§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0908200511591000
DOI 10.6846/TKU.2005.00120
論文名稱(中文) 蒸汽腔體均熱片之數值分析
論文名稱(英文) Numerical Analysis of Vapor Chamber Heat Spreaders
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 洪裕勛
研究生(英文) Yu-Hsun Hung
學號 692340069
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-07-19
論文頁數 64頁
口試委員 指導教授 - 康尚文(swkang@mail.tku.edu.tw)
委員 - 夏曉文
委員 - 楊龍杰
關鍵字(中) 蒸汽腔體
均熱片
數值分析
關鍵字(英) vapor chamber
heat spreader
numerical analysis
第三語言關鍵字
學科別分類
中文摘要
本研究旨在利用數值方法分析蒸汽腔體的溫度梯度。文中利用拉普拉斯方程式(Laplace equation)定義上下板塊;運用連續方程式、動量方程式、與能量方程式定義蒸汽腔室,並配合熱傳導與熱對流理論設定邊界條件。數值運算方面則使用有限元素分析軟體ANSYS 9.0來模擬解析。模擬的蒸汽腔體尺寸大小為4cm×0.2cm的二維數值分析模型,工作流體假設為過熱蒸汽,解析其不同板塊材質與加熱面積的溫度分佈。
    分析中比較銅、鋁、矽三種不同材質板塊的蒸汽腔體,結果顯示熱傳導係數越大的材質,可得到更為均勻的溫度分佈;而在同熱量不同加熱面積的比較中,因加熱面積小造成熱量集中,溫度分佈較不均勻。在散熱面的溫度分佈上可觀察到,蒸汽腔體除了能用於帶走熱量,作為熱傳遞的媒介之外,還能有效地將熱量均勻帶至散熱面,藉由散熱模組散熱,提高散熱效益。
英文摘要
The study investigates thermal performance of vapor chamber heat spreaders by numerical method. Two-dimensional flow and energy equations are solved in the vapor core, along with conduction in the wall. Numerical simulation is studied with the software ANSYS 9.0 to predict the temperature distribution on a 4cm x 0.2cm chamber area with variation in material and heat source size of the spreader. 
    With comparison of the copper, aluminum, and silicon, result shows that wall thermal conductivity is a major factor in such thin, flat spreaders. The spreader performance also degrades with degrade in heat source size due to the heat centralization and uneven temperature distribution. In addition to heat transmission, vapor chamber can also bring heat to cooling surface, and heat sink effectively, and improve capability of heat dissipation.
第三語言摘要
論文目次
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ
目  錄…………………………………………………………………. Ⅲ
圖目錄……………………….……………..………………………….. Ⅴ
表目錄……………………….………………..……………………….. Ⅷ
符號說明………………………...…………………………………….. Ⅸ

第一章  緒論
1-1 研究動機………………………………………………………1
1-2 研究背景與文獻回顧…………………………………………4
1-2-1 實作文獻………………………………………….……4
1-2-2 理論分析文獻……………………………………….. 14
1-3 研究目的………………………………………………….......22

第二章  相關簡介
2-1 熱管之基礎理論……………………………………………...23
2-1-1 熱管作動原理………………………….....……...……24
2-1-2 熱管熱傳限制…………………………………....……25
2-2 均熱片與蒸汽腔體之簡介…………………………………...28

第三章  理論與數值分析
3-1 理論分析…….………………………………….....………….33
3-2 模擬分析…….…………………………………….………….41

第四章  結果與討論
4-1 結果與分析…...………………………………………………45
4-2 結論……...…….………………………………….……..……51

第五章  未來建議…………………………………………….....… 53

參考文獻………………………………………………………………55

附錄一 銅材蒸汽腔體溫度數據表…………….…………….…….60
附錄二 鋁材蒸汽腔體溫度數據表……………………….….…….61
附錄三 矽材蒸汽腔體溫度數據表…………………..…………….62
附錄四 不同加熱面積蒸汽腔體溫度數據表………….………..….63
 
