J. Ruzicka, E. H. Hansen, Flow injection analysis, Anal. Chem. 72 (2000) 212A-217A.
  J. Wang, E. H. Hansen, Sequential injection lab-on-valve: the third generation of flow injection analysis, Trends Anal. Chem. 22 (2003) 225-231.
  D. E. Canfield, E. Kristensen, B. Thamdrup, A. J. Southward, P. A. Tyler, C. M. Young, L. A. Fuiman, The nitrogen cycle, Adv. Mar. Biol. 48 (2005) 205-266.
  R. M. Wallsgrove, A. J. Keys, P. J. Lea, B. J. Miflin, Photosynthesis, photorespiration and nitrogen metabolism, Plant Cell Environ. 6 (1983) 301-309.
  B. Timmer, W. Olthuis, A. ven den Berg, Ammonia sensors and their applications-a review, Sens. Actuator B 107 (2005) 666-677.
  X. Wu, S. Kannan, R. V. M. Sadagopa, K. M. Firoze, Iron release and oxidative DNA damage in splenic toxicity of aniline, J. Toxicol. Environ. Health 68 (2005) 657-666. 
 . Susan Budavari, The Merck Index, Merck Research Laboratories Division of Merck & Co. Inc., 12th ed., 1996, p1684.
 . 林敬二, 楊美惠, 楊寶旺, 廖德章, 薛敬和主編, 化學大辭典, 高立圖書有限公司, 2000, p1629.
 . 何敏夫, 臨床生化學, 合記圖書出版社, 1992, p.158.
 . E. S. West, W. R. Todd, H. S. Masn, J. T. van Brugger, Textbook of Biochemistry, Macmillan, New York, 4th ed., 1966.
 . 原著:Baynes, Dominiczak;潘淑芬譯, 醫學生物化學, 藝軒出版社, 2001, p.357.
  R. H. Garrett, C. M. Grisham, Biochemistry, 2th ed., 1999, Harcourt college publishers, p.899.
 .原著 安藤幸夫;廖順奎譯, 健康檢查指引, 鍾郡出版社, 1998, p152.
  F. P. Cappuccio, P. Strazzullo, Uric acid metabolism and tubular sodium handling, J. Am. Med. Assoc. 270 (1993) 354-359.
  R. Moen, G. D. DelGiudice, Simulating nitrogen metabolism and urinary urea nitrogen: creatinine ratios in ruminants, J. Wildl. Manage. 61 (1993) 881-894.
  B. E. Leonard, Neurotransmitter receptors, endocrine responses and the biological substrates of depression: a review, Human Psychopharmacology, 1 (1986) 3-21.
  G. P. Hess, Rapid chemical reaction techniques developed for use in investigations of membrane-bound proteins, Biophys. Chem. 100 (2003) 493-506.
  R. Huber, M. Büchner, H. Li, M. Schlieter, A. D. Speerfeld, M. W. Riepe, Protein binding of NADH on chemical preconditioning, J. Neurochem. 75 (2000) 329-335.
  L. J. Sweetlove, L. J. Sweetlove, R. Dunford, R. G. Ratcliffe, N. J. Kruger, Lactate metabolism in potato tubers deficient in lactate dehydrogenase activity, Plant Cell Environ. 23 (2000) 873-881.
  Y. Y. Lyu, S. H. Yi, J. K. Shon, S. Chang, L. S. Pu, S. Y. Lee, J. E. Yie, K. Char, G. D. Stucky, J. M. Kim, Highly stable mesoporous metal oxides using nano-propping hybrid Gemini surfactants, J. Am. Chem. Soc. 126 (2004) 2310-2311.
  L. Chmielarz, P. Kuśtrowski, A. Rafalska-Lasocha, R. Dziembaj, Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxide, Appl. Catal. B 58 (2005) 235-244.
  S.-K. Kim, S.-K. Ihm, Nature of carbonaceous deposirs on the alumina supported transition metal oxide catalysts in the wet air oxidation of phenol, Topics Catal. 33 (2005) 171-179.
  U. S. Ozkan, R. B. Watson, The structure – function relationships in selective oxidation reactions over metal oxides, Catal. Today 100 (2005) 101-114.
  M. A. Carreon, V. V. Guliants, Synthesis of catalytic materials on multiple length scales: from mesoporous to macroporous bulk mixed metal oxides for selective oxidation of hydrocarbons, Catal. Today 99 (2005) 137-142.
  M. Niwa, Y. Habuta, K. Okumura, N. Katada, Solid acidity of metal oxide monolayer and its role in catalytic reactions, Catal. Today 87 (2003) 213-218.
  G. Storz, J. A. Imlay, Oxidative stress, Currtent Opinion in Microbiology 2 (1999) 188-194.
  A. Sharma, S. Kharb, S. N. Chugh, R. Kakkar, G. P. Singh, Evaluation of oxidative stress before and after control of glycemia and after vitamin E supplementation in diabetic patients, Metabolism 49 (2000) 160-162.
  J. Weinberger, The rule of dopamine in cerebral ischemic damage: a review of studies with Gerald Cohen, Parkinsonism & Related Disorders, 8 (2002) 413-416.
  M. A. Ungless, Dopamine: the salient issue, Trends in Neurosci. 27 (2004) 702-706.
  A. M. S. Kindlundh, S .Rahman, J. Lindblom, F. Nyberg, Increased dopamine transporter density in the male rat brain following chronic nandrolone decanoate administration, Neurosci. Lett. 356 (2004) 131-134.
  M. J. Bannon, The dopamine transporter: role in neurotoxicity and human disease, Toxicol. Appl. Pharmacol. 204 (2005) 255-260.
  M. L. Gostkowski, J. B. Shear, Subattomole fluorescence determination of catecholamines in capillary electrophoresis effluent streams, J. Am. Chem. Soc. 120 (1998) 12966-12967.
  R. Zhu, W. T. Kok, Determination of catecholamines and related compounds by capillary electrophoresis with postcolumn terbium complexation and sensitized lumenscence detection, Anal. Chem. 69 (1997) 4010-4016.
  J.-M. Zen, C.-T. Hsu, Y.-L. Hsu, J.-W. Sue, E. D. Conte, Voltammetric peak separation of dopamine from uric acid in the presence of ascorbic acid at greater than ambient soluteion temperatures, Anal. Chem. 76 (2004) 4251-4255.
  D. R. Shankaran, K. Iimura, T. Kato, Simultaneous determination of ascorbic and dopamine at a sol-gel composite electrode, Sens. Actuators B 94 (2003) 73-80.
  Y. H. Park, X. Zhang, S. S. Rubakhin, J. V. Sweedler, Independent optimization of capillary electrophoresis separation and native fluorescence detection conditions for indolamine and catecholamine measurements, Anal. Chem. 71 (1999) 4997-5002.
  S. S. Kumar, J. Mathiyarasu, K. L. Phani, J. Electroanal. Chem. 578 (2005) 95-103.
  Y. Yang, C.-X. Lei, Z.-M. Liu, Y.-I. Liu, G.–L. Shen, R.-Q. Yu, High selective dopamine determination by using carboxymethylated β-cyclodextrin polymer film modified electrode, Anal. Lett. 37 (2004) 2267-2282.  
  M. Takashima, S. Yonezawa, M. Ozawa, Electrochemical properties of LiMn2O4 coated with nano-thickness carbonand fluorine, Mol. Cryst. Liq. Cryst. 388 (2002) 153-159.
  E. Iguchi, N. Nakamura, A. Aoki, Electrical transport properties in LiMn2O4, Phil. Mag. B 78 (1998) 65-77.
  C. R. Horne, Structural studies of LiMn2O4-based spinels for Li rechargeable batteries, Interface 7 (1998) 61-62.
  X. Wang, B. Jin, X .Lin, In-situ FTIR spectroelectrochemical study of dopamine at a glassy carbon electrode in a neutral solution, Anal. Sci. 18 (2002) 931-933.
