淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0907200820020600
中文論文名稱 沉浸式薄膜過濾中粒子附著機構之研究
英文論文名稱 A Study on the Mechanism of Particle Deposition in Submerged Membrane Filtration
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 陳祥嘉
研究生英文姓名 Hsiang-Chia Chen
學號 695400795
學位類別 碩士
語文別 中文
口試日期 2008-06-26
論文頁數 111頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-童國倫
委員-莊清榮
委員-鄭東文
中文關鍵字 沉浸式薄膜過濾  微過濾  附著機率  粒徑分佈 
英文關鍵字 Submerged membrane filtration  Microfiltration  Particle deposition  Particle size distribution 
學科別分類
中文摘要 本研究在討論操作條件對沉浸式薄膜過濾之粒子附著機構的影響。以孔洞大小為0.1μm之薄膜,過濾平均粒徑為7μm之聚甲基丙烯酸甲酯(PMMA)粒子,探討不同的過濾通量、過濾時間、通入空氣之曝氣量與氣泡大小等操作條件對粒子的附著機構與過濾效能之影響。
研究結果顯示:針對次微米粒子而言,粒子間的作用力是影響粒子附著的主要作用力,隨著粒徑的提升,粒子間的作用力之影響便逐漸減小,轉而由切線方向的作用力來主導。當過濾時間達3600秒時,最終壓力與濾餅便以達到一擬穩定值,且當過濾通量三倍,最終壓力提高了近5倍,而濾餅量則增加約7倍的量。根據實驗所得之數據可知,粒子的附著可依據其分佈的不同而做區分,當粒徑在1μm以下時,粒子間的附著會受到粒子間作用力的影響,隨著粒徑的增加而變小,但是當粒徑大於1μm後,粒子間的作用力之影響便不在顯著,使得其機率逐漸上升,但隨著粒子的增大,切線方向的作用力也隨之加大,使得附著機率逐漸開始下降,而當粒徑大過10μm之後,粒子便不易附著,而粒子的附著會隨著操作條件的不同而有所改變。通入氣泡除了有助於掃除濾餅之外,還能使小粒子易於附著,且通氣量越大,此現象就越為明顯,且經比較之後發現,改變氣泡大小的效果比通氣量來得大;而加入通氣會膜面的穩定性減小,進而導致粒子不易附著,使其附著機率下降,且當粒徑越大,此現象就越為顯著。理論所計算出來的濾餅性質與實驗所求得之濾餅性質相比,仍須將理論計算的部份加以修正,如此方能使其符合實驗值。
英文摘要 The effects of operated conditions, such as filtration flux, filtration time, particle size, aeration intensity, air bubble size on the deposition properties, cake properties, and the performance in submerged membrane filtration are studied. A particulate sample with a wide size distribution range from submicron to micron is used in experiments. The properties of particle deposition are analyzed based on a force analysis. The results show that: For submicron particle, the interparticle force plays a major role in particle deposition, however, the drag force, gravitational force and bubble shear force increase their importance as particle increase. When particle size is larger than 1μm, the interparticle force drops rapidly, i.e. the van der Waals force is greater than electrostatic force under these conditions. Therefore, the importance forces that effect particle deposition include drag force, gravitational force and bubble shear force as particle size larger than 10μm. Increasing filtration flux lead to enlarge normal drag force and increase deposition properties. An increase in aeration intensity and reduction of bubble size can also decrease particle deposition properties. Furthermore, the cake properties, such as mass, porosity and average specific filtration resistance of cake would be affected by deposition properties. Although some theoretical cake properties are closed to experimental data, but the probability of particle deposition functions still need to modify.
