淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0907200916580600
中文論文名稱 以社會網絡為基礎之案例式推論群體決策模式
英文論文名稱 A Social Network Based CBR Approach for Quality Group Decisions
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士班
系所名稱(英) Department of Business Administration
學年度 97
學期 2
出版年 98
研究生中文姓名 羅怡萍
研究生英文姓名 Yi-Ping Lo
學號 696610756
學位類別 碩士
語文別 中文
口試日期 2009-06-12
論文頁數 150頁
口試委員 指導教授-張瑋倫
委員-董惟鳳
委員-李月華
中文關鍵字 社會網絡  德菲法  案例式推論 
英文關鍵字 Social Network  Delphi Decision  Case-Based Reasoning 
學科別分類 學科別社會科學管理學
中文摘要 群體決策藉由群眾參與、討論、與協調解決問題,並且透過一些規則,讓決策過程具有效率和結果具有一致性。本研究以啟發式概念為基礎,提出以社會網絡基礎之德菲法群體決策模式,並且結合案例式推論方法,設計一套群體決策模式來探討於E化服務環境中,集合專家意見並且協調與整合進一步解決使用者問題,並且建構出使用者的社會網絡體系來蒐集所需資料,讓使用者能以互信為前提,相信並且接受系統意見,間接讓企業之產品或服務的推廣程度提高。本研究目的主要有: (1)改良傳統德菲法的決策模式應用至E化環境;(2)結合案例式推論法建構具創新之社會網絡群體決策模式;(3)藉由社會網絡成員經驗,提高使用者接受群體決策意見的程度;(4) 以專家經驗增加案例式推論資料庫的概念來解決使用者一般性問題。因此,本研究蒐集三位使用者的社會網絡背景和經驗,實際建構使用者社會網絡結構,進行決策過程及分析驗證。主要貢獻在於提出一種創新決策模式於E化服務中,並且結合傳統理論和技術,快速讓使用者能獲得所需資訊之時,也間接地讓企業產品曝光度提高。
英文摘要 Group decision making approach provides an effective process by discussing, arguing and coordinating the coalition among participants that reaches a consensus through some rules. This research aims to design a group decision model based on traditional Delphi Method, utilize and construct a user’s social network, and deploy case-based reasoning approach to solve the problems. The proposed group decision model collects knowledge and experiences from peers of their social network, and attempts to conduct a group decision making process. This work assumes the users trust their friends, relations, and etc. and may accept the final solution(s). This study have four research purposes: (1) refining the traditional Delphi decision model and apply to an Internet-based environment, (2) combining case-based reasoning approach with the concept of social network, (3) improving the acceptance of users for the outcomes that are generated by peers from the social network, and (4) solving the problem by expertise which may enhance the accuracy of CBR. Hence, this study collects the data of three different users including their social networks, examines the performance of our model, and proves the feasibility and validity. The major contribution is to provide an innovative group decision making model for Internet-based environment by integrating the concepts of social network and Delphi Method. Finally, our approach helps the users obtain the information efficiently and companies promote their products or services effectively.
論文目次 目錄 ..................................................................................... I
圖目錄 .............................................................................. III
表目錄 .............................................................................. VI
第一章 緒論 ...................................................................... 1
第一節 研究背景與問題 ........................................................................ 1
第二節 研究目的與動機 ........................................................................ 3
第三節 研究流程 ..................................................................................... 5
第二章 文獻探討 .............................................................. 6
第一節 群體智慧(Collective Intelligence) ............................................. 6
第二節 社會網絡理論(Social Network) ............................................... 12
第三節 群體決策方法(Group Decision Making) ................................. 18
第三章 研究方法 ............................................................ 26
第一節 系統架構 ................................................................................... 26
第二節 決策流程 ................................................................................... 27
第三節 情境模擬之設計與衡量 .......................................................... 42
第四章 使用者A 分析 ................................................... 50
第一節 使用者A 問卷分析 .................................................................. 50
第二節 使用者A 系統分析 .................................................................. 54
第五章 使用者B 分析 .................................................... 69
第一節 使用者B 問卷分析 .................................................................. 69
第二節 使用者B 系統分析 .................................................................. 72

第六章 使用者C 分析 .................................................... 87
