§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0908200512354400
DOI 10.6846/TKU.2005.00124
論文名稱(中文) 拍撲式微飛行器之製作及其現地升力之量測研究
論文名稱(英文) The Fabrication of the Flapping Micro Aerial Vehicle and Its On-site Measurement of Unsteady Lift
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 何仁揚
研究生(英文) Jen-Yang Ho
學號 692340093
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-07-01
論文頁數 84頁
口試委員 指導教授 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 王安邦
委員 - 李宗昇
委員 - 陳慶祥
委員 - 康尚文
委員 - 楊龍杰
關鍵字(中) 拍撲式
微飛行器
微機電技術
聚乙烯氟化物
關鍵字(英) flapping
MAV
MEMS
PVDF
第三語言關鍵字
學科別分類
中文摘要
本研究利用微機電系統技術製作拍撲式飛行器之鈦合金機翼骨架與聚對二甲苯(parylene)機翼薄膜,並結合非微機電製程製作之拍撲式傳動機構、機身骨架與尾翼,成為一全機重22gw以下,全機尺寸約15cm之拍撲式飛行器。本微飛行器放置於風洞內進行升力量測,就不同風速、拍撲頻率、攻角及機翼形狀等進行討論。
  本研究另使用聚乙烯氟化物(PVDF)壓電薄膜材料,製作新型拍撲式機翼結構,本研究並將新型機翼之壓電輸出訊號與風洞測力計升力訊號,進行比對探討,可於風洞測試中進行現地升力量測(on-site lift measurement)。
  本研究最後為微飛行器安裝鋰電池進行無遙控之自由飛行測試,飛行距離已達10~15m,成功驗證本拍撲式微飛行器飛行之可行性。
英文摘要
The research of micro aerial vehicles (MAVs) is a new field, which attracts much attention in the advanced aeronautical area. The flapping wing, proved by many natural flyers, is the most appropriate way of flying objects with size less than 6 inches. However, there is still plenty of room for studying on the unsteady aerodynamic characteristics of flapping wings. The flapping wing, which is light weighted and high strengthened, is composed of a titanium-alloy frame and a parylene skin in this study. Such an integration of fabrication needs the help of MEMS processing. 
In the wind-tunnel experimental, the signals from a load cell in the wind-tunnel and the PVDF sensors embedded in parylene wings are acquired simultaneously. Both of the lift signals from the PVDF and the load-cell are basically identical with the same flapping frequency and with the similar qualitative behaviors. 
Finally we integrate Li-battery into our MAV system and perform test fly of the MAV prototype. The longest distance which our MAV system can reach is 10~15m so far.
第三語言摘要
論文目次
目    錄
中文摘要...................................................................................Ⅰ
英文摘要...................................................................................Ⅱ
目錄...........................................................................................Ⅳ
圖目錄....................................................................................VⅢ
表目錄....................................................................................XⅢ

第一章  緒論
1-1	研究動機............................................1
1-2	參考文獻...........................................................2
1-3	研究目的與架構...........................................4

第二章	拍撲式飛行與相關氣動力量測簡介
2-1  拍撲飛行概述...................................................................6
2-2  撲翼機設計原理.............................................................8
2-3  微飛行器所處之雷諾數範圍.................................................12
2-4  非穩態空氣動力場.........................................................13
2-5  Strouhal number.............................................................13
2-6  拍撲機氣動力量測...........................................................16

第三章	微飛行器製作
3-1  微飛行器製作架構.................................................................20
3-2  拍撲式傳動機構製作.............................................................21
3-2-1機構設計.........................................................................21
3-2-2加工製作.........................................................................23
3-3  機翼製作.................................................................................26
3-3-1鈦合金機翼製作.............................................................26
3-3-2 parylene翼膜製作..........................................................28
3-3-3 PVDF機膜製作..............................................................31
3-4  機身主要結構.........................................................................34
3-4-1 機頭...............................................................................34
3-4-2 傳動機構安裝...............................................................34
3-4-3 機身骨架.......................................................................35
3-4-4 尾翼與尾翼固定架.......................................................35
3-5  控制晶片和動力源.................................................................37
3-5-1 電池...............................................................................37
3-5-2 無線控制模組...............................................................38
3-5-3 減重(無線接收器與速度控制器).................................39
3-6  組裝完成的拍撲式微飛行器.................................................40