 . J. L. Wheat, Determination of uric acid: an automated phosphotungstate method using NaOH as the Alkali, Clin. Chem. 14 (1968) 630-636.
 . W. T. Caraway, Standard Methods of Clinical Chemistry, vol. 4, Academic Press, New York, (1963) pp. 239.
 . H. A. Bulger, H. E. Johns, The determination of plasma uric acid, J. Biol. Chem. 140 (1941) 427-433.
 . A. Ishihard, K. Kurakasi, H. Nehard, Enzymatic determination of ammonia in blood plasma, Clin. Chim. Acta 41 (1972) 255-260.
 . K. Lorents, W. Berndt, Enzymic determination of uric acid by a colorimetric method, Anal. Biochem., 18 (1967) 58-63.
 . R. C. Trivedi, L. Rebar, K. Desai, L. J. Stong, New ultraviolet (340 nm) method for assay of uric acid in serum or plasma, Clin. Chem. 24 (1978) 562-568.
 . Y. Kayamori, Y. Katayama, A Sensitive Determination of Uric Acid in Serum Using uricase/Catalase/Formaldehyde Dehydrogenase Coupled with Formate Dehydrogenase, Clin. Biochem. 27 (1994) 93-97.
  D. Martinez-Pérez, M. L. Ferrer, C. R. Mateo, A reagent less fluorescent sol-gel biosensor for uric acid detection in biological fluids. Anal. Biochem. 322 (2003) 238-242.
 . J. Galbán, Y. Andreu, M. J. Almenara, S. de Marcos, J. R. Castillo, Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase, Talanta 54 (2001) 847-854.
 . J. Galbán, S. de Marcos, P. Segura, J. R. Castillo, Determination of lactate by the intrinsic fluorescence of lactate oxidase, Anal. Chim. Acta 299 (1994) 277-284.
 . S. de Marcos, J. Galbán, J. R. Castillo, An Enzyme Fluorescence Quenching Method for the Determination of Lactate in Synthetic Blood Serum, Anal. Sci. 11 (1995) 233-238.
 . S. de Marcos, J. Galbán, R. Albajez, J. R. Castillo, Enzymatic determination of ethanol based on the intrinsic fluorescence of alcohol dehydrogenase. Anal. Chim. Acta 343 (1997) 117-123.
 . Y. Andreu, J. Galbán, S. de Marcos, J. R. Castillo, Determination of direct-bilirubin by a fluorimetric-enzymatic method based on bilirubin oxidase, Fresenius J. Anal. Chem. 368 (2000) 516-521.
 . S. de Marcos, J. Galbán, C. Alonso, J. R. Castillo, Intrinsic Molecular Fluorescence of Lactate Dehydrogenase: an Analytical Alternative for Enzymic Determination of Pyruvate, Analyst 122 (1997) 355-360.
  N. Kiba, A. Itagaki, S. Fukumura, K. Saegusa, M. Furusawa, Highly sensitive flow-injection determination of glucose in plasma using an immobilized pyranose oxidase and a chemiluminometric peroxidase sensor, Anal. Chim. Acta 354 (1997) 205-210.
 . K. Bartl, J. Ziegenhorn, Methods of Enzymatic Analysis, ed. H. U. Bergmeyer, 3rd ed., Vol. 7, VCH, Weinheim, (1985) pp. 134.
 . U. Nagele, J. Ziegenhorn, S. Kose, Methods of Enzymatic Analysis, ed. H. U. Bergmeyer, 3rd ed., Vol. 7, VCH, Weinheim, (1985) pp. 140.
  N. Kiba, K. Suzuki, T. Miwa, M. Tachibana, H. Koizumi, K. Tani, Chemiluminometric determination of uric acid in plasma by closed-loop FIA with a coimmobilized enzyme flow cell, Anal. Sci. 16 (2000) 1203-1206.
 . J. Liu, G. Li, Application of biosensors for diagnostic analysis and bioprocess monitoring, Sensors and Actuators B 65 (2000) 26-31.
 . D. Yao, A. G. Vlessidis, N. P. Evmiridis, Microdialysis sampling and monitoring of uric acid in vivo by a chemiluminescence reaction and an enzyme on immobilized chitosan support membrane, Anal. Chim. Acta 478 (2003) 23-30.
  M. M. Castillo-Ortega, D. E. Rodriguez, J. C. Encinas, M. Plascencia, F. A. Méndez-Velarde, R. Olayo, Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites, Sensors and Actuators B 85 (2002) 19-25.
 . M. A. F. Elmosallamy, R. A. Mohamed, A new potentiometric membrane sensor responsive to uric acid, Anal. Lett. 30 (1997) 2175-2182.
 . C. Xiaohua, K. Kalcher, X. Cai, C. Neuhold, B. Ogorevc, An improved voltammetric method for the determination of trace amounts of uric acid with electrochemically pretreated carbon paste electrodes, Talanta 41 (1994) 407-413.
 . J. M. Zen, J. S. Tang, Square-Wave Voltammetric Determination of Uric Acid by Catalytic Oxidation at a Perfluorosulfonated Ionomer/Ruthenium Oxide Pyrochlore Chemically Modified Electrode, Anal. Chem. 67 (1995) 1892-1895.
  J. M. Zen, Y. Y. Lai, H. H. Yang, A. S. Kumar, Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode, Sensors and Actuators B 84 (2002) 237-244.
 . R. L. McCreey, Electroanalytical Chemistry, A. J. Bard Ed., vol. 17, Marcel Dekker, New York, (1991).
 . S. Licht, B. Wang, S. Ghosh, Energetic Iron(VI) Chemistry: The Super-Iron Battery, Science, 285 (1999) 1039-1042.
 . C. R. Raj, T. Ohsaka, Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol, Journal Electroanal. Chem. 540 (2003) 69-77.
 . S. Uchiyama, T. Obokata, S. Suzuki, Selective coulometric determination of uric acid in human urine using uricase, Anal. Chim. Acta 225 (1989) 425-429.
 . S. Kasai, Y. Hirano, N. Motochi, H. Shiku, M. Nishizawa, T. Matsue, Simultaneous detection of uric acid and glucose on a dual-enzyme chip using scanning electrochemical microscopy/scanning chemiluminescence microscopy, Anal. Chim. Acta 458 (2002) 263-270.
 . H. Kinoshita, A membrane-covered graphite paste electrode as a sensor for uric acid in serum, Anal. Sci. 7 (1991) 879-882.
 . M. A. T. Gilmartin, J. P. Hart, Voltammetric and amperometric behaviour of uric acid at bare and surface-modified screen-printed electrodes: studies towards a disposable uric acid sensor, Analyst 117 (1992) 1299-1304.
 . M. A. Carsol, G. Volpe, M. Mascini, Amperometric detdction of uric acid and hypoxanthine with xanthine oxidase immobilized and carbon based screen-printed electrode. Application for fish freshness determination, Talanta 44 (1997) 2151-2159.
 . M. Nanjo, G. G. Guilbault, Enzyme Electrode Sensing Oxygen for Uric Acid in Serum and Urine, Anal. Chem. 46 (1974) 1769-1772.
 . S. Uchiyama, H. Sakamoto, Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor, Talanta 44 (1997) 1435-1439.
 . A. Iob, H. A. Mottola, Continuous-flow analysis for uric acid in biological fluids, with immobilized uricase in a closed-loop system, Anal. Chem. 52 (1980) 2332-2338.
 . U. Wollenberger, F. Lisdat, F. W. Scheller, Frontiers in Biosensors II, F. W. Scheller, F. Schubert, F. Fedrwitz, ed., Birkhäser, in Basle, (1997) pp. 45.
 . S. Uchiyama, H. Shimizu, Y. Hasebe, Chemical amplification of uric acid sensor responses by dithiothreitol, Anal. Chem. 66 (1994) 1873-1876.