第一節 使用者C 問卷分析 .................................................................. 87
第二節 使用者C 系統分析 .................................................................. 90
第七章 綜合分析 .......................................................... 105
第一節 社會網絡背景分析 ................................................................ 105
第二節 準確率分析............................................................................. 107
第三節 排名精確度分析 .................................................................... 114
第四節 管理與實務意涵 .................................................................... 118
第八章 結論與建議 ...................................................... 123
第一節 研究結論與貢獻 .................................................................... 123
第二節 研究限制和未來研究之建議 ................................................ 125
參考文獻 ........................................................................ 128
附錄 ................................................................................ 134
圖目錄
圖1.1 研究流程 .............................................................................................. 5
圖2.1 德菲法的決策過程 ............................................................................ 20
圖2.2 腦力激盪法的程序 ............................................................................ 21
圖2.3 名目群體技術過程 ............................................................................ 23
圖3.1 整體研究模式 .................................................................................... 27
圖3.2 研究設計流程 .................................................................................... 28
圖3.3(a)社會網絡(b)在社會網絡中選擇專家的概念 ................................ 30
圖3.4 系統選擇專家之數學樹狀圖 ............................................................ 32
圖3.5 異常網絡關係 .................................................................................... 33
圖3.6 重複利用舊有個案/問題的解決方式 ............................................... 37
圖3.7 改良式德菲法的概念 ........................................................................ 39
圖3.8 決策排名機制的概念 ........................................................................ 41
圖4.1 使用者A 的社會網絡圖 .................................................................. 50
圖4.2 使用者A 社會網絡之年齡分布 ....................................................... 51
圖4.3 使用者A 社會網絡之收入分布 ....................................................... 51
圖4.4 使用者A 社會網絡之電腦使用時數 ............................................... 52
圖4.5 使用者A 社會網絡之電腦使用情形 ............................................... 53
圖4.6 各專家數的回合次數累積圓柱圖 .................................................... 55
圖4.7 各遺漏屬性個數的回合次數累積圓柱圖 ........................................ 56
圖4.8 各個專家數在不同遺漏屬性的準確率 ............................................ 58
圖4.9 不同專家數的平均準確率 ................................................................ 59
圖4.10 不同遺漏屬性的準確率 .................................................................. 60
圖4.11 不同遺漏屬性的平均準確率 .......................................................... 61
圖4.12 各回合數在不同專家數的平均準確率 .......................................... 62

圖4.13 各回合數在不同遺漏屬性個數的平均準確率 .............................. 63
圖4.14 專家層級的平均準確率 .................................................................. 64
圖4.15 專家數在有無加權對系統排序的平均排名精確度 ...................... 66
圖4.16 遺漏屬性個數在有無加權對系統排序的平均排名精確度 .......... 66
圖4.17 回合數在有無加權對系統排序的平均排名精確度 ...................... 67
圖4.18 不同層級在有無加權對系統排序的平均排名精確度 .................. 68
圖5.1 使用者B 的社會網絡架構 ................................................................ 69
圖5.2 使用者B 社會網絡之年齡分布 ........................................................ 70
圖5.3 使用者B 社會網絡之收入分布 ........................................................ 70
圖5.4 使用者B 社會網絡之電腦使用時數 ................................................ 71
圖5.5 使用者B 社會網絡之電腦使用情形 ................................................ 72
圖5.6 各專家數的回合次數累積圓柱圖 .................................................... 73
圖5.7 各遺漏屬性個數的回合次數累積圓柱圖 ........................................ 74
圖5.8 不同專家數的準確率 ........................................................................ 76
圖5.9 不同專家數的平均準確率 ................................................................ 76
圖5.10 不同遺漏屬性個數的準確率 .......................................................... 77
圖5.11 不同遺漏屬性的平均準確率 .......................................................... 78
圖5.12 各回合數在不同專家數的平均準確率 .......................................... 79
圖5.13 各回合數在不同遺漏屬性的平均準確率 ...................................... 80