第四章	風洞實驗
4-1  風洞實驗測試架構說明.........................................................41
4-2  風洞測試夾具製作.................................................................43
4-2-1 低速風洞.......................................................................43
4-2-2 固定攻角夾具...............................................................44
4-2-3 可變攻角夾具...............................................................45
4-3  升力量測.................................................................................46
4-3-1 測力計...........................................................................46
4-3-2 數據擷取器...................................................................47
4-3-3 固定攻角升力量測.......................................................48
4-3-4 可變攻角升力量測.......................................................55
4-4  PVDF訊號量測.....................................................................70
4-4-1 PVDF 聚乙烯氟化物....................................................70
4-4-2 PVDF 壓電薄膜之現地量測........................................71
4-4-3 PVDF 實驗結果............................................................72

第五章	結果與討論
    結果與討論..............................................................................73
 

第六章	建議事項
 建議事項.................................................................................77

參考文獻..................................................................................................79

附錄  
本拍撲式微飛行器之研發費用分析與提供相關零組件或代工服務廠商名錄......................................................................................................83
 
圖目錄

圖 1-1   自然界飛行生物翼展與重量之關係...................2
圖 2-1   柏努力效應造成之升力.............................6
圖 2-2   鳥類飛行示意圖...................................7
圖 2-3   鳥類滑翔時產生的升力方式.........................7
圖 2-4   鳥類飛行利用摺疊翅膀以減少負升力的產生...........8
圖 2-5   Pénaud 製作之撲翼機..............................9
圖 2-6   平板產生之升力...................................9
圖 2-7   Pénaud之撲翼機力學分析..........................10
圖 2-8   精子利用波動運動(plane wave)得到前進的動力........10
圖 2-9   拍撲式升力和推力之產生示意圖....................11
圖 2-10  Caltech以微機電技術製作3-D機翼.................11
圖 2-11  重量對於雷諾數之變化關係........................12
圖 3-1   本研究微飛行器製作之架構........................20
圖 3-2   以Ornithopter zone設計軟體分析傳動連桿尺..........21
圖 3-3   以Ornithopter zone設計軟體分析機翼拍動對稱性......22
圖 3-4   拍撲機構運作時機翼擺動示意圖....................23
圖 3-5   拍撲式傳動機構立體示意圖........................24
圖 3-6   傳動機構連桿立體示意圖..........................25圖 3-7   拍撲式傳動機構之實體............................25
圖 3-8   拍撲式傳動機構側視圖............................25
圖 3-9   機翼骨架示意圖(機翼A)...........................27
圖 3-10  機翼骨架示意圖(機翼B)...........................27
圖 3-11  機翼骨架示意圖(機翼C)...........................28
圖 3-12  鈦合金骨架完成圖...............................29
圖 3-13  parylene機翼(A)完成圖............................29
圖 3-14  parylene機翼之微機電製作流程.....................30
圖 3-15  鈦合金骨架(機翼B、機翼C)  .......................31
圖 3-16  含PVDF壓電薄膜之機翼...........................32
圖 3-17  含PVDF與parylene機翼之微機電製作流程圖.........33
圖 3-18  保麗龍材料之機頭實體............................34
圖 3-19  傳動機構基座之機身骨架插孔......................34
圖 3-20  機身結構完成之實體..............................35
圖 3-21  水平尾翼........................................35
圖3-22  尾翼固定架.......................................36
圖 3-23  組裝後之尾翼固定架..............................36
圖 3-24  高分子鋰電池....................................37
圖3-25  四頻道無線遙控器.................................38
圖3-26  原購得之商用速度控制器與無線接收器...............39
圖3-27  減重與改裝後之速度控制器與無線接收器.............39
圖 3-28  組裝完成之拍撲翼微飛行器........................40
圖 4-1   整體工作架構圖..................................42
圖 4-2   低速風洞設備....................................43
圖 4-3   測試時機翼之運作示意圖..........................44
圖 4-4   彎曲骨架所形成之攻角............................44
圖 4-5   風洞測試夾具機構(固定攻角)......................44
圖 4-6   可任意改變攻角之升力測試夾具....................45
圖 4-7   可快速替換飛行器的測試夾具實景..................45
圖 4-8   測力計..........................................46
圖 4-9   風洞夾具基座....................................47
圖 4-10  數據擷取器......................................47
圖 4-11  固定攻角夾具之風洞實驗流程說明..................49
圖 4-12  未拍動下升力產生的情形..........................50
圖 4-13  機翼A未拍動時所造成之升力值.....................51
圖 4-14  機翼A在風速3.5m/s、頻率10Hz之升力振盪曲線........52
圖 4-15  風速4.8m/s、頻率10Hz之升力曲線圖.................53
圖 4-16  風速6.6m/s、頻率10Hz之升力曲線圖.................54
圖 4-17  利用珍珠板製作之尾翼............................55
圖 4-18  實際飛行時受尾翼攻角而決定飛行姿態..............55
圖 4-19  可變攻角夾具之風洞實驗流程說明..................56
圖 4-20  機翼A實體.......................................57
圖 4-21  攻角0度,風速0m/s................................58
圖 4-22  攻角5度,風速4m/s................................58
圖 4-23  攻角10度,風速4m/s...............................59
圖 4-24  攻角5度,風速8.4m/s...............................59
圖 4-25  攻角10度,風速8.4m/s..............................60
圖 4-26  機翼A升力平移與負升力之延遲.....................61
圖 4-27  機翼B實體.......................................62
圖 4-28  攻角0度,風速0m/s................................62
圖 4-29  攻角5度,風速4m/s................................63
圖 4-30  攻角10度,風速4m/s...............................63
圖 4-31  攻角5度,風速8.4m/s...............................64
圖 4-32  攻角10度,風速8.4m/s..............................64
圖 4-33  機翼B之升力產生情形.............................66
圖 4-34  機翼C實體.......................................66
圖 4-35  攻角0度,風速0m/s................................67
圖 4-36  攻角5度,風速4m/s................................67
圖 4-37  攻角10度,風速4m/s...............................68
圖 4-38  攻角5度,風速8.4m/s...............................68
圖 4-39  攻角10度,風速8.4m/s..............................69
圖 4-40  PVDF壓電薄膜材料...............................70
圖 4-41  機翼A外形之PVDF與測力計訊號擷取圖.............71
圖 5-1   試飛-1..........................................76
圖 5-2   試飛-2..........................................76
圖 5-3   試飛-3..........................................76
 
