淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0908200512114200
中文論文名稱 均熱片之製造與分析
英文論文名稱 Fabrication and Analysis on Heat Spreaders
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 蔡聲鴻
研究生英文姓名 Sheng-Hong Tsai
學號 889340039
學位類別 博士
語文別 中文
口試日期 2005-07-20
論文頁數 150頁
口試委員 指導教授-康尚文
委員-張培仁
委員-康淵
委員-楊龍杰
委員-杜文謙
中文關鍵字 微幅射流道均熱片  金屬微均熱片  擴散接合  共晶接合  濕式體蝕刻 
英文關鍵字 micro radial channel heat spreaders  metallic micro heat spreaders  micro heat pipe  diffusion bonding  bulk micromachining  eutectic bonding  electronics cooling 
學科別分類
中文摘要 本文以不同的製造技術研製三種不同材質與結構的均熱片,在材料方面,分別使用矽晶片、紅銅與無氧銅作為腔體設計;成型方面,使用濕式體蝕刻、化學蝕刻與線切割加工技術,再分別以共晶結合、擴散接合與錫焊等技術結合成一體,並測試與分析其效能,均熱片可應用於產生高溫的電子元件,例如在筆記型電腦微處理器(CPU)與印製電路板(PCBs)的冷卻等。
文中首先以光微影、濕式體蝕刻與共晶接合等製程技術並配合汽-液流道分離式熱管之概念,製作一50 x 50 mm2的矽質輻射狀微流道均熱片於4吋(100)矽晶片上。性能測試上,改變充填量與輸入功率等因素,量測晶片表面溫度變化。結果顯示,70%充填量之微流道均熱片於27.4W輸入功率下較其他試片具有較好之均熱能力。蒸發段溫度為 67℃,比實體的矽結構試片低27.1%,蒸發段與冷凝段之溫差為47℃,此值比實體的矽結構低32.9%。蒸發段底部與頂部之溫度差僅約12.5℃,比實體的矽結構試片低78%。
其次利用化學蝕刻、擴散接合技術,在金屬銅材上製作出一長×寬×高為31mm × 31mm × 2.7mm且具備液汽分離設計之三層結構的金屬微均熱片。同時以CPU冷卻器熱阻量測裝置,探討溝槽式、銅網式兩種毛細構造的微均熱片在不同甲醇充填率下,對熱點表面溫度和系統熱阻的影響程度。結果顯示,82%甲醇充填率的溝槽式微結構均熱片性能優於其他充填率之均熱片。與未加上均熱片的冷卻系統作比較時,在加熱功率35W下,加熱面溫度降低17℃,系統熱阻可降低30%。
最後利用銅空心管為主要腔體製作一新型均熱片,以銅網為毛細結構,中央由線切割加工之交叉結構支撐,尺寸為73mm×48.5mm×2.7mm。加熱源為30mm×30mm陶瓷加熱片,輸入功率由10W遞增至130W,冷卻的裝置為風扇與散熱鰭片,結果顯示,交叉結構均熱片的性能優於相同尺寸之紅銅片,當加熱功率為130W時,均熱片的熱源溫度為68.8℃,系統熱阻值為0.363℃/W,與紅銅片比較,熱源溫度降低4.3℃,系統熱阻降低5.7%;加熱功率為60W時,均熱片系統熱阻為0.311℃/ W,與紅銅片比較,熱源溫度降低3.9℃,系統熱阻降低22%。此外利用紅外線熱影儀攝錄其表面溫度證實均熱片之均溫性,最後利用數值模擬分析比對實驗數據計算均熱片之等效熱傳導係數k 值為850W/ m∙k。
英文摘要 In this study, three heat spreaders made of different materials and having different configurations were studied by various manufacturing technologies. Silicon, copper and oxygen free copper were used for chamber materials design. Wet bulk micromachining, chemical machining and wire cut manufacturing technology were used for chamber fabrication, and then the integration was carried out by technologies like eutectic bonding, vacuum diffusion bonded and tin welding. Besides, their effectiveness was tested and analyzed. Heat spreaders are applicable to electronic devices, which generate heats, like a notebook microprocessor and a cooler for PCBs.