圖5.14 專家層級的平均準確率 .................................................................. 81
圖5.15 專家數在有無加權對系統排序的平均排名精確度 ...................... 83
圖5.16 遺漏屬性個數在有無加權對系統排序的平均排名精確度 .......... 84
圖5.17 回合數在有無加權對系統排序的平均排名精確度 ...................... 85
圖5.18 不同層級在有無加權對系統排序的平均排名精確度 .................. 86
圖6.1 使用者C 的社會網絡架構 ................................................................ 87

圖6.2 使用者C 社會網絡之年齡分布 ........................................................ 88
圖6.3 使用者C 社會網絡之收入分布 ........................................................ 88
圖6.4 使用者C 社會網絡之電腦使用時數 ................................................ 89
圖6.5 使用者C 社會網絡之電腦使用情形 ................................................ 90
圖6.6 各專家數的回合次數累積圓柱圖 .................................................... 92
圖6.7 各遺漏屬性個數的回合次數累積圓柱圖 ........................................ 93
圖6.8 不同專家數的準確率 ........................................................................ 94
圖6.9 不同專家數的平均準確率 ................................................................ 95
圖6.10 不同遺漏屬性個數的準確率 .......................................................... 95
圖6.11 不同遺漏屬性的平均準確率 .......................................................... 96
圖6.12 各回合數在不同專家數的平均準確率 .......................................... 97
圖6.13 各回合數在不同遺漏屬性的平均準確率 ...................................... 98
圖6.14 專家層級的平均準確率 .................................................................. 99
圖6.15 專家數在意見有無加權上系統排序的排名精確度 .................... 101
圖6.16 遺漏屬性個數在意見有無加權上系統排序的排名精確度 ........ 102
圖6.17 回合數在意見有無加權對系統排序的排名精確度 .................... 103
圖6.18 不同層級在有無加權對系統排序的排名精確度 ........................ 103
圖7.1 各使用者在不同專家數對準確率之比較 ...................................... 109
圖7.2 各使用者在不同遺漏屬性個數的平均準確率之比較 .................. 109
圖7.3 各使用者在不同回合數的平均準確率 .......................................... 111
圖7.4 各使用者在不同專家層級的平均準確率之比較 .......................... 112
圖7.5 各使用者在不同專家數之系統排序的平均排名精確度 .............. 115
圖7.6 各使用者在遺漏屬性個數系統排序的平均排名精確度 .............. 115
圖7.7 各使用者在不同回合數之系統排序的平均排名精確度 .............. 116
圖7.8 各使用者在不同專家層級的平均排名精確度 .............................. 117

表目錄
表1.1 個人決策與群體決策的比較 .............................................................. 3
表2.1 群體智慧的比較 ................................................................................ 11
表2.2 各學者對社會網絡的研究 ................................................................ 17
表2.3 傳統與電子化腦力激盪的比較 ........................................................ 23
表2.4 各群體決策比較 ................................................................................ 25
表3.1 新案例/問題的提出 .......................................................................... 35
表3.2 擷取舊有案例形式 ............................................................................ 36
表3.3 個案之間的歐幾里得距離 ................................................................ 38
表3.4 意見在決策過程中的Rank 值 .......................................................... 42
表3.5 屬性範圍(1)-使用者和社會網絡成員基本背景設定 ...................... 44
表3.6 屬性範圍(2)-使用者和社會網絡成員對筆記型電腦特性設定 ...... 45
表3.7 屬性範圍(3)-資訊展的攤位訊息或環境設定 .................................. 45
表4.1 專家數或遺漏屬性個數在不同討論回合數的關係 ........................ 57
表4.2 使用者A-意見有加權和無加權的排名情況 ................................... 65
表5.1 專家數或遺漏屬性個數在不同討論回合數的關係 ........................ 75
表5.2 使用者B-意見有加權和無加權的排名情況 ................................... 82
表6.1 專家數或遺漏屬性個數在不同討論回合數的關係 ........................ 93
表6.2 使用者C-意見有加權和無加權的排名情況 ................................. 101
表7.1 各使用者的社會網絡人數比較 ...................................................... 105
表7.2 各使用者的社會網絡背景比較 ...................................................... 106
表7.3 各使用者達成一致性意見之討論回合數比較 .............................. 108
表7.4 各使用者分析情況 .......................................................................... 113
表7.5 傳統德菲法與本研究設計的決策模式之比較 .............................. 119
參考文獻 [1]Aamodt, A., Plaza, E. (1994), “Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches,” AI Communication, IOS press Vol. 7(1), pp. 39-59.
[2]Al-alawi A.I. (2006), “WiFi Technology: Future Market Challenges and Opportunities,” Journal of Computer Science, Vol. 2(1), pp. 13-18.
[3]Barnes, J. A. (1954), “Class and Committees in a Norwegian Island Parish,” Human Relations, Vol. 7, pp. 39-58.
[4]BarNir, A. and Smith, K. A. (2002), “Interfirm alliances in the small business:The Role of Social Networks,” Journal of small business management, Vol.43, pp. 219-232.