 . Y. Hasebe, T. Hirano, S. Uchiyama, Determination of catecholamines and uric acid in biological fluids without pretreatment, using chemically amplified biosensors, Sensors and Actuators B 24 (1995) 94-97.
 . Y. Hasebe, K. Nawa, S. Ujita, S. Uchiyama, Highly sensitive flow detection of uric acid based on an intermediate regeneration of uricase, Analyst 123 (1998) 1775-1780.
  S. Kuwabata, T. Nakaminami, S. Ito, H. Yoneyama, Preparation and properties od amperometric uric acid sensors, Sens. Actuators B 52 (1998) 72-77.
 . O. Elekes, D. Moscone, K. Venema, J. Korf, Bi-enzyme reactor for electrochemical detection of low concentrations of uric acid and glucose, Clin. Chim. Acta 239 (1995) 153-165.
 . E. Miland, A. J. M. Ordieres, P. T. Blanco, M. R. Smyth, C. Ó. Fágáin, Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid, Talanta 43 (1996) 785-796.
 . H. Frebel, G. C. Chemnitius, K. Cammann, R. Kakerow, M. Rospert, W. Mokwa, Multianalyte sensor for the simultaneous determination of glucose, L-lactate and uric acid based on a microelectrode array, Sens. and Actuators B 43 (1997) 87-93.
 . F. H. Keedy, P. Vadgama, Determination of urate in undiluted whole blood by enzyme electrode, Biosensor & Bioelectronics 6 (1991) 491-499.
 . W. H. Mullen, F. H. Keedy, S. J. Churchouse, P. Vadgama, Glucose enzyme electrode with extended linearity: Application to undiluted blood measurements, Anal. Chim. Acta 183 (1986) 59-66.
 . N. Kageyama, A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system, Clin. Chim. Acta 31 (1971) 421-426.
 . T. Tatsuma, T. Watanabe, Oxidase/peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesterol and uric acid, Anal. Chim. Acta 242 (1991) 85-89.
 . M. A. T. Gilmartin, J. P. Hart, Development of amperometric sensors for uric acid based on chemically modified graphite-poxy resin and screen-printed electrodes containing cobalt phthalocyanine, Analyst 119 (1994) 243-252.
 . M. A. T. Gilmartin, J. P. Hart, Novel, Reagentless, Amperometric Biosensor for Uric Acid Based on a Chemically Modified Screen-Printed Carbon Electrode Coated with Cellulose Acetate and Uricase, Analyst 119 (1994) 833-840.
 . R. Dobay, G. Harsányi, C. Visy, Detection of uric acid with a new type of conducting polymer-based enzymatic sensor by bipotentiostatic technique, Anal. Chim. Acta 385 (1999) 187-194.
 . Y. W. Liou, C.M. Wang, Peroxidase mimicking: Fe(Salen)Cl modified electrodes, fundamental properties and applications for biosensing, J. Electroanal. Chem. 481 (2000) 102-109.
 . T. Nakaminami, S. Ito, S. Kuwabata, H. Yoneyama, Uricase-Catalyzed Oxidation of Uric Acid using an Artificial Electron Acceptor and Fabrication of Amperometric Uric Acid Sensors with Use of a Redox Ladder Polymer, Anal. Chem. 71 (1999) 1928-1934.
 . T. Nakaminami, S. Ito, S. Kuwabata, H. Yoneyama, A Biomimetic Phospholipid/Alkanethiolate Bilayer Immobilizing Uricase and an Electron Mediator on an Au Electrode for Amperometric Determination of Uric Acid, Anal. Chem. 71 (1999) 4278-4283.
  H. J. Terpstra, R. A. de Groot, C. Haas, The electronic structure of the mixed valence compound Pb3O4, J. Phys. Chem. Solids 58 (1997) 561-566.
  J. S. N. Dutt, M. F. Cardosi, J. Davis, Electrochemical tagging of urate: developing new redox probes, Analyst 128 (2003) 811-813.
  M. A. Arnold, T. J. Ostler, Fiber optic ammonia gas sensing probe, Anal. Chem. 58 (1986) 1137-1140.
  B. Onida, S. Fiorilli, L. Borello, G. Viscardi, D. Macquarrie, E. Garrone, Mechanism of the optical response of mesoporous silica impregnated with Reichardt’s dye to NH3 and other gases, J. Phys. Chem. B 108 (2004) 16617-16620.
  C. Malins, T. M. Butler, B. D. MacCraith, Influence of the surface polarity of dye-doped sol-gel glass films on optical ammonia sensor response, Thin Solid Films 368 (2000) 105-110.
  K. T. Lau, S. Edwards, D. Diamond, Solid-state ammonia sensor based on Berthelot’s reaction, Sens. Actuators B 98 (2004) 12-17.
  C. Preininger, G. J. Mohr, I. Klimant O. S. Wolfbeis, Ammonia fluorosensors based on reversible lactonization of polymer-entrapped rhodamine dyes and the effects of plasticizers, Anal. Chim. Acta 334 (1996) 113-123.
  C. Preininger, G. J. Mohr, Fluorosensors for ammonia using rhodamines immobilized in plasticized poly(vinyl chloride) and in sol-gel; a comparative study, Anal. Chim. Acta 342 (1997) 207-213.
  G. J. Mohr, S. Draxler, K. Trznadel, F. Lehmann, M. E. Lippitsch, Sythesis and characterization of fluorophore-absorber paiirs for sensing of ammonia based on fluorescence, Anal. Chim. Acta 360 (1998) 119-128.
  A. Lobnik, O. S. Wolfbeis, Sol-gel based optical sensor for dissolved ammonia, Sens. Actuators B 51 (1998) 203-207.
  Q. Chang, J. Sipior, J. R. Lakowicz, G. Rao, A life time-based fluorescence resonance energy transfer sensor for ammonia, Anal. Biochem. 232 (1995) 92-97.
  P. Šimon, M. Landl, M. Breza, F. Kvasnik, New NIR dyes for ammonia sensing, Sens. Actuators B 90 (2003) 9-14.
  P. Šimon, S. Sekretár, B.D. MacCraith, F. Kvasnik, Near-infrared reagents for fiber-optic ammonia sensors, Sens. Actuators B 38-39 (1997) 252-255.
  E. Scorsone, S. Christie, K.C. Persaud, P. Šimon, F. Kvasnik, Fibre-optic evanescent sensing of gaseous ammonia with two forms of a new near infrared dye in comparison of phenol red, Sens. Actuators B 90 (2003) 37-45.
  C. Malins, M. Landl, P. Šimon, B.D. MacCraith, Fibre optic ammonia sensing employing novel near infrared dyes, Sens. Actuators B 51 (1998) 359-367.
  S. Christie, E. Scorsone, K. Persaud, F. Kvasnik, Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline, Sens. Actuators B 90 (2003) 163-169. 
  I. M. Raimundo Jr., R. Narayanaswamy, Simultaneous determination of relative humidity and ammonia in air employing an optical fiber sensor and artificial neural network, Sens. Actuators B 74 (2001) 60-68.
  M. Trinkel, W. Trettnak, F. Reininger, R. Benes, P. O’Leary, O. S. Wolfbeis, Study of the performance of an optochemical sensor for ammonia, Anal. Chim. Acta 320 (1996) 235-243.
  S. Ozawa, P. C. Hauser, K. Seiler, S. S. S. Tan, W. E. Morf, W. Simon, Ammonia gas-selective optical sensors based on neutral ionophores, Anal. Chem. 63 (1991) 640-644.
  S. K. Spear, S. L. Patterson, M. A. Arnold, Flow-through fiber-optic ammonia sensor for analysis of hippocampus slice perfusates, Anal. Chim. Acta 357 (1997) 79-84.
  J. Moreno, F. J. Arregui, I. R. Matias, Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes, Sens. Actuators B 105 (2005) 419-424.