A 50 x 50 mm2 heat spreader of silicon radial micro channel on a 4 inches (100) silicon chip was prepared and illustrated in this article by the concept of manufacturing technologies of photolithography, wet bulk micromachining and eutectic bonding associated with a vapor-liquid channel separate heat pipe. For its function test, the proportion of fill and input power were varied to see the temperature changes of chip surface. The results showed that the micro channel heat spreader with 70% fill had better heat spreading ability than abilities of other test spreaders at the input power of 27.4 W. The temperature of evaporating region was 67℃, which was 27.1% lower than that of a materialized silicon test spreader; the temperature difference between evaporating and condensing regions was 47℃, which was 32.9% lower than that of a materialized silicon one. The temperature difference between the bottom and the top of evaporating region was only 12.5℃, which was 78% lower than that of a materialized silicon test spreader.
Afterward, a metallic micro heat spreader having the 3-layer configuration of the design of separate liquid and vapor and being 31 mm × 31 mm × 2.7 mm as length × width × height on a copper substrate was prepared. Besides, effects of two micro heat spreaders having capillary constructions of trench and copper hybrid on hot spot surface temperature and system thermal resistance in the presence of various fill proportion of methanol were investigated by CPU cooler thermal resistance test apparatus. After evaluation, the heat spreader with 82% methanol fill rate, radial groove wicking structure showed the best performance compared to the other samples. The superior heat spreader had lower evaporator temperature with a 17℃ value, corresponding to a 30% decrease in system thermal resistance at an actual input power of 35W, compared to the system without heat spreader.
Finally, a novel heat spreader was prepared with its main cavity of copper hollow pipe, where copper mesh served as the capillary construction, the centre was supported by a crossed structure manufactured with wire cut and the size was 73 mm × 48.5 mm × 2.7 mm. The heating source was a 30 mm× 30 mm ceramic heater with the output power raised from 10 W to 130 W, and the coolers were a fan and assembled fin heat sinks. The result showed that the heat spreader with crossed structure had better performance than that of a copper one of the same size. When heating power was 130 W, the heat source temperature of heat spreader was 68.8℃ and the system thermal resistance was 0.363℃/W. Compared to a copper spreader, the heat source temperature was lowered by 4.3℃ and the system thermal resistance was lowered for 5.7%. When heating power was 60 W, the system thermal resistance of heat spreader was 0.311℃/W. Compared to a copper spreader, the heat source temperature was lowered by 3.9℃ and the system thermal resistance was lowered for 22%. In addition, the homogeneous temperature distribution of the heat spreader was identified by its surface temperature recorded by IR thermal imager. The experimental data were compared with numerical simulation and analysis to afford that the equivalent thermal conductivity, k, of the heat spreader was 850 W/ m∙k.