圖目錄
圖1-1 CPU效能與消耗功率及熱通量關係圖……...…………….……3
圖1-2桌上型電腦CPU常見的散熱方式……...……………………....3
圖1-3平板式熱管(a)外形….......…..………...……………..…………..5
圖1-3 (b)橫截面形狀……….......…..………...……………..…………..5
圖1-4化學蝕刻之毛細結構……………………..………...……………5
圖1-5電漿蝕刻之毛細結構………...…………..………………………6
圖1-6以Kovar合金為基材所製作之平板微熱管均熱片...…………6
圖1-7平板式微熱管橫截面……………………………………………7
圖1-8 24條迴路式流道之平板式微熱管……………………………..7
圖1-9輻射狀微熱管均熱片……………………………………………8
圖1-10三層銅板結構之微熱管均熱片…………………………..……9
圖1-11金屬微熱管均熱片成品圖……………………………..………9
圖1-12星形流道之微熱管截面圖……………………………………10
圖1-13部分敞開與完全敞開溝槽式熱管橫截面……………………10
圖1-14網格式毛細結構………………………………………………11
圖1-15溝槽式毛細結構………………………………………………11
圖1-16壓克力板塊材質之蒸汽腔體…………………………………12
圖1-17蒸汽腔體立體示意圖…………………………………………12
圖1-18柵型微結構整體尺寸圖………………………………………13
圖1-19柵型微結構……………………………………………………13
圖1-20嵌入式熱管示意圖……………………………………………14
圖1-21等效k值說明圖…………...………………………...………15
圖1-22 C. B. Sobhan et al熱管數值分析模型…………………….16
圖1-23開放腔體均熱片之數值分析模型………………………..…..16
圖1-24 (a)散熱鰭片組之熱電阻系統………...…………………..…..19
圖1-24 (b)均熱片之受熱平面…….……….……………………...…..19
圖1-25 (a)電阻分佈圖………..…………………………….…….…..19
圖1-25 (b)轉移線矩陣(transmission-line-matrix)……….…….....…..19
圖1-26均熱片之2D流體分析模型…………..…………….....…..20
圖1-27蒸汽腔體溫度梯度圖………...…………………………..…..21
圖1-28純銅塊溫度梯度圖………………...……………………..…..21
圖2-1熱管之組成與作動示意圖…....………………………………..24
圖2-2熱管最大熱傳量與操作溫度關係圖………………....………..25
圖2-3有、無均熱片與鰭片溫度分佈圖.…………...………………..28
圖2-4熱管式均熱片作動示意圖……………………………………..29
圖2-5熱管工作流體運作圖…………………………………………..30
圖2-6熱電阻方式所表示之熱管……………………………..………30
圖2-7平板式熱管……………………………………………………..30
圖2-8熱電阻方式所表示之平板式熱管……………………………..30
圖2-9蒸汽腔體作動示意圖…………………………………………..32
圖2-10開放式腔體流體沸騰觀察圖(f為充填量、q為加熱瓦數)...32
圖3-1熱傳方程式與熱傳導現象………………….…………………33
圖3-2熱對流方程式與熱對流現象…………..…………...…………34
圖3-3蒸汽腔體數值分析模型……..……………………..………….34
圖3-4二維控制體積之質量守恆示意圖.……………………….……37
圖3-5數值運算分析流程圖……………………………………….…41
圖4-1銅材蒸汽腔體之溫度梯度圖(oC)……………………...……...47
圖4-2銅材蒸汽腔體蒸汽腔室速度分佈圖…………………..……...47
圖4-3不同材質蒸汽腔體之散熱表面溫度分佈…………………….48
圖4-4不同材質蒸汽腔體之加熱面溫度分佈……………………….48
圖4-5不同材質之蒸汽腔體垂直溫度分佈( x方向中點位置)...….49
圖4-6不同加熱面積之蒸汽腔體散熱表面溫度分佈……………….49
圖4-7不同加熱面積之蒸汽腔體加熱面溫度分佈………………….50
圖4-8不同加熱面積之蒸汽腔體垂直溫度分佈( x方向中點位置).50