[5]Beni, G. (2005), “From Swarm Intelligence to Swarm Robotics,” Lecture Notes in Computer Science, Springer Berlin / Heidelberg.
[6]Bonabeau, E., Dorigo, M., Theraulaz, G. (1999), “Swarm Intelligence: From Natural to Artificial System,” New York: Oxford University Press.
[7]Bonabeau, E., Dorigo, M., Theraulaz, G., Deneubourg, J.-L., Aron, S., Camazine, S. (1997), “Self-Organization in Social Insects,” TREE, Vol. 12(5), pp.188-193.
[8]Bonabeau, E.& Meyer, C. (2001), “Swarm intelligence: A whole new way to think about business,” Harvard Business Review, May, pp.106-114.
[9]Borgatti, S. P. (1998), “What is Social Network Analysis,” posted at: www.analytictech.com/networks/whatis.htm.
[10]Brass, D. J. (1995), “A social network perspective on human resource management,” Research in personnel and human resources management, Vol. 13, pp. 39-79.
[11]Bunchanan, M. (2007), “The Social Atom: Why the Rich Get Richer, Gheaters Get Caught, and Yor Neighbor Usually Looks Like You,” Bloomsbury, USA.
[12]Burt, R. S. (1992), “Structural Holes: The Social Structure of Competition,” Harvard University Press, Cambridge, MA.
[13]Coward, C. (2002), “Obstacles to Developing an Offshore IT-Enabled Services industry in Asia: The view form the US,” Center for Internet Studies, University of Washington.
[14]Callander, S. and Plott, C. R. (2005), “Principles of Network Development and Evolution: An Experimental Study,” Journal of Public Economics, Vol. 89, pp. 1469–1495.
[15]Carrasco, J. A., Miller, E. J. (2009), “The Social Dimension in Action: A Multilevel, Personal Networks Model of Social Activity Frequency Between Individuals,” Transportation Research Part A, Vol. 43, pp. 90–104.
[16]Changchien, S. W., Lin, M.-C. (2005), “Design and implementation of a case-based reasoning system for marketing plans,” Expert Systems with Applications 28, Vol. 28(1) pp. 43–53.
[17]De Koning, A. J., Muzyka, D. F. (1999), “Conceptualizing Opportunity Recognition as a Socio-Cognitive Process,” Centre for Advanced Studies in Leadership, Stockholm.
[18]Delbecq, A. B., Van de Van, A. H . & Gustafson(1975), ”Group Techniques for Program Planning: A Guide to Nominal Group and Delphi Process,” Scott: Foresman and Company, Illinois.
[19]Dennis, A. R., George, J. f., Jessup, L. M., Nunamaker, J. F., and Vogel, D. R. (1988), “Information Technology to Support Electronic Meetings,” Management Information Systems Quarterly, Vol. 12(4), pp. 591-624.
[20]Dessler, G. (2003), “A Framework for Management 2nd edition,” Pentice Hall.
[21]Diehl, M., and Stroebe, W. (1987), “Productivity Loss in Brainstorming Groups: Toward Solution of A Riddle,” Journal of Personality and Social Psychology, Vol. 61, pp. 497-403.
[22]Dowling, K. L., Louis, R. D. St. (2000), “Asynchronous Implementation of The Nominal Group Technique: Is It Effective,” Decision Support Systems, Vol. 29(3), pp. 229-248.
[23]Ehrlich, K. & Carboni, I. (2005), “Inside Social Network Analysis,” Technical Report, IBM Watson Research Center, pp.1-13.
[24]Fowles, J. (1978), “Handbook of futures research,” Greenwood Press: Connecticut.
[25]Fulmer, Robert. M.(1993), “The Tools of Anticipatory Learning,” The Journal of Management Development, Vol. 12(6), pp. 7-14.
[26]Gallupe, R. B., Bastianutti, L. M., and Cooper, W. H.(1991), “Unblocking Brainstorms,” Journal of Applied Psychology, Vol. 76(1), pp. 137-142.
[27]Gallupe, R. B., Dennis, A. R., Cooper, W. H., Valacich, J. S., Bastianutti, L. M., Nunamaker, J. F. (1992), “Electronic Brainstorming and Group Size,” Academy of Management Journal,Vol.35(2), pp.350
[28]Garnier, S., Gautrais, J., Theraulaz, G. (2007), “The Biological Principle of Swarm Intelligence,” Swarm Intell, Vol.1, pp.3-31.