  Z. Jin, Y. Su, Y. Duan, Development of a polyaniline-based optical ammonia sensor, Sens. Actuators B 72 (2001) 75-79.
  A. Mirmohseni, A. Oladegargoze, Construction of a sensor for determination of ammonia and aliphatic amines using polyvinylpppyrrolidone coated quartz crystal microbalance, Sens. Actuators B 89 (2003) 164-172.
  U. Schramm, C.E.O. Roesky, S. Winyer, T. Rechenbach, P. Boeker, P. S. Lammers, E. Weber, J. Bargon, Temperature dependence of an ammonia sensor in humid air based on a cryptophane-coated quartz microbalance, Sens. Actuators B 57 (1999) 233-237.
  L. C. Brousseau, T. E. Mallouk, Molecular design of intercalation-based sensors. 1. ammonia sensing with quartz crystal microbalance modified by copper biphenyl bis(phosphonate) thin films, Anal. Chem. 69 (1997) 679-687.
  O. K. Varghese, D. Gong, W. R. Dreschel, K. G. Ong, C. A. Grimes, Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors, Sens. Actuators B 94 (2003) 27-35.
  C.-Y. Shen, C.-P. Huang, W.-T. Huang, Gas-detecting properties of surface acoustic wave ammonia sensors, Sens. Actuators B 101 (2004) 1-7.
  H. Tan, R. Wang, H. Zhang, L. Nie, S. Yao, Detection and analysis of the temperature-dependent growth characteristics of Proteus mirabilis using a bulk acoustic wave ammonia sensor, Bioelectrochem. Bioenerg. 44 (1997) 83-88.
  S.K. Dhawan, D. Kumar, M.K. Ram, S. Chandra, D.C. Trivedi, Application of conducting polyaniline as sensor material for ammonia, Sens. Actuators B 40 (1997) 99-103.
  C.W. Lin, B.J. Hwang, C.R. Lee, Sensing behaviors of the electrochemically co-deposited polypyrrole-poly(vinyl alcohol) thin film exposed to ammonia gas, Mater. Chem. Phys. 58 (1999) 114-120.
  S. Koul, R. Chandra, S.K. Dhawan, Conducting polyaniline composite: a reusable sensor material for aqueous ammonia, Sens. Actuators B 75 (2001) 151-159.
  E. Bekyarova, M. Davis, T. Burch, M .E. Itkis, B. Zhao, S. Sunshine, R. C. Haddon, Chemically functionalized single-walled carbon nanotubes as ammonia sensors, J. Phys. Chem. B 108 (2004) 19717-19720.
  V.V. Chabukswar, S. Pethkar, A. A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor, Sens. Actuators B 77 (2001) 657-663.
  A. A. Tomchenko, G. P. Harmer, B. T. Marquis, J. W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sens. Actuators B 93 (2003) 126-134.
  M. Bendahan, C. Jacolin, P. Lauque, J.-L. Seguin, P. Knauth, Morphology, electrical conductivity, and reactivity of mixed conductor CuBr films: development of a new ammonia gas detector, J. Phys. Chem. B 105 (2001) 8327-8333.
  B.H. Timmer, K.M. van Delft, R.P. Otjes, W.Olthuis, A. van den Berg, Miniaturized measurement system for ammonia in air, Anal. Chim. Acta 507 (2004) 137-143.
  P. Lanque, J.-M. Laugier, C. Jacolin, M. Bendahan, C. Lemire, P. Knauth, Impedance analysis oof CuBr films for ammonia gas detection, Sens. Actuators B 87 (2002) 431-436.
  A.-M. Harbin, C. M. G. Van den Berg, Determination of ammonia in seawater using catalytic cathodic stripping voltammetry, Anal. Chem. 65 (1993) 3411-3416.
  C. Li, D. Zhang, B. Lei, S. Han, X. Liu, C. Zhou, Surface treatment and doping dependence of In3O4 nanowires as ammonia sensors, J. Phys. Chem. B 107 (2003) 12451-12455.
  V. Saxena, S. Choudhury, S.C. Gadkari, S.K. Gupta, J.V. Yakhmi, Room temperature operated ammonia gas sensor using polycarbazole Langmuir-Blodgett film, Sens. Actuators B 107 (2005) 277-282.
  H. Shen, T. J. Cardwell, R. W. Cattrall, Determination of ammonia in wastewaters containing high concentrations of surfactants by flow injection potentiometry with on-line sample clean-up, Anal. Chim. Acta 367 (1998) 193-199.
  B. Liu, R. Hu, J. Deng, Studies on a potentiometric urea biosensor based on an ammonia electrode and urease, immobilized on a γ-aluminum oxide matrix, Anal. Chim. Acta 341 (1997) 161-169.
S. S.M. Hassan, S. A. Marei, I. H. Badr, H. A. Arida, Novel solid-state ammonium ion potentiometric sensor based on zirconium titanium, phosphate ion exchanger, Anal. Chim. Acta 427 (2001) 21-28.
  R.P. Gupta, Z. Gergintschew, D. Schipanski, P.D. Vyas, YBCO-FET room temperature ammonia sensor, Sens. Actuators B 63 (2000) 35-41.
  A. Karthigeyan, R.P. Gupta, K. Scharnagl, M. Burgmair, S.K. Sharma, I. Eisele, A room temperature HSGFET ammonia sensor based on iridium oxide thin film, Sens. Actuators B 85 (2002) 145-153.
  P. Heiduschka, M. Preschel, M. Rösch, W. Göpel, Regeneration of an electropolymerised polypyrrole layer for the amperometric detection of ammonia, Biosens. Bioelectron. 12 (1997) 1227-1231.
  I. Lähdesmäki, W. W. Kubiak, A. Lewenstam, A. Ivaska, Interferences in a polyppyrrole-based amperometric ammonia sensor, Talanta 52 (2000) 269-275.
  M. Vidotti, L. H. Dall’Antonia, E. P. Cintra, S. I. C. de Torresi, Reduction of interference signal of ascorbate and urate in poly(pyrrole)-based ammonia sensors in aqueous solutions, Electrochim. Acta 49 (2004) 3665-3670.
  B. A. L. de Mishima, D. Lescano, T. M. Holgado, H. T. Mishima, Electrochemical oxidation of ammonia in alkaline solutions: its application to an amperometric sensor, Electrochim. Acta 43 (1998) 395-404.
  I. Karube, T. Okada, S. Suzuki, Amperometric determination of ammonia gas with immobilized nitrifying bacteria, Anal. Chem. 53 (1981) 1852-1854.
  V. Frattini, C. Lionetti, Histamine and histidine determination in tuna fish samples using high-performance liquid chromatography derivatization with o-phthalaldehyde and fluorescence detection or UV detection of “free” species, J. Chromatogr. A 809 (1998) 241-245.
  D. Kutlán, P. Presits, I. Molnár-Perl, Behavior and characteristics of amine derivatives obtained with o-phthaldialdehyde / 3-mercaptopropionic acid and with o-phthaldialdehyde / N-acetyl-L-cysteine reagents, J. Chromatogr. A 949 (2002) 235-248.
  J. Lange, K. Thomas, C. Wittmann, Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples, J. Chromatogr. B 779 (2002) 229-239.
  A. Tong, H. Dong, L. Li, Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)-protoporphyrin as a functional monomer, Anal. Chim. Acta 466 (2002) 31-37.
  O. Niwa, R. Kurita, K. Hayashi, T. Horiuchi, K. Torimitsu, K. Maeyama, K. Tanizawa, Continuous measurement of histamine from rat basophilic leukemia cells (RBL-2H3) with an on-line sensor using histamine oxidase, Sens. Actuators B 67 (2000) 43-51.
  S. Iwaki, M. Ogasawara, O. Niwa, R. Kurita, K. Tanizawa, Y. Ohashi, K. Maeyama, Real-time monitoring of histamine released from rat basophilic leukemia (RBL-2H3) cells with a histamine microsensor using recombinant histamine oxidase, Anal. Biochem. 304 (2002) 236-243.