表目錄
表3-1上下板塊材料性質表………………………………..……..43
表3-2水與水蒸汽性質表……………………………………….....43
表4-1實體模型尺寸表………………………………………........47
參考文獻
[1]   http://www.augux.com.tw/
[2]   伏和中,“散熱元件在電子產品應用及製造技術之發展,” 機電元件之散熱系統研討會,民國90年12月.
[3]   G. R. Moore, “Progress in Digital Integrated Electronics,” Proc. IEEE Int. Electron. Devices Meet., pp. 11-15, 1975.
[4]   G. M. Grover, U.S. Patent No.3,229,759 (1963).
[5]   T. P. Cotter, “Theory of Heat Pipes,” Los Alamos Science Lab., Report No.LA-3246-MS, 1965.
[6]   B. R. Babin, G. P. Peterson, and D. Wu, “Analysis And Testing of a Micro Heat Pipe During Steady-State Operation,” American Society of Mechanical Engineers, August 5-8, 1989.
[7]   D. Khrustalev, and A. Faghri, “Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes,” Journal of Heat Transfer, vol. 117, pp. 1048-1054, 1995.
[8]   Y. Cao, M. Cao, J. Beam, and B. Donovan, “Experiments and Analyses of Flat Miniature Heat Pipes,” Journal of Thermophysics and Heat Transfer, vol. 11, pp. 158-164, 1997.
[9]   D. Benson, R. Mitchell, M. Tuck, and D. Palmer, “Ultrahigh-Capacity Micromachined Heat Spreaders,” Microscale Thermophysical Engineering, vol. 2, pp. 21-30, 1998.
[10]  D. Benson, and C. V. Robino, “Design and Testing of Metal and Silicon Heat Spreaders with Embedded Micromachined Heat Pipes,” Advances in Electronic Packaging, vol. 26, pp. 1957-1964, 1999.


[11]  R. Hopkins, A. Faghri and D. Khrustalev, “Flat Miniature Heat Pipes with Micro Capillary Grooves,” Journal of Heat Transfer, vol. 121, pp. 102-109, 1999.
[12]  K. Take, Y. Furukawa, and S. Ushioda, “Fundamental Investigation of Roll Bond Heat Pipe as Heat Spreader Plate for Notebook Computers,” IEEE Transactions on Components and Packaging Technologies, vol. 23, pp. 80-85, 2000.
[13]  Y. Wang, and K. Vafai, “An Experimental Investigation of The Thermal Performance of An Asymmetrical Flat Plate Heat Pipe,” International Journal of Heat and Mass Transfer, vol. 43, pp. 2657-2668, 2000.
[14]  S. W. Kang, S. H. Tsai, and H. C. Chen, “Fabrication and Test of Radial Grooved Micro Heat Pipes,” Applied Thermal Engineering, vol. 22, pp. 1559-1568, 2002.
[15]  Y. Avenas, B. Mallet, C. Gillot, A. Bricard, C. Schaeffer, G. Poupon, and E. Fournier, “Thermal Spreaders for High Heat Flux Power Devices,” 7th Therminic Workshop, Paris, pp. 59-63, 2001.
[16]  S. W. Kang, S. H. Tsai, and M. H. Ko, “Metallic Micro Heat Pipe Heat Spreader Fabrication,” Applied Thermal Engineering, vol. 24, pp. 299-309, 2004.
[17]  S. W. Kang, and D. Huang, “Fabrication of Star Grooves and Rhombus Grooves Micro Heat Pipes,” Journal of Micromechanics and Microengineering, vol. 12, pp. 525-531, 2002.
[18]  L. Lin, R. Ponnappan, and J. Leland, “High Performance Miniature Heat Pipe,” International Journal of Heat Mass Transfer, vol. 45, pp. 3131-3142, 2002.
[19]  Y. Cao, and M. Gao, “Wickless Network Heat Pipes for High Heat Flux Spreading Applications,” International Journal of Heat and Mass Transfer, vol. 45, pp. 2539-2547, 2002.
[20]  莊晉東,“蒸汽腔體內部流動之分析觀察”,淡江大學機械工程學系碩士論文,民國92年7月。
[21]  黃森良,“用於個人電腦散熱之蒸汽腔體”,淡江大學機械工程學系碩士論文,民國93年7月。
[22]  趙晏佑,“嵌入式熱管散熱效益之研究”,成功大學工程科學系碩士論文,民國88年。
[23]  C. B. Sobhan, S. V. Garimella, V. V. Unnikrishnan, “A Computational Model for the Transient Analysis of Flat Heat Pipes,” IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 2, pp. 106-113, May, 2000.
[24]  林鴻文,“微型熱管系統散熱實驗與最大熱傳量之理論模式建立”,清華大學工程與系統科學研究所碩士論文,民國九十一年九月。
[25]  S. Kalahasti and Y.K. Joshi, “Performance Characterization of a Novel Flat Plate Micro Heat Pipe Spreader,” IEEE Transactions on Components and Packaging Technologies, vol. 25, pp. 554-560, 2002.
[26]  T.Q. Feng and J.L. Xu, “An Analytical Solution of Thermal Resistance of Cubic Heat Spreaders for Electronic Cooling,” Applied Thermal Engineering, vol. 24, pp. 323-337, February, 2004.