[29]Garton, L., Haythornthwaite, C., Wellman, B. (1997), “Studying Online Social Networks,” Journal of Computer-Mediated Communication, Vol. 3(1), http://jcmc.indiana.edu/vol3/issue1/garton.html.
[30]Granovetter, M. (1973), “The Strength of Weak Tie,” American Journal of Sociology, Vol. 78(6), pp. 1360-1380.
[31]Granovetter, M. (2005), “The Impact of Social Structure on Economic Outcomes,” Journal of Economic Perspectives, Vol. 19(1), pp. 33–50.
[32]Gultai R., and Gargiulo M. (1999), “Where do Interorganizational Networks Come Form,” American Journal of Sociology, Vol. 104(5), pp. 1439-1493.
[33]Haythornthwaite, C. (1996), “Social Network Analysis: An Approach and Technique for The Study of Information Exchange,” Library and Information Science Research, Lisr 18, pp.323-342.
[34]Helmer, O., Rescher, N. (1958), “On the Epistemology of the Inexact Sciences,” The RAND corporation.
[35]Heylighen, F. (1999), “Collective Intelligence and its Implementation on the Web: Algorithms to Develop a Collective Mental Map,” Computational & Mathematical Organization Theory, Vol. 5(3), pp. 253–280.
[36]H M T. (1957), “Applied Imagination--Principles and Procedures of Creative Thinking,” Personnel Journal (pre-1986); Jul 1957, Vol.36, pp.107.
[37]Kay, G. (1995), “Effective Meetings Through Electronic Brainstorming,” Management Quarterly, Vol. 14(6), pp. 4-25.
[38]Kennedy, J. (1999), “Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance”, Evolutionary Computing, Vol. 3, pp.1931–1938.
[39]Knoke, D. (1993), “Networks of Elite Structure and Decision Making,” Sociological Methods & Research, Vol. 22(1), pp. 23-45.
[40]Konke, D., and Kuklinski, J. H. (1982), “Network analysis: Basic concepts,” SAGE: Publications Ltd. London, UK.
[41]Krajewski L. J., Ritzman L. P. (2005), “Operations Management: Processes and Value Chain 7th edition,” Pearson Education, Prentice Hall.
[42]Levy, P. (1997) “Collective Intelligence: Mankind's Emerging World in Cyberspace,” New York : Plenum trade, pp.39-55
[43]Laughlin, P. R., Bonner, B. L., Miner, A. G. (2002), “Groups Perform Better Than the Best Individuals on Letters-to-Numbers Problems,” Organizational Behavior and Human Decision Processes, Vol. 88(2), pp. 605-620.
[44]Lewis, A. C., Sadosky, T. L., Connolly, T. (1975), “The Effectiveness of Group Brainstorming in Engineering Problem Solving,” Engineering Management, Vol. 22, pp. 119-124.
[45]Linstone, H.A. (1978), "The Delphi technique", in Fowles, R.B. (Eds), Handbook of Futures Research, Greenwood, Westport, CT.
[46]Listone, H. A., Turoff, M. (2002), “The Delphi Method: Techniques and Applications,” Addison-Wesley, Ma.
[47]McCallister, L. and Fischer, C. (1983), “A Procedure for Surveying Personal Networks,” in Bernard, H. R., Johnsen, E. C., Killworth, P. D., McCarty, C., Shelley, G. A., Robinson, S. (1990), “Comparing Four Different Methods for Measuring Personal Social Networks,” Social Networks, Vol. 12, pp. 179-215.
[48]McGlynn, R. P., McGurk, D., Effland, V. S., Johll, N. L. (2004), “Brainstorming and Task Performance in Groups Constrained by Evidence,” Organizational Behavior and Human Decision Processes, Vol. 93, pp. 75–87.
[49]Mitchell, J. C. (1969), “Social networks and urban situations,” Manchester University Press.
[50]Mullen, P. M. (2003), “Delphi: Myths and Reality,” Journal of Health Organization and Management, Vol. 17, pp. 37-52.
[51]Mylonakis, J., Malioukis, A. (2006), “Swarm Intelligence: A New Approach to Solving Critical Organizational Challenges in the Complex Future Business Environment,” European Journal of Scientific Research, Vol. 15(4), pp. 481-492.