論文目次 中文摘要 Ⅰ
英文摘要 Ⅲ
總目錄 Ⅵ
圖表目錄 Ⅹ
表目錄 ⅩⅥ
符號說明 ⅩⅤⅡ
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 5
1-3 文獻回顧 7
第二章 熱管、均熱片基礎理論與接合技術簡介 20
2-1 熱管與均熱片基礎理論 20
2-1-1 熱管作動原理 20
2-1-2 均熱片介紹與作動原理 21
2-1-3 熱管的優點與熱傳限制 24
2-1-4 均熱片設計與考量 29
2-2 接合技術簡介 34
2-2-1陽極接合 35
2-2-2共晶接合 37
2-2-3 擴散接合 38
第三章 矽質輻射狀微均熱片研製 43
3-1 製程與封裝 44
3-2 工作流體之抽氣、充填與封裝 53
3-3 性能試驗 55
3-3-1 測試設備 56
3-3-2 性能測試 58
3-4 結果與討論 61
第四章 金屬微結構均熱片研製 62
4-1 設計與製程 65
4-1-1金屬微結構均熱片設計 65
4-1-1-1 溝槽式微流道均熱片 65
4-1-1-2 銅網式微結構均熱片 67
4-1-2 腔體、毛細結構與隔板材料選擇 68
4-1-3 化學蝕刻 68
4-1-4 接合技術 70
4-1-5 工作流體的抽氣、充填與封裝 74
4-2 性能試驗 76
4-2-1 測試設備 77
4-2-2 測試方式 78
4-2-2-1 測試平台構造及原理 78
4-2-2-2 工作流體充填量 79
4-2-2-3 實驗測試方式 81
4-2-2-4 性能測試 82
4-3結果與討論 86
第五章 交叉支撐結構均熱片研製與分析 87
5-1設計與製程 87
5-1-1 均熱片腔體設計與加工 89
5-1-1-1腔體治具設計與加工 89
5-1-1-2腔體設計與加工 90
5-2 毛細結構銅網的規格 92
5-3 交叉支撐結構設計與製作 93
5-4 錫焊接合 96
5-5工作流體的充填、脫氣與封裝 97
5-6熱流分析與性能測試 100
5-6-1熱模擬分析軟體 FLOTHERM 100
5-6-2分析方法與流程 101
5-6-3 初步熱設計分析 108
5-6-4 實驗與模擬之比較 109
5-7 紅外線熱影像儀測試均熱片溫度分佈 115
5-8 測試結果 118
5-8-1測試設備 118
5-8-2儀器與誤差校正 121
5-8-3實驗測試方式 123
5-8-4性能測試 124
5-9結果與討論 129
第六章 結論 131
參考文獻 134
論文著述目錄 142
附錄 A水之熱物理性質 144
附錄 B常用熱管的工作溫度範圍與工作流體及其容器材料 146
附錄C甲醇的基本性質 148
附錄D交叉結構均熱片實驗數據 150

圖目錄
圖 1-1 PC Intel CPU 速度與熱能趨勢 3
圖1-2 常見的散熱方式 4
圖1-3 熱源產生與一般CPU散熱方式 4
圖 1-4 平板形熱管外形大小與橫斷面形狀 10
圖1-5 Benson等人利用切割與電漿蝕刻製作矽質微均熱片 11
圖1-6 以Kovar合金為基材所製作之平板微熱管均熱片 12
圖1-7 Novel Concepts, Inc. 開發設計之微熱管均熱片剖面結構13
圖1-8 Novel Concepts, Inc. 開發設計之微熱管均熱片結構 13
圖1-9 平板式微熱管橫截面 14
圖1-10 24 條迴路式流道的平板式微熱管 15
圖1-11 C. B. Sobhan et al熱管數值分析模型 16
圖1-12 部分敞開與完全敞開微熱管槽溝的橫截面 17
圖1-13 網格式均熱片 17
圖1-14 溝槽式均熱片 18
圖1-15 Kalahasti等人利用四分之一對稱性模型作數值分析 18
圖1-16 多角形橫截面平板式微熱管 19
圖2-1 傳統熱管之結構與作動示意圖 21
圖2-2 熱源分佈不同區域示意圖 23
圖2-3 溫度分佈不同區域示意圖 23
圖2-4 均熱片之結構與作動示意圖 24
圖2-5 熱管最大熱傳量與操作溫度關係圖 25
圖2-6 常見的毛細結構示意圖 33
圖2-7 金-矽相態曲線圖 35
圖2-8 陽極接合技術 36
圖2-9 擴散接合之過程 42
圖3-1 輻射狀微流道均熱片結構與組合示意圖 44
圖3-2 矽質輻射狀微流道均熱片製作流程圖 46
圖3-3 上層汽相微流道結構光罩圖 48
圖3-4 下層液相微流道結構之光罩圖 48
圖3-5 中央隔板結構光罩圖 48
圖3-6 矽質輻射狀微流道均熱片蝕刻實體圖 51
圖3-7 共晶接合矽質輻射狀微流道均熱片與光纖對準組合圖 53
圖3-8 矽質輻射狀微流道均熱片充填示意圖 54
圖3-9 矽質輻射狀微流道均熱片抽氣充填設備圖 55