[27]  S. H. Pulko, “Modelling of Thermal Diffusion in Three Dimensiona by the Transmission Line Matrix Method and the Incorporation of Nonlinear Thermal Properties,” Communication Applied Numerical Method, vol. 3, pp. 571-579, 1987.
[28]  S. Belhardj, S. Mimouni, A. Saidane and M. Benzohra, “Using Microchannels to Cool Microprocessors:                    A Transmission-Line-Matrix Study,” Journal of Microelectronics, vol. 34, pp. 247-253, April, 2003.
[29]  R. Hocine, A. Boudghene Stambouli and A. Saidane, “A Three-Dimensional TLM Simulation Method for Thermal Effect in High Power Insulated Gate Bipolar Transistors,” Microelectronic Engineering, vol. 65, pp. 293-306, March, 2003.
[30]  M. Lallemand, and F. Lefevre “Micro/Mini Heat Pipes for the Cooling of Electronic Devices,” 13th International Heat Pipe Conference, Shanghai, China, pp. 12-23, September, 2004.
[31]  U. Vadakkan, G. M. Chrysler, and S. Sane “Silicon/Water Vapor Chamber as Heat Spreaders for Microelectronic Packages,” IEEE SEMI-THERM Symposium, pp. 182-186, 2005.
[32]  G. P. Peterson, “An Introduction to Heat Pipe,” John Wiley & Sons, Inc., ISBN 0-471-30512-X, 1994.
[33]  F. W. Gay, “Heat Transfer Means,” U.S. Patent, No. 1, 725, 906,  1929.
[34]  R. S. Gaugler, “Heat Transfer Devices,” U.S. Patent, No. 2, 350, 348,  1944.
[35]  G. M. Grover, T. P. Cotter, and G. F. Erikson, “Structures of Very High Thermal Conductivity,” Journal of Applied Physics, vol. 35, pp. 1190-1191, 1964.
[36]  日本熱管技術協會編、依日光譯著,“熱管技術理論實務”,復漢出版社印行。
[37]  http://www.electronics-cooling.com/Resources/ EC_Articles/
SEP96/sep96_02.htm
[38]  D. Mehl, P. Dussinger, and K. Grubb, “Therma-Base™ Heat Sinks for Microprocessor Cooling,” Thermacore Inc.
[39]  K. Yoshida and H. Morigami, “Thermal Properties of Diamond/Copper Composite Material,” Microelectronics Reliability, vol. 44, pp. 303-308, February, 2004.
[40]  Y. Avenas, C. Gillot, A. Bricard, C. Schaeffer, “On the of Flat Heat Pipes as Thermal Spreaders in Power Electronics Cooling,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 753-757, June, 2002.
[41]  http://www.thermacore.com/
[42]  J. Wei, “Measurement of Vapor Chamber Performance,” IEEE Semiconductor Thermal Measurement and Management Symposium, pp.191-194, March, 2003.
[43]  C. T. Yeh, C. Y. Yang, “Visualization of Pool Boiling in a Confined Space of a Thin Plate Heat Pipe,” Proceedings of 13th International Heat Pipe Conference -13th IHPC), Shanghai, China, September, 2004.
[44]  F. Kreith, and M. S. Bohn, “Principle of Heat Transfer,” Brooks/Cole, USA, 2001.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信