[52]Nevo, D., Chan, Y.E. (2007), “A Delphi Study of Knowledge Management Systems: Scope and Requirements,” Information & Management, Vol. 44(6), pp. 583–597.
[53]Novakowski, N., Wellar, B. (2008), “Using the Delphi Technique in Normative Planning Research: Methodological Design Considerations,” Environment and Planning A, Vol. 40(6), pp. 1485-1500.
[54]Oh, H., Chung M. H., Labianca, G. (2004), “Group Social Capital and Group Effectiveness: The Role of Informal Socializing Ties,” Academy of Management Journal, Vol. 47(6), pp. 860-875.
[55]Okoli, C., Pawlowski, S. D. (2004), “The Delphi Method as A Research Tool: An Example, Design Considerations and Applications,” Information & Management, Vol. 42(1), pp.15–29.
[56]Oliver, C. (1990), “Determinants of Interorganizational Relationships: Intergration and Future Directions,” Academy of Management Review, Vol. 15(2), pp.241-265.
[57]Petkewich, R. (2007), “New education tools,” Chemical & Engineering News, Vol. 85(17), pp. 44–45.
[58]Perner, P. (2008), “Case-based Reasoning and the Statistical Challenges,” Quality and Reliability Engineering International, Vol. 24(6), pp.705-720.
[59]Robbins, S. P. and Coulter, M. (2006), “Management 8th edition,” Pearson Education, Prentice Hall.
[60]Rowe, G. and Wright, G. (1999), “The Delphi Technique As a Forecasting Tool: Issues and Analysis,” International Journal of Forecasting, Vol.15, pp.353-375.
[61]Schank, R. (1982), ”Dynamic Memory: A Theory of Reminding and Learning in Computers and People,” Cambridge University Press.
[62]Surowiecki, J. (2005), “The Wisdom of Crowds: Why The Many are Smart Than The Few...,” New York: Random House/Anchor Books.
[63]Teodorovic’, D. (2008), “Swarm Intelligence Systems for Transportation Engineering: Principles and Applications,” Transportation Research Part C , Vol. 16, pp. 651–667, Journal homepage: www.elsevier.com/locate/trc.
[64]Theraulaz, G., Pratte, M., Gervet, J. (1990), “Behavioural profiles in Polistes Dominulus Christ Wasp Societies: A Quantitative Study,” Behaviour, Vol. 113(3-4), pp. 223–247 in Beni, G. (2005), “From Swarm Intelligence to Swarm Robotics”, Lecture Notes in Computer Science, Springer Berlin / Heidelberg.
[65]Tindall, D., Wellman, B. (2001), “Canada as Social Structure: Social Network Analysis and Canadian Sociology, ” Canadian Journal of Sociology, Vol.26(3), pp. 265–308.
[66]Wang, C., Fergusson, C., Perry, D., Antony, J. (2008), “A Conceptual Case-Based Model for Knowledge Sharing Among Supply Chain Members,” Business Process Management Journal, Vol. 14(2), pp. 147-165.
[67]Warr, W. A. (2008), “Social software: fun and games, or business tools,” Journal of Information Science, Vol. 34(4), pp. 591–604.
[68]Wellman, B. (2001), “Computer Networks As Social Networks,” Science, Vol. 293 (14), pp. 2031-2034.
[69]Wellman, B., Frank, K.A., (2001), “Network Capital in a Multilevel World: Getting Support in Personal Communities,” In: Lin, N., Cook, K., Burt, R.S. (Eds.), Social Capital: Theory and Research. Aldine de Gruyter, New York.
[70]White, H. C., Boorman, S. A., Breiger, R. L. (1976), “Social Structure from Multiple Networks: I. Blockmodels of Roles and Positions,” American Journal of Sociology, Vol.81, pp.730-780.
[71]Williams, K. Y., and O’Reilly, C. A. (1998), “Demography and Diversity in Organizations: A Review of 40 Years of Research,” Research in Organizational Behavior, Vol. 20, pp. 77-140.
[72]Yamakami, T. (2007), “Mobile Web 2.0: Lessons from Web 2.0 and Past Mobile Internet Development,” International Conference on Multimedia and Ubiquitous Engineering (MUE'07), pp. 1-5.
[73]Ziglio, E. and Adler, M. (1996), “Gazing Into the Oracle: The Delphi Method and Its Application to Social Policy and Public Healthy,” London: Jessica Kingsley, pp.1-33.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信