  G. C. Chemnitius, U. Bilitewski, Development of screen-printed enzyme electrodes for the estimation of fish quality, Sens. Actuators B 32 (1996) 107-113.
  Y. Hasebe, S. Toda, K. Aoki, H. Tonobe, S. Uchiyama, Specific and amplified current responses to histidine and histamine using immobilized copper-monoamine oxidase membrane electrode, based on novel ascorbate oxidase activity induced by exogenous ligands, Anal. Biochem. 251 (1997) 32-38.
  K. Takagi, S. Shikata, Flow injection determination of histamine with a histamine dehydrogenase-based electrode, Anal. Chim. Acta 505 (2004) 189-193.
  K. Zeng, H. Tachikawa, Z. Zhu, V. L. Davidson, Amperometric detection of histamine with a methylamine dehydrogenase polypyrrole-based sensor, Anal. Chem. 72 (2000) 2211-2215.
  L. Bao, D. Sun, H. Tachikawa, V. L. Davidson, Improved sensitivity of a histamine sensor using an engineered methylamine dehydrogenase, Anal. Chem. 74 (2002) 1144-1148.
  M.G. Loughran, J.M. Hall, A.P.F. Turner, V.L. Davidson, Amperometric detection of histamine at a quinoprotein dehydrogenase enzyme electrode, Biosens.  Bioelectron. 10 (1995) 569-576.
  K. Yamamoto, K. Takagi, K. Kano, T. Ikeda, Bioelectrocatalytic detection of histamine using quinohemoprotein amine dehydrogenase and the native electron acceptor cytochrome c-550, Electroanalysis 13 (2001) 375-379.
  U. E. Spichiger, A. Fakler, Potentiometric microelectrodes as sensors and detectors. Magnesium-selective electrodes as sensors, and Hofmeister electrodes as detectors for histamine in capillary electrophoresis, Electrochim. Acta 42 (1997) 3137-3145.
  K. M. L. May, Y. Wang, L. G. Bachas, K. W. Anderson, Development of a whole-cell-based biosensor for detecting histamine as a model toxin, Anal. Chem. 76 (2004) 4156-4161.
  T. Katsu, H. Hirodo, Determination of histamine release from masy cells using a histamine-sensitive membrane electrode, Anal. Chem. Acta 396 (1999) 189-193.
  J. Otomo, T. Takeshita, S. Fukuzono, T. Sakamoto, T. Nukada, Expression of the histamine receptor in Xenopus oocyte and its application to the histamine sensor, Sens. Actuators B 66 (2000) 19-21.
  L. C. Clark, H. L. Thompson, Determination of creatine and creatinine in urine, Anal. Chem. 21 (1949) 1218-1221.
  O.Z. Folin, On the determination creatinine and creatine in blood, milk, and tissues, J. Biol. Chem. 17 (1914) 475-486.
  Y. Jiao, T. Okumiya, T. Saibara, E. Tsubosaki, H. Matsumura, K. Park, K. Sugimoto, T. Kageoka, M. Sasaki, An enzymatic assay for erythrocyte creatine as an index of the erythrocyte life time, Clin. Biochem. 31 (1998) 59-69.
  K. Jung, C. Wesslau, F. Priem, G. Schreiber, A. Zubek, Specific creatinine determination in laboratory animals using the new enzymatic test kit “creatinine-PAP”, J. Clin. Chem. Clin. Biochem. 25 (1987) 357-361.
  C. Beyer, A. Hoenderdos, W.M. Mmairuhu, V.E.L. Statius, A. Van Den Ende, Evaluative and comparative study of an enzymatic method using creatine kinase for the determination of urinary creatine, Clin. Chim. Acta 136 (1984) 263-269.
  P. Bonvicini, G. Ceriotti, T. De’besi, Kinetic enzymatic determination of creatinine by a rapid semiautomated procedure, J. Clin. Chem. Clin. Biochem. 20 (1982) 185-191.
  R.D. Perrone, N.E. Madias, A.S. Levey, Serum creatinine as an index of renal function: new insights into old concepts, Clin. Chem. 38 (1992) 1933-1939.
  P. Fossati, M. Ponti, G. Passoni, G. T.arenghi, G.V. Melzi D’eril, L. Prencipe, A step forward in enzymatic measurement of creatinine, Clin. Chem. 40 (1994) 130-136.
  J. Ogawa, W. Nirdnoy, M. Tabata, H. Yamada, S. Shimizu, A new enzymatic method for the measurement of creatinine involving a novel ATP-dependent enzyme, N-methylhydantoin amidohydrolase, Biosci. Biotech. Biochem. 59 (1995) 2292-2299.
  J. Siedel, R. Deeg, H. Seidel, H. Mollering, J. Staepels, H. Gauhl, J. Ziegenhorn, Fully enzymatic colorimetric assay of serum and urine creatinine which obviates the need for sample blank measurements, Anal. Lett. 21 (1988) 1009-1015.
  C.P. Patel, R.C. George, Liquid chromatographic determination of creatinine in serum and urine, Anal. Chem. 53 (1981) 734-740.
  E.W. Holmes, T.H. Oeser, S.E. Kahn, L. Bekeris, E.W.Bermes, Serum creatinine determination by high performance liquid chromatography and five automated chemistry analyzers, Ann. Clin. Lab. Sci. 13 (1983) 503-509.
  G.P. Xue, R.C. Fishlock, A.M. Snoswell, A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay, Anal. Biochem. 171 (1988) 135-141.
  K. Linnet, I. Bruunshuus, HPLC with enzyme detection as a candidate reference method for serum creatinine, Clin. Chem. 37 (1991) 1669-1675.
  R. Kock, S. Seitz, H. Greiling, A method for the simultaneoud determination fo creatinine and uric acid in serum by high-performance-liquid-chromatography evaluated versus reference methods, Eur. J. Clin. Chem. Clin. Biochem. 33 (1995) 23-31.
  Y. Inamoto, S. Inamoto, T. Hanai, M. Tokuda, O. Hatase, K. Yoshii, Liquid chromatography of guanidino compounds using a porous graphite carbon column and application to their analysis in serum, J. Chromatogr. B 707 (1998) 111-118.
  N.A. Guzman, C.M. Berck, L. Hernandez, J.P. Advis, Capillary electrophoresis as a diagnostic tool:determination of biological constituents present in urine of normal and pathological individuals, J. Liq. Chromatogr. 13 (1990) 3833-3844.
  H. Shi, Y. Ma, Y. Ma, A simple and fast method to determine snd quantify urinary creatinine, Anal. Chim. Acta 312 (1995) 79-91.
  T.C. Tran, T.G. Strein, T.A. Huq, H.L. Kantes, J.N. Crane, Determination of creatinine and other uremic toxins in human blood sera with micellar electrokinetic capillary electrophoresis, J. Chromatogr. B 690 (1997) 35-41.
  M.K. Shirao, S. Suzuki, J. Kobayashi, H. Nakazawa, E. Mochizuki, Analysis of creatinine, vanilmandelic acid, homovanillic acid and uric acid in urine by micellar electrokinetic chromatography, J. Chromatogr. B 693 (1997) 463-477.
  M. Miyake, A. Shibukawa, T. Nakagawa, Simultaneous determination of creatinine snd uric acid in human plasma and urin by micellar electrokinetic chromatography, J. High Res. Chromatogr. 14 (1991) 181-189.
  T. Tsuchida, K. Yoda, Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum, Clin. Chem. 29 (1983) 51-58.
  H. Yamato, M. Ohwa, W. Wernet, A polypyrrole/three enzyme electrode for creatinine detection, Anal. Chem. 67 (1995) 2776-2781.