圖3-10 矽質輻射狀微流道均熱片測試平台示意圖 57
圖3-11 熱電耦線黏貼位置示意圖 58
圖3-12 蒸發端最高溫度與輸入功率關係圖 59
圖3-13 底部-頂部之蒸發端溫度差與功率關係圖 60
圖3-14 底部蒸發端與頂部冷凝端之溫度差對輸入功率關係圖 60
圖4-1 金屬微結構均熱片立體示意圖 63
圖4-2 平板式熱管 64
圖4-3 汽相微流道之光罩設計圖 66
圖4-4 中間隔板之光罩設計圖 66
圖4-5 液相微流道之光罩設計圖 66
圖4-6 銅網式的液、汽相腔體光罩設計圖 67
圖4-7 銅網毛細結構 68
圖4-8 感光性腐蝕工程的過程 70
圖4-9 溝槽式微流道均熱片蝕刻實體圖 72
圖4-10 銅網式微結構均熱片蝕刻實體圖 73
圖4-11 金屬微均熱片之工作流體充填與排氣示意圖 75
圖4-12 金屬微均熱片成品實體圖 76
圖4-13 CPU Cooler 熱阻量測裝置 78
圖4-14 CPU Cooler 熱阻量測裝置加熱平台構造 81
圖4-15 不同充填率溝槽式微流道均熱片之散熱模組發熱面溫度
與實際加熱功率的關係 83

圖4-16 不同充填率溝槽式微流道均熱片之散熱模組熱阻與
實際加熱功率的關係 84
圖4-17 不同充填率銅網式微結構均熱片之散熱模組發熱面
溫度與實際加熱功率的關係 84
圖4-18 不同充填率銅網式微結構均熱片之散熱模組熱阻與
實際加熱功率的關係 85
圖4-19 不同毛細結構時與未加上均熱片,散熱模組熱阻的比較 85
圖5-1 交叉支撐結構均熱片立體示意圖 87
圖5-2 交叉支撐結構均熱片製程流程圖 88
圖5-3 腔體輾斷治具 89
圖5-4 中央壓板 89
圖5-5 切管機外型與切除刀具局部放大圖 90
圖5-6 穿網製程 91
圖5-7 壓管製程後的腔體 91
圖5-8 化學清洗槽 91
圖5-9 調質爐 92
圖5-10 200網目紅銅網OM放大圖及規格 92
圖5-11 交叉支撐結構尺寸圖 94
圖5-12 交叉支撐結構完成圖 95
圖5-13 交叉支撐結構局部放大圖 95
圖5-14 端面封口錫焊 97
圖5-15 充填管部分的錫焊 97
圖5-16 充填工作流體與微天秤秤重 98
圖5-17 抽真空與電焊充填管口設備 99
圖5-18 流體脫氣封入之示意圖 99
圖5-19 交叉結構均熱片完成示意圖 100
圖5-20 模擬分析流程圖 102
圖5-21 網格分怖圖 105
圖5-22 均熱片和散熱模組熱流場分佈圖 106
圖5-23 均熱片表面溫度分佈圖 106
圖5-24 銅片和散熱模組熱流場分佈圖 107
圖5-25 銅片表面溫度分佈圖 107
圖5-26 3D實驗模型示意圖 110
圖5-27 交叉結構均熱片實驗與模擬之發熱源溫度比較圖 113
圖5-28 純銅均熱片實驗與模擬之發熱源溫度比較圖 113
圖5-29 交叉結構均熱片實驗與模擬之系統熱阻比較圖 114
圖5-30 純銅均熱片實驗與模擬之系統熱阻比較圖 114
圖5-31 交叉結構均熱片熱影像儀熱分佈與溫度百分比分佈圖 116
圖5-32 銅片熱影像儀熱分佈與溫度百分比分佈圖 116
圖5-33 紅外線熱影像儀(ThermaCAM SC500) 117
圖5-34 交叉結構均熱片測試平台示意圖 119
圖5-35 P-Ⅳ散熱器 121
圖5-36 熱電耦線黏貼位置示意圖 121
圖5-37 加熱裝置之構造圖及散熱元件相對位置 124
圖5-38 發熱面溫度與實際加熱功率關係圖 127
圖5-39 發熱面、四邊溫度平均值溫差與實際加熱功率關係圖 127
圖5-40 表面平均溫度與與實際加熱功率關係圖 128
圖5-41 系統熱阻與實際加熱功率關係圖 128
圖5-42 均熱片熱阻與實際加熱功率關係圖 129

表目錄
表 1-1平板形熱管尺寸 10
表 1-2 微熱管尺寸 14
表2-1常見之工作流體作動範圍 32
表2-2各種毛細結構的比較 33
表 2-3 接合中間介質的材料 37
表2-4擴散接合適用材料 40
表3-1矽質輻射狀微流道均熱片晶片規格表 49
表4-1 100網目紅銅網的規格 68
表4-2 微均熱片甲醇充填量與充填率 80
表5-1 200網目紅銅網的規格 93
表5- 2 交叉結構均熱片實驗與模擬發熱源(Theater)溫度比較 111
表5- 3 純銅均熱片實驗與模擬發熱源(Theater)溫度比較 111
表5- 4 交叉結構均熱片實驗與模擬系統熱阻比較 112
表5- 5 純銅均熱片實驗與模擬系統熱阻比較 112
表5-6 數據擷取機規格 120
表5-7 T-type熱電偶線溫度校正表 122


參考文獻 [1] http://www.augux.com.tw/