表目錄

表3-1  鈦合金材料規格諸元................................26
表3-2  三種機翼尺寸說明..................................26
表3-3  鋰電池之性能......................................37
表3-4  各組件重量表......................................40
表4-1  各風速下、未拍動時因機翼A起始外形所造成之升力.....51
表4-2  機翼A、B、C之初始升力.............................70
參考文獻
[1]	S. Ashley, Palm-size spy plane, The American Society of Mechanical Engineers, p. 74, 1998.
[2]	W. Shyy, M. Berg and D. Ljungqvist, “Flapping and flexible wings for biological and micro air vehicles,” Progress in Aerospace Sciences, Vol. 35, pp. 455-506, 1999.
[3]	Norberg UM. Vertebrate flight: mechanics, physiology, morphology, ecology and evolution, New York: Springer, 1990.
[4]	T. N. Pornsin-sirirak, et al., “Titanium-alloy MEMS wing technology for a micro aerial vehicle application,” Sensors and Actuators A: physical, 89, pp. 95-103, 2001.
[5]	T. N. Pornsin-sirirak, et al., “Flexible parylene-valved skin for adaptive flow control,” Proceeding of the 15th IEEE MEMS conference, Las Vegas, USA, pp. 101-104, 2004.
[6]	SRI  (Stanford Research institute) 參考網站: http://www.artificialmuscle.com/
[7]	Vanderbit University參考網站: http://fourier.vuse.vanderbilt.edu/cim/projects/crawler.htm
[8]	M. Sitti, “PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2001.
[9]	Georgia Tech Research Institute 參考網站: http://www.gtri.gatech.edu/atas/teams/proj_entomopter.html
[10]	張嘉原、路非遙、楊明浩、蕭飛賓,“振動翼型飛行載具之空氣動力特性測試與分析研究” ,第二十五屆全國力學會議,pp.350,2001。
[11]	蘇漢威「微飛行器結構設計製作」,國立清華大學工程與系統科學系碩士論文,2001。
[12]	梁佩芳、范光錢、陳龍德,“微飛機之自動飛控系統”,航空電子科技與應用研究會,2003。
[13]	C. Van Den Berg and C. P. Ellington, “The vortex wake of a hovering model hawkmoth,” Phil. Trans. R. Soc. Lond. B, Vol. 352, pp. 317-328, 1997.
[14]	Y. Sun, S. N. Fry, D. P. Potasek, D. J. Bell and B. J. Nelson, “Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration,” Journal of Microelectromechanical systems, Vol. 14, No. 1, pp. 4-11, 2005.
[15]	M. Sun and J. Tang, “Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion,” The Journal of Experimental Biology, Vol. 205, pp. 55–70, 2002.
[16]	J. H. Wu and M. Sun, “Unsteady aerodynamic forces of a flapping wing,” The Journal of Experimental Biology, Vol. 207, pp. 1137-1150, 2004.
[17]	L. Zeng, Q. Hao and K. Kawachi, “A scanning projected line method for measuring a beating bumblebee wing,” Optics Communications, Vol. 183, pp. 37–43, 2000.
[18]	M. H. Dickinson, F.-O. Lehmann and S. P. Sane, “Wing rotation and the aerodynamic basis of insect flight,” science, Vol. 284, pp. 1954-1960, 1999.
[19]	Z. J. Wang, “Vortex shedding and frequency selection in flapping flight,” Journal of Fluid Mechanics, Vol. 410, pp. 323-341, 2000.
[20]	T. N. Pornsin-sirirak, “Parylene MEMS Technology for Adaptive Flow Control of Flapping Flight,” Degree of Doctor of Philosophy, Caltech, 2002.
[21]	鳥類飛行方式參考網站:
    http://www.ornithopter.org/flapflight/home.html
[22]	J. D. DeLaurier, “An ornithopter wing design,” Canadian Aeronautics and Space Journal, Vol. 40, No. 1, pp. 10-18, 1994.
[23]	J. M. Birch and M. H. Dickinson, “The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight,” The Journal of Experimental Biology, Vol. 206, pp. 2257-2272, 2003.
[24]	Z. J. Wang, J. M. Birch and M. H. Dickinson, “Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments,” The Journal of Experimental Biology, Vol. 207, pp. 449-460, 2004.
[25]	S. P. Sane, “The aerodynamics of insect flight,” The Journal of Experimental Biology, Vol. 206, pp. 4191-4208, 2003.
[26]	H. J. Lugt, Vortex flow in nature and technology, p. 52, John Wiley and Sons. Inc., 1983.
[27]	Sir J. Lighthill, Mathematical biofluiddynamics, p. 29. Society for Industrial and Applied Mathematics, 1975
[28]	J. M. McMichael, “Micro air vehicles - toward a new dimension in flight,” http://www.fas.org/irp/program/collect/docs/mav_auvsi.htm
 