論文目次 目錄
中文摘要……………………………...…………………………………..І
英文摘要……………………………………………………….………..ІІ
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 5
第二章 文獻回顧 6
2-1 薄膜生物反應器的特性與種類 6
2-2 薄膜結垢、積垢對過濾的影響 11
2-3 在過濾程序中通入氣泡對結垢的影響 17
第三章 理論 24
3-1 粒子在濾面上之附著機構 24
3-2 阻力串聯模式 33
第四章 實驗裝置與步驟 36
4-1 實驗裝置 36
4-2 實驗物料 38
4-3 分析儀器 39
4-4 實驗步驟 40
第五章 結果與討論 42
5-1 膜面的力分析與粒子附著之關係 42
5-2 過濾通量對粒子附著之影響 47
5-3 氣泡對粒子附著之影響 64
5-4 過濾阻力之分析 80
第六章 結論 88
符號說明 91
參考文獻 95
附錄 105
附錄A 實驗物料之種類及物性 105
附錄B 實驗數據計算公式 110

圖目錄
Fig. 1- 1 The classification of membrane filtration process 2
Fig. 2- 1 External membrane bioreactor 8
Fig. 2- 2 Submerged membrane bioreactor 9
Fig. 2- 3 Selective deposition of particle A on particle B (Lu et al. 1995) 12
Fig. 2- 4 Effect of the main membrane fouling factor 15
Fig. 2- 5 Stages of fouling 20
Fig. 2- 6 (a) (Bubble flow) (b) (Slug flow) (c) (Churn flow) (d) (Annular flow)( Taitel,1980) 23
Fig. 3- 1 Forces exerted on a depositing particle in a submerged micro-filtration 25
Fig. 3- 2 Interaction energy of van der Waals force and electrical double layer repulsive force under different distanece 30
Fig. 3- 3 Overview of various types of resistance in membrane filtration 33
Fig. 4- 1 A schematic diagram for constant flux filtration of Submerged filtration system 37
Fig. 5- 1 Forces exerted on particles with various diameter 44
Fig. 5- 2 Normal drag forces exerted on particles with various diameter under different filtration flux 46
Fig. 5- 3 Time course of final filtration pressure under various filtration flux 47
Fig. 5- 4 Time course of cake weight under various filtration flux 48
Fig. 5- 5 Effect of filtration time on the particle size distribution in the cake 49
Fig. 5- 6 Effect of filtration time on deposition property with different particle size in the cake 51
Fig. 5- 7 Effect of flux on the particle size distribution in the cake 52
Fig. 5- 8 Effect of filtration flux on deposit property with different particle size in the cake 53
Fig. 5- 9 Effects of particle diameter on the particle depositing function(top), force ratio(middle), probability of particle deposition(bottom) with flux = 3.8 x 10-5 m3/m2s 54
Fig. 5- 10 Effects of particle diameter on the particle depositing function(top), force ratio(middle), probability of particle deposition(bottom) with different flux 58
Fig. 5- 11 Time course of cake resistances under various filtration flux 61
Fig. 5- 12 The SEM picture of 0.1 MF membrane after filtration 62
Fig. 5- 13 Comparison of average specific filtration resistances of the cake under various filtration flux 63
Fig. 5- 14 Comparison of porosity of the cake under various filtration flux 63
Fig. 5- 15 Forces exerted on particles with various diameter 64
Fig. 5- 16 Comparison of cake weight under various aeration intensity 65
Fig. 5- 17 Comparison of Final pressure with aeration(blue), without aeration(black) under various filtration flux 66
Fig. 5- 18 Comparison of cake weight with aeration(blue) ; without aeration(red) under various filtration flux 67
Fig. 5- 19 Comparison of particle size distribution under various aeration intensity(db = 0.6cm) 68
Fig. 5- 20 Effects of particle diameter on the particle depositing function(top), force ratio(middle), probability of particle deposition(bottom) with different aeration intensity (db = 0.6cm) 69
Fig. 5- 21 Comparison of cake weight with different bubble size. 72
Fig. 5- 22 Comparison of bubble shear force with different conditions 73
Fig. 5- 23 Comparison of particle size distribution in different air bubble size 74