[2] Ram Viswanath, Vijay Wakharkar, Abhay Watwe, Vassou Lebonheur, “Thermal Performance Challenges from Silicon to Systems”, Intel Technology Journal Q3, 2000
[3] http://www.flotherm.com-heatsink
[4] 伏和中,”散熱元件在電子產品應用及製造技術之發展”,機電元件之散熱系統研討會,民國90年12月
[5] R. S. Gaugler, “Heat transfer devices,” U.S. Patent No.2,350,348, 1944.
[6] G. M. Grover, U.S. Patent No.3,229,759 (1963).
[7] T. P. Cotter, “Theory of heat pipes,” Los Alamos Science Lab., Report No.LA-3246-MS, 1965.
[8] E. K. Levy, “Theoretical investigation of heat pipes operating at low vapor pressure,” J. Engineering for Industry, vol. 90, pp. 547
[9] C. L. Tien, and K. H. Sun, “Minimum meniscus radius of heat pipe with a wicking materials,” Int. J. Heat Mass Transfer 14, pp. 1853
[10] G. A. A. Asselman, and D. B. Green, “Heat pipes,” Phrillips Technical Review, vol. 16, pp. 169
[11] T. P. Cotter, “Principles and prospects for micro heat pipe,” Proc. 5th Int. Heat Pipe Conf., Tsukuba Japan, pp. 328
[12] B. R. Babin, G. P. Peterson, and D. Wu, “Analysis and testing of a micro heat pipe during steady
[13] Khrustalev, D. and Faghri, A.,“Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes,” Journal of Heat Transfer, Vol. 117, pp. 1048
[14] Cao, Y., Gao, M., Beam, J. and Donovan, B., Experiments and analyses of flat miniature heat pipes, J. Thermophysics & Heat Transfer, 1997, 11,158-164.
[15] David A. Benson, R. T. Mitchell, M. R. Tuck, D. W. Palmer, and G. P. Peterson, “Ultrahigh-capacity micro machined heat spreaders,” Microscale Thermophys. Engin., vol. 2, pp. 21–30, 1998.
[16] D. A. Benson, D. R. Adkins, G. P. Peterson, R. T. Mitchell, M. R. Tuck, and D. W. Palmer, “Turning silicon substrates into diamond: Micro machining heat pipes,” in Proc. Adv. Design Mater. Process. Thermal Spreaders Heat Sinks Workshop, Vail, CO, Apr. 1996, pp. 19–21.
[17] Zuo, Z. Jon, Dussinger, peter M., “Heat Pipe Vapor Chamber Cold Plate Modeling, Fabrication and Testing”, Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, pp.281-286, 2000.