  J. Schneider, B. Grundig, R.Renneberg, K. Cammann, M.B. Madaras, R.P. Buck, K.D. Vorlop, Amperometric biosensing of creatine and creatinine, Anal. Chim. Acta 325 (1996) 161-167.
  G.H. Hsiue, P.L. Lu, J.C. Chen, Multienzyme-immobilized modified polypropylene membrane for an amperometric creatinine biosensor, J. App. Polymer Sci. 92 (2004) 3126-3131.
  M.B. Madaras, I.C. Popescu, S. Ufer, R.P. Buck, Microfabricated amperometric creatine and creatinine biosensors, Anal. Chim. Acta 319 (1996) 335-343.
  E.J. Kim, T. Haruyama, Y. Yanagida, E. Kobatake, M. Aizawa, Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system, Anal. Chim. Acta 394 (1999) 225-231.
  G.F. Khan, W. Wernet, A high sensitivity amperometric creatinine sensor, Anal. Chim. Acta 351 (1997) 151-158.
  R.I. Stefan, R.G. Bokretsion, J.F. Staden, H. Y. Aboul-Enein, Simultaneous determination of creatine and creatinine using amperometric biosensors, Talanta 60 (2003) 1223-1233.
  J.H. Shin, Y.S. Choi, H.J. Lee, S.H. Choi, J. Ha, I.J. Yoon, H. Nam, G.S. Cha, A planar amperometric creatinine biosensor employing an insoluble oxidizing agent for removing redox-active interferences, Anal. Chem. 73 (2001) 5965-5971.
  J.H. Shin, S.H. Choi, J. Ha, S.D. Lee, H. Nam, G.S. Cha, Amperometric biosensors employing an insoluble oxidant as an interference-removing agent, Anal. Chim. Acta 461 (2002) 251-262.
  B. Tombach, J. Schneider, F. Matzkies, R.M. Schaefer, G.C. Chemnitius, Amperometric creatinine biosensor for hemodialysis patients, Clin. Chim. Acta 312 (2001) 129-135.
  D.A. Walsh, E. Dempsey, Comparison of electrochemical, electrophoretic and spectrophotometric methods for creatinine determination in biological fluids, Anal. Chim. Acta 459 (2002) 187-194.
  V.K. Nguyen, C.M. Wolff, J.L. Seris, J.P. Schwing, Immobilized enzyme electrode for creatinine determination in serum, Anal. Chem. 63 (1991) 611-618.
  C.S. Rui, K. Sonomoto, H.I. Ogawa, Y. Kato, A flow-injection biosensor foe amperometric determination of creatinine : simultaneous compensation of ensogenous interferents, Anal. Biochem. 210 (1993) 163-169.
  Y.T. Shih, H.J. Huang, A creatinine deiminase modified polyaniline for creatinine analysis, Anal. Chim. Acta 392 (1999) 143-151.
  A.P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, N. Jaffrezic-Renault, Development of potentiometric creatinine-sensitive biosensor based on ISFET and creatinine deiminase immobilised in PVA/SbQ photopolymeric membrane, Mat. Sci. Eng. C 21 (2002) 75-83.
  A.P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, N. Jaffrezic-Renault, Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane, Talanta 58 (2002) 351-359.
  W.O. Ho, S. Krause, C.J. McNeil, J.A. Pritchard, R.D. Armstrong, D. Athey, K. Rawson, Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation, Anal. Chem. 71 (1999) 1940-1947.
  H. Suzuki, H. Arakawa, I. Karube, Fabrication of a sensing module using micromachined biosensors, Biosen. Bioelec. 16 (2001) 725-731.
  G. G. Jernigan, G .A. Somorjai, Carbon monoxide oxidation over three different oxidation states of copper: metallic copper, copper(I) oxide, and copper(II) oxide-a surface science and kinetic study, J. Catal. 147 (1994) 567-577.
  P. Pénzeli, L. Dózsa, H. Degn, The copper catalysed reduction of nitric oxide by ammonia in aquous solution studied by membrane inlet mass spectrometry, J. Mol. Catal. A 136 (1998) 235-242.
  M. Somasundrum, K. Kirtikara, M. Tanticharoen, Amperometric determination of hydrogen peroxide by direct and catalytic reduction at a copper electrode, Anal. Chim. Acta 319 (1996) 59-70.
  L. Nagy, G. Nagy, P. Hajós, Copper electrode based amperometric detector cell for sugar and organic acid measurements, Sens. Actuators B 76 (2001) 494-499.
  H. Matsubara, T. Kondo, W. Kanno, K. Hodouchi, A. Yamada, Copper oxide based flow-through detector for glucose determination, Anal. Chim. Acta 405 (2000) 87-92.
  J.-M. Zen, Y.-S. Song, H.-H. Chung, C.-T. Hsu, A. S. Kumar, Photoelectrochemical oxygen sensor using copper-plated screen printed carbon electrodes, Anal. Chem. 74 (2002) 6126-6130.
  J.-M. Zen, H.-H. Chung, H.-H. Yang, M.-H. Chiu, J. W. Sue, Photoelectrochemical oxidation of o-phenols on copper-plated screen printed electrodes, Anal. Chem. 74 (2002) 6126-6130.
  N. M. Sammes, B. C. H. Steele, The catalytic oxidation of ammonia in a ceramic electrochemical reactor, using metal oxide electrodes, J. Catal. 145 (1994) 187-193.
  M. Vidotti, L. H. Dall’Antonia, S. I. C. de Torresi, K. Bergamaski, F. C. Nart, “On line” mass spectrometric detection of ammonia oxidation products generated by polypyrrole based amperometric sensors, Anal. Chim. Acta 489 (2003) 207-214.
  J.-M. Zen, H.-H. Chung, A. S. Kumar, Flow injection analysis pf hydrogen peroxide on copper-plated screen-printed carbon electrodes, Analyst 125 (2000) 1633-1637.
  L. Zhang, W. Huang, Z. Wang, J. Cheng, Determination of histamine by capillary zone electrophoresis with Amperometric detection, Anal. Sci. 18 (2002) 1117-1120.
  Q. Z.K. Zhou, X. D. Chen, Immobilization of β -galactosidase on graphite surface by glutaraldehyde, J. Food Eng. 48 (2001) 69-74.
 L. Chen, W. Gorski, Bioinorganic composites for emzyme electrode, Anal. Chem. 73 (2001) 2862-2868.
  A. Walcarius, Electrochemical applications of silica-based organic-inorganic hybrid materials, Chem. Mater. 13 (2001) 3351-3372.
  TOYOBO CO., LTD., Toyobo enzymes, 2002/2003 Catalog, Japan P.79-82.
  R.B. McComb, L.W. Bond, R.W. Burnett, R.C. Keech, G.N. Jr Bowers, Determination of the molar absorptivity of NADH, Clin. Chem. 22 (1976) 141-150.
  K. Caldwell, Sperm diaphorase: genetic polymorphism of a sperm specific enzyme in man, Science 191 (1976) 1185-1187.
  K. A. Law, R. J. Warrington, A. McGurk, S. P.J. Higson, A novel electro-optical sensor format with generic applicability for exploitation with NAD(P) dependent enzymes, Biosen. Bioelec. 18 (2003) 579-585.
  A. K. Williams, J. T. Hupp, Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes, J. Am. Chem. Soc. 120 (1998) 4366-4371.
  O. Podrazky, G. Kuncova, Determination of concentration of living immobilized yeast cells by fluorescence spectroscopy, Sens. Actuators B 107 (2005) 126-134.
  J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski, D. J.S. Birch, Fluorescence based glucose sensors, Biosen. Bioelec. 20 (2005) 2555-2565.
  J. Cordek, X. Wang, W. Tan, Direct immobilization of glutamate dehygrogenase on optical fiber probes for ultrasensitive glutamate detection, Anal. Chem. 71 (1999) 1529-1533.