Fig. 5- 24 Effects of particle diameter on the particle depositing function(top), force ratio(middle), probability of particle deposition(bottom) with different air bubble size. 75
Fig. 5- 25 Comparison of cake resistances of the cake in different conditions 78
Fig. 5- 26 Comparison of average specific filtration resistances of the cake in different conditions 77
Fig. 5- 27 Comparison of average porosity of the cake in different conditions 78
Fig. 5- 28 Comparison of cake mass between theory results and experimental data under various filtration fluxes 80
Fig. 5- 29 Comparison of average mean particle size of between theory results and experimental data under various filtration fluxes 81
Fig. 5- 30 Comparison of average specific filtration resistance of cake between theory results and experimental data under various filtration fluxes 82
Fig. 5- 31 Comparison of cake resistance between theory results and experimental data under various filtration fluxes 83
Fig. 5- 32 Comparison of cake mass between theory results and experimental data under various aeration conditions 84
Fig. 5- 33 Comparison of average mean particle size of cake between theory results and experimental data under various aeration conditions 85
Fig. 5- 34 Comparison of average specific filtration resistance of cake between theory results and experimental data under various aeration conditions 86
Fig. 5- 35 Comparison of cake resistance between theory results and experimental data under various aeration conditions 87
Fig. A.1- 1 The SEM picture of PMMA powder. (x 10 KX) 105
Fig. A.1- 2 Particle size distribution of PMMA powder. (MR-7G) 106
Fig. A.2- 1 The top view of the mixed cellulose ester membrane by SEM (x 30 KX) 107
Fig. A.2- 2 The side view of the mixed cellulose ester membrane by SEM (x 30 KX) 108
Fig. A.3- 1 Photo of aeration equipment 109


表目錄
Table 4- 1 The operating conditions used in this study 41
Table 5- 1 Comparison of cake weight with different conditions 73

參考文獻 Adrian P.S. Yeo, Adrian W.K. Law, A.G. Fane, “Factors affecting the performance of a submerged hollow fiber bundle.” Journal of membrane Science 280, pp. 969-982, 2006
Adrian P.S. Yeo, Adrian W.K. Law, A.G. Fane, “The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry.”, Journal of Membrane Science 304, pp. 125-137, 2007
Bai, R., Leow, H.F., “Microfiltration of activated sludge wastewater-The effect of system operation parameters”, Separation and Purification Technology 29 (2), pp. 189-198, 2002
Baker, J.S., Dudley, L.Y., “Biofouling in membrane systems - a review”, Desalination 118 (1-3), pp. 81-90, 1999
Barker, D.J., Stuckey, D.C., “Modeling of soluble microbial products in anaerobic digestion: The effect of feed strength and composition”, Water Environment Research 73 (2), pp. 173-184, 2001
Belfort, G.,J. M. Pimbley, A. Greiner and K. Y. Chung, “Diagnosis of Membrane Fouling Using Rotating Annular Filter. 1. Cell Culture Media”, J. Membrane Sci., 77, pp. 1-22, 1993
Bouhabila, E. H., R. B. Aı‥m and H. Buisson, “Fouling Characterisation in Membrane Bioreactors”, Separation and Purification Technology, 123, pp. 22-23, 2001
Bowne, W. R., Calvo, J. I., and Hernandez, A. “Steps of Membrane blocking in flux decline during protein microfiltration. ”, J. Membr. Sci., 101, pp. 153-165, 1995
B.S. Lim, B.B. Choi, S.W. Yu and C.G. Lee, “Effects of operational parameters on aeration on/off time in an intermittent aeration membrane bioreactor.” Desalination 2002, pp. 77-82, 2007
C.C.V. Chan, P.R. Berube and E.R. Hall, “Shear profiles inside gas sparged submerged hollow fiber membrane modules.”, Journal of Membrane Science 297, pp. 104-120, 2007