[18] David A. Benson, Charles V. Robino, “Design and Testing of Metal and Silicon Heat Spreaders with Embedded Micromachined Heat Pipes”, Advances in Electronic Packaging, 1999, Vol. 26-2, pp. 1957-1964.
[19] Novel Concepts, Inc. 2240 Union Street, Suite 302 San Francisco, CA 94123 .
[20] Hopkins, R., Faghri, A., Khrustalev, D., Flat miniature heat pipes with micro capillary grooves, JHeat Transfer, 1999, 121, 102-109.
[21] Take, K., Furukawa, Y., Ushioda, S., Fundamental investigation of roll bond heat pipe as heat spreader plate for notebook computers, IEEE Trans on components and packaging technologies, 2000, 23, 80-85.
[22] Wang, Y., Vafai, K., An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe, Int J Heat Mass Transfer, 2000, 43, 2657-2668.
[23] C. B. Sobhan, S. V. Garimella, V. V. Unnikrishnan, “A computational model for the transient analysis of flat heat pipes,” IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 2, pp. 106-113, May, 2000.
[24] Avenas, Y., Mallet, B., Gillot, C., Bricard, A., Schaeffer, C., Poupon, G., Foumier, E., Thermal spreaders for high heat flux power devices, 7th Therminic Workshop, Paris, 2001, pp. 59-63.
[25] Lin, L., Ponnappan, R., Leiand, J., High performance miniature heat pipe, Int J Heat Mass Transfer, 2002, 45, 3131-3142.
[26] Y. Cao, M. Gao, “Wickless network heat pipes for high heat flux spreading applications “, International Journal of Heat and Mass Transfer, vol45,pp. 2539-2547,2002
[27] S. Kalahasti and Y.K. Joshi, “Performance characterization of a novel flat plate micro heat pipe spreader,” IEEE Transactions on Components and Packaging Technologies, vol. 25, pp. 554-560, 2002.
[28] J. Wei, “Measurement of vapor chamber performance,” IEEE Semiconductor Thermal Measurement and Management Symposium, pp.191-194, March, 2003.
[29] Moon, S., Hwang, G., Ko, S., Kirn, Y., Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon, Microelectronics Reliability, 2004, 44, 315-321.
[30] Dale Mehl, Pete Dussinger, Kevin Grubb,Thermacore, Inc.
” THERMA-BASE™ HEAT SINKS FOR MICROPROCESSOR
COOLING”
[31] Dale Mehl,Thermacore, Inc.” THERMA-BASE VAPOR CHAMBER HEAT SINKS ELIMINATE HOT SPOTS”
[32] A. Faghri, Heat Pipe Science and Technology, 1995, ISBN 1-56032-383-3, Taylor & Franics.
[33] Levy, E. K., “Theroretical Investigation of Heat Pipe Operating at Low Vapor Pressure”, J. Eng. Ind., vol. 90, pp. 547-552, 1968.
[34] Kemme, J. E., “Ultimate Heat-Pipe Performance”, IEEE Transaction on Electron Devices, vol. ED-16, pp. 717-723, 1969.
[35] G.P PETERSON, An introduction to heat pipe modeling,
testing, and applications, 1994, ISBM 0-471-30512-x, John Wiley & Sons.
[36] 鄭建增, 蒸汽式與熱管式散熱模組之熱阻分析, 國立台北科技大學機電整合研究所碩士論文,2001.
[37] Marc Madou, Fundamentals of Microfabrication, 1997, ISBN 0-8493-9451-1, CRC Press.
[38] Anders Hanneborg, “Silicon Wafer Bonding Techniques for Assembly of Micromechanical Elements”, Proceedings. IEEE Micro Electro Mechanical Systems Proceedings of the 1991 IEEE Micro Electro Mechanical Systems - MEMS '91, 1991, pp. 92-98.
[39] A. -L. Tiensuu, J. - Å. Schweitz, S. Johansson, “In Situ Investigation of Precise High Strength Micro Assembly Using Au-Si Eutectic Bonding”, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, 1995, pp. 236-239.