  S. de Marcos, J. Galbán, R. Albajez, J.R. Castillo, Enzymatic detremination of ethanol based on the intrinsic fluoresdence of alcohol dehydrogenase, Anal. Chim. Acta 343 (1997) 117-123.
  S. R. Piersma, A. J. W. G. Visser, S. de Vries, J. A. Duine, Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UPD-Galactose Epimerase, Biochemistry 37 (1998) 3068-3077.
  F. Jameison, R. I. Sanchez, L. Dong, J. K. Leland, D. Yost, M. T. Martin, Electrochemiluminescence-based quantitation of classical clinical chemistry analytes, Anal. Chem. 68 (1996) 1298-1302.
  A. F. Martin, T. A. Nieman, Chemiluminescence biosensors using tris(2,2’-bipyridyl)ruthenium(II) and dehydrogenases immobilized in cation exchange polymers, Biosen. Bioelec. 12 (1997) 479-489.
  P. E. Michel, S. M. Gautier, L. J. Blum, A high-performance bioluminescent trienzymatic sensor for D-sorbitol based on a novel approach of the sensing layer design, Enzyme Microb. Technol. 21 (1997) 108-116.
  O. A. Raitman, V. I. Chegel, A. B. Kharitonov, M. Zayats, E. Katz, I. Willner, Analysis of NAD(P)+ and NAD(P)H cofactors by means of imprinted polymers associated with Au surfaces: a surface plasmon resonance study, Anal. Chim. Acta 504 (2004) 101-111.
  E. J. Eisenberg, K. C. Cundy, Amperometric high-performance liquid chromatographic detection of NADH at a base-activated glassy carbon electrode, Anal. Chem. 63 (1991) 845-847.
  J. Wang, M. P. Chatrathi, B. Tian, Microsepraration chips for performing multienzymatic dehydrogenase/oxidase assays: simultaneous electrochemical measurement of ethanol and glucose, Anal. Chem. 73 (2001) 1296-1300.
  C. Calas-Blanchard, T. Noguer, M. Comtat, S. Mauran, J.-L. Marty, Potentialities of expanded natural graphite as a new transducer for NAD+-dependent dehydrogenase amperometric biosensors, Anal. Chim. Acta 484 (2003) 25-31.
  H.-Z. Bu, S. R. Mikkelsen, A. M. English, NAD(P)H sensor based on enzyme entrapment in ferrocene-containing polyacrylamide-based redox gels, Anal.Chem. 70 (1998) 4320-4325.
  S. Serban, N. E. Murr, Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes new approach for dehydrogenase based biosensors, Biosens. Bioelectron. 20 (2004) 161-166.
  A . D. Ryabov, V. S. Kurova, V. N. Goral, M. D. Reshetova, J. Razumiene, R. Simkus, V. Laurinavičius, p-Ferrocenylanline and p-ferrocenylphenol: promising materials for analytical biochemistry and bioelectrochemistry, Chem. Mater. 11 (1999) 600-604.
  P.N. Bartlett, E. Simon, C.S. Toh, Modified electrodes for NADH oxidation and dehydrogenase-based biosensors, Bioelectrochemistry 56 (2002) 117-122.
  P.N. Bartlett, E.N.K. Wallace, The oxidation of NADH at polyaniline-coated electrodes. Part II. Kinetics of reaction at polyanline-polystyrenesulfonate composites, J. Electroanal. Chem. 486 (2000) 23-31.
  A. Bardea, E. Katz, A. F. Bückmanu, I. Willner, NAD+ dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes, J. Am. Chem. Soc. 119 (1997) 9114-9119.
  G. D. Storrier, K. Takada, H. D. Abruña, Catechol-Pendant Terpyridine Complexes: electrodeposition studies and electrocatalysis of NADH oxidation, Inorg. Chem. 38 (1999) 559-565.
  Q. Wu, M. Maskus, F. Pariente, F. Tobalina, V. M. Fernández, E. Lorenzo, H. D. Abruña, Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with transition metal complexes containing 1,10-phenanthroline-5,6-dione ligands, Anal. Chem. 68 (1996) 3688-3696.
  C. R. Raj, K. V. Gobi, T. Ohsaka, Electrocatalytic oxidation of NADH at the self-assembled monolayer of nickel(II) macrocycle on gold electrode, Bioelectrochemistry 51 (2000) 181-186.
  R. Lyer, V. Pavlov, I. Katakis, L. G. Bachas, Amperometric sensing at hgh temperature with a “wired” thermostable glucose-6-phosphate dehydrogenase from aquifex aeolicus, Anal. Chem. 75 (2003) 3898-3901.
  C.-X. Cai, K.-H. Xue, Y.-M. Zhou, H. Yang, Amperometric biosensor for ethanol based on immobilization of alcohol dehydrogenase on a nickel hexacyanoferrate modified microband gold electrode, Talanta 44 (1997) 339-347.
  C.-X. Cai, H.-X. Ju, H.-Y. Chen, Cobalt hexacyanoferrate modified microband gold electrode and its electrocatalytic activity for oxidation of NADH, J. Electroanal. Chem. 397 (1995) 185-190.
  P. C. Pandey, Tetracyanoquinodimethane-mediated flow injection analysis electrochemical sensor for NADH coupled with dehydrogenase enzymes, Anal. Biochem. 221 (1994) 392-396.
  P. C. Pandey, S. Upadhyay, B. C. Upadhyay, H. Pathak, Ethanol biosensors and electrochemical oxidation of NADH, Anal. Biochem. 260 (1998) 195-203.
  F. Pariente, F. Tobalina, G. Moreno, L. Hernández, E. Lorenzo, H. D. Abruña, Mechanistic studies of the electrocatalytic oxidation of NADH and ascorbate at glassy carbon electrodes modified with electrodeposited films derived from 3,4-dihydroxybenzaldehyde, Anal. Chem. 69 (1997) 4065-4075.
  F. Pariente, F. Tobalina, M. Darder, E. Lorenzo, H. D. Abruña, Electrodeposition of redox-active films of dihydroxybenzaldehydes and related analogs and their electrocatalytic activity toward NADH oxidation, Anal. Chem. 68 (1996) 3135-3142.
  N. de-los-Santos-Álvarez, P. de-los- Santos-Álvarez, M. J. Lobo-Castañón, A. J. Miranda-Ordieres, P. Tuñón-Blanco, Flavin adenine dinucleotide as precursor for NADH electrocatalyst, Anal. Chem. 77 (2005)4286-4289..
  C.-X. Cai, L.-H. Yin, K.-H. Xue, Electrocatalysis of NADH oxidation at a glassy carbon electrode modified with pyrocatechol sulfonephthalein, J. Mol. Catal. A 152 (2000) 179-186.
  P. Jaraba, L. Agüí, P. Yáñez-Sedeño, J. M. Pingarrón, NADH amperometric sensor based on poly(3-methylthiophene)-coated cylindrical carbon fiber microelectrodes: application to the enzymatic determination of L-lactate, Electrochim. Acta 43 (1998) 3555-3565.
  C. R. Raj, T. Ohsaka, Facilitated electrochemical oxidation of NADH and its model compound at gold electrode modified with terminally substituted electroinactive self-assembled monolayers, Bioelectrochemistry 53 (2001) 251-256.
  C. R. Raj, T. Ohsaka, Electrocatalytic sensing of NADH at an in situ functionalized self-assembled monolayer on gold electrode, Electrochem. Comm. 3 (2001) 633-638.
  B. Mecheri, L. Piras, G. Caminati, Langmuir-Blodgett films incorporating redox mediators for molecular recognition of NADH, Bioelectrochemistry 63 (2004) 13-18.
  C.-X. Cai, K.-H. Xue, Electrocatalysis of NADH oxidation with electropolymerized films of azure I, J. Electroanal. Chem. 427 (1999) 147-153.
  D.-M. Zhou, H.-Q. Fang, H.-Y. Chen, H.-X. Ju, Y. Wang, The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH, Anal. Chim. Acta 329 (1996) 41-48.