Chang, S. and A. G. Fane, “Filtration of Biomass with Laboratory-scale Submerged Hollow Fiber Modules-effect of Operating Conditions and Module Configuration.”, J. Chem Tech Biotechnol., 77, pp. 1030, 2002
Chiemchaisri, C., Wong, Y.K., Urase, T., Yamamoto, K., “Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment.”, Water Science and Technology 25 (10), pp. 231-240, 1992
Chio, J. G., T. H. Bae, J. H. Kim, T. M. Tak, and A. A. Randall, “The Behavior of Membrane Fouling Initiation on the Crossflow Membrane Bioreactor System”, Journal of Membrane Science, 203, 103, 2001
Choo, K.-H., Stensel, H.D., “Sequencing batch membrane reactor treatment: Nitrogen removal and membrane fouling evaluation.”, Water Environment Research 72 (4), pp. 490-498, 2000
Cote, P., H. Buisson, C. Pound and G. Arakaki, “Immersed Membrane Activated Sludge for the Reuse of Municipal Wastewater”, Desalination., 113, pp. 189, 1997
Defrance, L., Jaffrin, M.Y.; Gupta, B.; Paullier, P.; Geaugey, V. “Contribution of various constituents of activated sludge to membrane bioreactor fouling”, Bioresource Technol. 73, pp. 105-112, 2000
Dufrance, R., H. C. Lavallee, R. E. Lebrun and S. O. Lo, “Comparison of Performance between Membrane Bioreactor and Activated Sludge System for the Treatment of Pulping Process Wastewaters.”, Tappi J., 81, pp. 131, 1998
Fane, A. G., “Membranes for water production and wastewater reuse. ”, Desalination, 106, pp. 1-9, 1996
Fang, H. H. P. and X. Shi, “Pore Fouling of Micofiltration Membrane by Activated Sludge”, Journal of Membrane Science , 264 , pp. 161, 2005
Fengshen Fan and Hongde Zhou, “Interrelated Effects of Aeration and Mixed Liquor Fractions on Membrane Fouling for Submerged Membrane Bioreactor Processes in Wastewater Treatment.” Environ. Sci. Technol. 42, pp. 2523-2528, 2007
Gander, M., B. Jefferson and S. Judd, “Aerobic MBRs for Domestic Wastewater Treatment: A Review with Cost Considerations”, Separation and Purification Technology, 18, pp. 199, 2000
Harada, H., K. Momonoi, S. Yamazaki and S. Takizawa, “Application of Anaerobic UF Membrane Reactor for Treatment of a Wastewater Containing High Strength Particulate Organics”, Wat. Sci. Tech., 30, pp. 307, 1994
Hong, S. P., T. H. Tak, S. Hong, and A. Randallb, “Fouling Control in Activated Sludge Submerged Hollow Fiber Membrane Bioreactors”, Desalination, 143, pp. 209, 2002
Howell, J.A., Chua, H.C., Arnot, T.C., “In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history. ”, Journal of Membrane Science 242 (1-2), pp. 13-19, 2004
Jia, X. S., “Extracellular Polymers of Hydrogen-utilizing Mechanogenic and Slulfate-reducing Sludges”, Wat. Res., 30, pp. 1439, 1996
Jefferson, B., A. L. Laine, T. Stephenson and S. L. Judd, “Advanced Biological Unit Process for Domestic Water Recycling.”, Water. Science and Technology, 43, pp. 211, 2001
Jungmin Lee, Won-Young Ahn and Chung-Hak Lee, “Comparison of The Filtration Characteristics Between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor.” Wat. Res. 35(10) pp. 2435-2445, 2001
Kang, I. J., S. H. Yoon and C.H. Lee, “Comparison of the Filtration Characteristics of Organic and Inorganic Membranes in a Membrane-coupled Anaerobic bioreactor”, Water Research, 36, pp. 1803, 2002
Karapang, N. K., “Extraction and Characterization of Extracellular Polymers in Digester Sewage Sludge”, J. Chem. Tech., Biotechnol, 44, pp. 107, 1993
Kishino, H., Ishida, I., and Nakano, I. Domestic., “Wastewater reuse sing a submerged membrane bioreactor.”, Desalination, 106, pp. 115-119, 1996.