[40] A. -L. Tiensuu, J. - Å. Schweitz, L. Smith, S. Johansson, “Assembling Three-Dimensional Microstructures Using Gold-Silicon Eutectic Bonding”, Sensors and Actuators. A, Physical, 1994, Vol. 45, pp. 227-236.
[41] Kang, Shung-Wen, Yang, Lung-Jieh, Yu, Chung-Sheng, Chen, Jong-Shun, “Performance Test and Analysis of Silicon-Based Microchannel Heat Sink”, Proceedings of SPIE - The International Society for Optical Engineering Proceedings of the 1999 Terahertz and Gigahertz Photonics, 1999, pp. 259-270.
[42] Y. T. Cheng, Liwei Lin, Khalil Najafi, “Localized Silicon Fusion and Eutectic Bonding for MEMS Fabrication and Packaging”, Journal of Microelectromechanical Systems, March 2000, Vol. 9, No. 1, pp. 3-8.
[43] A. -L Tiensuu, J. -Å. Schweitz, S.Johansson, “In Situ Investigation of Precise High Strength Micro Assembly Using Au-Si Eutectic Bonding”, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, 1995, pp. 236-239.
[44] A. -L. Tiensuu, J. -Å. Schweitz, L. Smith, S.Johansson, “Assembling Three-Dimensional Microstructures Using Gold-Silicon Eutectic Bonding”, Sensors and Actuators. A, Physical, 1994, Vol. 45, pp. 227-236.
[45] A. Berthold, B. Jakoby, “Wafer-to-Wafer Fusion Bonding of Oxidized Silicon to Silicon at Low Temperatures”, Sensors and Actuators, A, Physical, 1998, Vol. 68, pp. 410-413.
[46] K. Gertrud, S. Andreas, G. Ulrich, “Low Temperature Silicon Direct Bonding for Application in Micromechanics : Bonding Energies for Different Combinations of Oxides”, Sensors and Actuators, A, Physical, 1998, Vol. 70, pp. 271-275.
[47] Leo G. Feinstein, “Die Attachment Methods”, Electronics Materials Handbook, 1989, pp. 213-215.
[48] A. R. Mirza & A. A. Ayon, “Sillicon Wafer Bonding : Key to MEMS High-Volume Manufacturing”, Sensors, 1998.
[49] Anders Hanneborg, “Silicon Wafer Bonding Techniques for Assembly of Micromechanical Elements”, Proceedings. IEEE Micro Electro Mechanical Systems Proceedings of the 1991 IEEE Micro Electro Mechanical Systems - MEMS '91, 1991, pp. 92-98.
[50] Peter Vanzant, Microchip Fabrication , 2000, ISBN 957-493-427-6, McGraw-Hill, Inc.
[51] http://www.occo.com/import/bonding.htm
[52] Shung-Wen Kang , Sheng-Hong Tsai, Hong-Chih Chen, “Fabrication and Test of Radial Grooved Micro Heat Pipes”, Applied Thermal Engineering, Volume 22, Issue 14, 2002, Pp.1559-1568.
[53] Shung-Wen Kang , Sheng-Hong Tsai , Ming-Han Ko, “Metallic Micro Heat Pipe Heat Spreader Fabrication”, Applied Thermal Engineering, Volume 24, 2004, PP.299-309.
[54] Noren Products Inc., http://www.norenproducts.com/
[55] 日本熱管技術協會編、依日光譯著,”熱管技術理論實務”,復漢出版社印行,1986,pp.49~50
[56] 佐藤敏一編、賴耿陽譯著,”金屬腐蝕加工技術”, 復漢出版社印行,1980
[57] Kevin Grubb, CFD Modeling of a Therma-BaseTM Heat Sink, Thermacore, Inc.
[58] Intel® Pentium® 4 Processor with 512-KB L2 Cache on 0.13 Micron Process and Intel® Pentium® 4 Processor Extreme Edition Supporting Hyper-Threading Technology

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-08-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-08-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信