  C.-X. Cai, K.-H. Xue, Electrocatalysis of NADH oxidation with electropolymerized films of nile blue A, Anal. Chim. Acta 343 (1997) 69-77.
  C.-X. Cai, K.-H. Xue, Electrochemical characterization of electropolymerized film of naphthol green B and its electrocatalytic activity toward NADH oxidation, Microchem. J. 58 (1998) 197-208.
  N.Mano, A. Kuhn, Cation induced amplification of the electrocatalytic oxidation of NADH by immobilized nitro-fluorenone derivatives, J. Electroanal. Chem. 498 (2001) 58-66.
  N. Mano, A. Kuhn, Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation, J. Electroanal. Chem. 477 (1999) 79-88.
  F.D. Munteanu, N. Mano, A. Kuhn, L. Gorton, Mediator-modified electrodes for catalytic NADH oxidation: high rate constants at interesting overpotentials, Bioelectrochemistry 56 (2002) 67-72.
  A.Salimi, R. Hallaj, M. Ghadermazi, Modification of carbon ceramic electrode prepared with sol-gel technique by a thin film of chlorogenic acid: application to amperometric detection of NADH, Talanta 65 (2005) 888-894.
  M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Comm. 4 (2002) 743-746.
  J. Wang, M. Musameh, Carbon nanotube/Teflon composite electrochemical sensors and biosensors, Anal. Chem. 75 (2003) 2075-2079.
  M. Zhang, A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes, Anal. Chem. 76 (2004) 5045-5050.
  M. Zhang, W. Gorski, Electrochemical sensing platform based on the carbon nanotube/redox mediators-biopolymer system, J. Am. Chem. Soc. 127 (2005) 2058-2059.
  L. I. Boguslavsky, L. Geng, I. P. Kovalev, S. K. Sahni, Z. Xu, T. A. Skorheim, Amperometric thin film biosensors based on glucose dehydrogenase and Toluidine blue O as catalyst for NADH electrooxidation, Biosen. Bioelec. 10 (1995) 693-704.
  M. Zhang, W. Gorski, Electrochemical sensing based on redox mediation at carbon nanotubes, Anal. Chem. 77 (2005) 3960-3965.
  J. Wang, R. P. Deo, P. Poulin, M. Mangey, Carbon nanotube fiber microelectrodes, J. Am. Chem. Soc. 125 (2003) 14706-14707.
  F. Valentini, A. Salis, A. Curulli, G. Palleschi, Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotuble modified glassy carbon electrodes, Anal.Chem. 76 (2004) 3244-3248.
  A. S. Santos, R. S. Freire, L. T. Kubota, Highly stable amperometric biosensor for ethanol based on Meldola’s blue adsorbed on silica gel modified with niobium oxide, J. Electroanal. Chem. 547 (2003) 135-142.
  S. P. Pogorelova, M. Zayats, T. Bourenko, A. B. Kharitonov, O. Lioubashevski, E. Katz, I. Willner, Analysis of NAD(P)+/NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-Quartz Crystals, Anal. Chem. 75 (2003) 509-517.
  S. P. Pogorelova, M. Zayats, A. B. Kharitonov, E. Katz, I. Willner, Analysis of NAD(P)+-cofactors by redox-functionalized ISFET devices, Sens. Actuators B 89 (2003) 40-47.
  W. Zhang, H. Chang, G. A. Rechnitz, Dual-enzyme fiber optic biosensor for pyruvate, Anal. Chim. Acta 350 (1997) 59-65.
  D. C. Williams, W. R. Seitz, Automated chemiluminescence method for determining the reduced form of nicotinamide adenine dinucleotide coupled to the measurement of lactate dehydrogenase activity, Anal. Chem. 48 (1976) 1478-1481.
  M.J. Lobo-Castañón, A.J. Miranda-Ordieres, P. Tuñón-Blanco, A bienzym-poly- (o-phenylenediamine)-modified carbon paste electrode for the amperometric detection of L-lactate, Anal. Chim. Acta 346 (1997) 165-174.
  S. D. Sprules, J. P. Hart, S. A. Wring, R. Pittson, A reagentless, disposable biosensor for lactic acid based on a screen-printed carbon electrode containing Meldola’s blue and coated with lactate dehydrogenase, NAD+ and cellulose acetate, Anal. Chim. Acta 304 (1995) 17-24.
  K. Warriner, S. Higson, P. Vadgama, A lactate dehydrogenase amperometric pyruvate electrode exploiting direct detection of NAD+ at a poly(3-methylthiophene): poly (phenol red) modified platinum surface, Mater. Sci. Engine. C 5 (1997) 91-99.
  N. de los Santos-Álvarez, M. J. Lobo-Castañón, A. J. Miranda-Ordieres, P. Tuñón-Blanco, Amperometric determination of serum lactate dehydrogenase activity using an ADP-modified graphite electrode, Anal. Chim. Acta 457 (2002) 275-284.
  M.-Y. Hong, J.-Y. Chang, H. C. Yoon, H.-S. Kim, Development of a screen-printed amperometric biosensor for the determination of L-lactate dehydrogenase level, Biosens. Bioelectron. 17 (2002) 13-18.
  H.X. Ju, L. Dong, H. Y. Chen, Amperometric determination of lactate dehydrogenase based on a carbon fiber microcylinder electrode modified covalently with Toluidine blue O by acylation, Talanta 43 (1996) 1177-1183.
  M. D. Smith, C. L. Olson, Differential amperometric measurement of serum lactate dehydrogenase activity using Bindschedler’s Green, Anal. Chem. 46 (1974) 1544-1547.
  S. S. Collins, J. T. Keeton, S. B. Smith, Lactate dehydrogenase enzyme activity in raw, cured, and heated porcine muscle, J. Agric. Food Chem. 39 (1991) 1294-1297.
  H. W. Edwards, R. M. Harrison, Catalysis of nitric oxide decomposition by manganese oxide (Mn3O4), Environ. Sci. Technol. 13 (1979) 673-676.
  C. J. Lind, Hausmannite (Mn3O4) conversion to manganite (.gamma.-MnOOH) in dilute oxalate solution, Environ. Sci. Technol. 22 (1988) 62-70.
  C.K. Xu, X.L. Zhao, G.H. Wang, Growth and characterization of tetragonal Mn3O4 nanowire, J. Nanosci. Nanotechnol. 3 (2003) 406-409.
  V. Berbenni, A. Marini, Solid state synthesis of lithiated manganese oxides from mechanically activated Li2CO3-Mn3O4 mixtures, J. Anal. Appl. Pyrolysis 70 (2003) 437-456.
  C.-X. Cai, K.-H. Xue, The effects of concentration and solution pH on the kinetic parameters for the electrocatalytic oxidation of NADH at glassy carbon electrode modified with electropolymerized film of toluidine blue o, Microchem. J. 64 (2000) 131-139.
  T. Hoshi, H. Saiki, S. Kuwazawa, C. Tsuchiya, Q. Chen, J. Anzai, Selective permeation of hydrogen peroxide through polyelectrolyte multilayer films and its use for amperometric biosensors, Anal. Chem. 73 (2001) 5310-5315.
  X. Wei, J. Cruz, W. Gorski, Integration of enzymes and electrodes: spectroscopic and electrochemical studies of chitosan-enzyme films, Anal. Chem. 74 (2002) 5039-5046.
  Y. Miao, S.N. Tan, Amperometric hydrogen peroxide biosensor with silica sol-gel / chitosan film as immobilization matrix, Anal. Chim. Acta 437 (2001) 87-93.
  TOYOBO CO., LTD., Toyobo enzymes, 2002/2003 Catalog, Japan P.191-194.
論文全文使用權限
校內
校內紙本論文延後至2015-07-01公開
同意電子論文全文授權校園內公開
校內電子論文延後至2015-07-01公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2015-07-01公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信