[29]	M. Sfakiotakis, D. M. Lane and J. B. C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE Journal of Oceanic Engineering, Vol. 24, No. 2, pp. 237-252, 1999.
[30]	C. Y. Lee, L. J. Yang and P. H. Chen, “ The zeroth order solution of the velocity field around micro comb structures with lateral oscillation,” Journal of the Chineses Institute of Engineers, Vol. 25, No. 1, pp. 57-65 , 2002.
[31]	I. G. Currie, Fundamental mechanics of fluids, p. 115, McGraw-Hill, Inc., 1974.
[32]	F. Jiang, G. B. Lee, Y. C. Tai and C. M. Ho, “A flexible micromachine-based shear-stress sensor array and its application to separation-point detection,” Sensors and Actuators A: Physical, Vol. 79, pp. 194-203, 2000.
[33]	G. B. Lee, C. Shih, Y. C. Tai, T. Tsao and C. M. Ho, “Robust vortex control of a delta wing using distributed MEMS actuators,” AIAA Journal of Aircraft, Vol. 37, No. 4, pp. 697-706, 2000.
[34]	G. B. Lee, A. M. Huang, F. Jiang, C. Grosjean, C. M. Ho and Y. C. Tai, “Sensing and Control of Aerodynamic Separation by MEMS,” The Chinese Journal of Mechanics, Series A, Vol. 16, No. 1, pp. 45-52, 2000.
[35]	楊龍杰,「認識微機電」,滄海書局(2001年10月出版),第四章,pp.171-177。
[36]	G. Rizzoni, Principles and application of electrical engineering, p. 420, 4thed. Irwin, 2003.
[37]	T. N. Pornsin-Sirirak, S.W. Lee, H. Nassef, J. Grasmeyer, Y.C.Tai, C. M. Ho and M. Keennon, “MEMS wing technology for a battery-powered ornithopter,” Proceedings of the 13th IEEE Annual International Conference on MEMS, pp. 709-804, 2000.
[38]	加州理工學院微加工研究群:http://mems.caltech.edu
[39]	S. K. Agrawal, R. Madangopal and Z. A. Khan, “Energetics based design of small flapping wing air vehicles,” International Conference on Roboticts and Automation, pp. 2367-2372, 2004. 
[40]	機構分析軟體參考網址:http://www.ornithopter.org
[41]	有關聚對二甲苯的說明參考網址: http://parylene.com
[42]	陳錫銘,「利用壓電薄膜做為建築物在邊界層流所受風力量測可行性研究」,淡江大學水資源及環境工程研究所碩士論文,1994。
[43]	高分子鋰電池興能高科技公司:http://www.synergy-scientech.com.tw
 

[44]	路非遙,「振動翼微型飛行載具之空氣動力特性測試與分析」,國立成功大學航空太空工程學系碩士論文,2001。
[45]	D. L. Raney et al., “Mechanization and control concepts for biologically inspired micro aerial vehicles,” Society of Automotive Engineers, pp. 1-11, 2003.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信