Kim, J., Cho, J., Ryba, E., Bai, J., “Interfacial Structures of Polyurethane Thin Films on Various Substrate Materials. ”, Polymer Journal 35 (12), pp. 929-937, 2003
Kim, J. S., C. H. Lee and I. C. Chang, “Effect of Pump Shear on the Performance of a Crossflow Membrane Bioreactor”, Wat. Res., 35, pp. 2137, 2001
Kim, S. H., S. Y. Moon, C. H. Yoon, S. K. Yim and J. W. Cho, “Role of Coagulation in Membrane Filtration of Wastewater for Reuse”, Desalination, 173, pp. 301, 2004
Knoblock, M.D., Sutton, P.M., Mishra, P.N., Gupta, K., Janson, A, “Membrane biological reactor system for treatment of oily wastewaters.”, Water Environment Research 66 (2), pp. 133-139, (1994)
Koyuncu, I., E. Kural and D. Topacik, “Pilot Scale Nanofiltration Membrane Sepration for Waste Management in Textile Industrial.”, Water Science and Technology, 43, pp. 233, 2001
Kuo-Jen Hwang and Mei-Chou Yu and Wei-Ming Lu, “Migration and Deposition of Submicron Particles in Crossflow Microfiltration.”, Separation Science and Technology, 32(17), pp. 2723-2747, 1997
Kuo-Jen Hwang and Hseng-Chang Liu and Wei-Ming Lu, “Local properties of cake in cross-flow microfiltration of submicron particles.”, Journal of Membrane Science 138, pp. 181-192, 1998
Kuo-Jen Hwang and Fung-Fu Chen, “Modeling of Particle Fouling and Membrane Blocking in Submerged Membrane Filtration.” Separation Science and Technology, 42, 99. pp. 2595-2614, 2007
Lee, J., W. Y. Ahn and C. H. Lee, “Comparison of the Filtration Characteristics Between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor.”, Wat. Res.35, pp. 2435, 2000
Leow, H. F. and Bai, R. B., “Nylon screen incorporated into Hollow fiber microfiltration system for wastewater treatment.”, Water Sci. Techno. 1, pp. 131, 2001
Lim, A.L., Bai, R., “Membrane fouling and cleaning in microfiltration of activated sludge wastewater.”, Journal of Membrane Science 216 (1-2), pp. 279-290, 2003
Liu, R., X. Huang, C. Wang, L. Chen andY. Qian, “Study on Hydraulic Characteristics in a Submerged Membrane Bioreactor Process”, Process Biochemistry, 36, pp. 249, 2000
Lubbecke, S., A. Vogelpohl and W. Dewjanin, “Wastewater Treatment in a Biological High-performance System with High Biomass Concentration”, Wat. Tes., 29, pp. 793, 1995
Morgan, J. W., “A Comparative Study of the Nature of Biopolymers Extracted from Anaerobic and Activated Sludge”, Wat. Res., 24, pp. 743, 1990
Mutlu, S. H., U. Yetis, T. Gurkan and L.Yilmaz, “Decolorization of Wastewater of a Baker’s Yeast Plant by Membrane Processes”, Water Research , 36, pp. 609, 2002
Nagaoka, H., S. Ueda, A. Miya, “Influence of Bacterial Extracellular Polymers on the Membrane Separation Sludge Process”, Wat. Sci. Tech., 34, pp. 165, 1996
Nijhuis, H.H., Mulder, M.H.V., Smolders, C.A., “Removal of trace organics from aqueous solutions. Effect of membrane thickness. ”, Journal of Membrane Science 61, pp. 99-111, 1991
Noriatsu Ozaki and Kazuo Yamamoto, “Hydraulic effects on sludge accumulation on membrane surface in crossflow filtration.”, Wat. Res. 35(13), pp. 3137-3146, 2001
Nuengjamnong, C., J. H. Kweon, J. Cho, K. H. Ahn, and C. Polprasert, “Influence of Extracellular Polymeric Substances on Membrane Fouling and Cleaning in a Submerged Membrane Bioreactor. ”, Colloid. Journal, 67, pp. 251, 2004
Nuengjamnong, C., J. H. Kweon , J. Cho, C. Polprasert, K. H. Ahn, “Membrane Fouling Caused by Extracellular Polymeric Substances during Microfiltration Processes”, Desalination., 179, pp. 117, 2005
Ogoshi, M. and Y. Suzuki, “Application of Membrane Separation to An Easily Installed Municipal Wastewater Treatment Plant. ” International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Janpan, November 1-4, pp. 250, 1999
Parameshwaran, K. Fane, A. G. Cho, B. D. and Kim, K. J. “Analysis of microfiltration performance with constant flux processing of secondary effluent. ”, Water Res. 35, pp. 4349, 2001
Ping Gui, Xia Huang, Ying Chen and Yi Qian , “Effect of Operational Parameters on Sludge Accumulation on Membrane Surfaces in a Submerged Membrane Bioreactor.,” Desalination, 151, pp. 185, 2002
Pierre, C., B. Herve and P. Matthieu, “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater ”, Wat. Sci. Tech., 38, pp. 437, 1998
Psoch, C., and S. Schiewer, “Long-term Study of an Intermittent Air Sparged MBR for Synthetic Wastewater Treatment”, Journal of Membrane Science , 260 , pp. 56, 2005
Rishi, S and R. Bhave, “Role of Backpulsing in Fouling Minimization in Crossflow Filtration with Ceramic Membranes.”, J. Membrane Sci., 186, pp. 41, 2001
Seo, G.T., Moon, B.H., Park, Y.M., Kim, S.H., “Filtration characteristics of immersed coarse pore filters in an activated sludge system for domestic wastewater reclamation. ”, Water Science and Technology 55 (1-2), pp. 51-58, 2007
Seung-Hwa, B., Kim, J.-H., Kim, H.-A., Lee, S.-M., Lee, C.-Y., Kho, Y.-H., Lee, C.-H., “Melanin biosynthesis inhibitory activities of coumarins isolated from Angelica polymorpha MAXIM. ”, Korean Journal of Microbiology and Biotechnology 31 (2), pp. 135-139, 2003
Seyfried, A., E. Dorgeloh, E. Brand and P. Ohle, “Effect of the Membrane Technology on the Dimensioning of Municipal Wastewater Treatment Plants ”, Wat. Sci. Tech., 38, pp. 173, 1998
Shimizu, Y., Y. I. Okuno and K. Uryu, “Filtration Characterist of Hollow Fiber Microfiltration Membrane Used in Membrane Bioreactor for Domestic Wastewater Treatment.”, Wat. Res., 30, pp. 2385, 1996
Shin, H. S., S. M. Lee, I. S. Seo, G. O. Kim, K. H. Lim and J. S. Song, “Pilot-Scale SBR and MF Operation for Removal of Origanic and Nitrogen Compounds from Greywater.”, Water Science and Technology, 38, pp. 79, 1998
Sherwood, L.M., Potts Jr., J.T., “Conformational studies of pancreatic ribonuclease and its subtilisin-produced derivatives.”, Journal of Biological Chemistry 240 (10), pp. 3799-3805, 1965
Sur, H.W., Cui, Z.F., “Enhancement of microfiltration of yeast suspensions using gas sparging - Effect of feed conditions.”, Separation and Purification Technology 41 (3), pp. 313-319, 2005
Tardieu, E., Grasmick, A., Geaugey, V., and Manem, J. “Hydrodynamic control of bioparticle depositionin a MBR applied to wastewater treatment. “ J. Membr. Sci., 147, pp. 1-12, 1998.
Tatsuki Ueda, Kenji Hata, Yasuto Kikuoka and Osamu Seino, “Effects of Aeration on Suction Pressure in A Submerged Membrane Bioreactor.” Wat. Res. 31(3), pp. 489-494, 1997
Tenno, R. and H. Paulapuro, “Removal of Dissolved Organic Compounds form Paper Machine Whitewater by Membrane Bioreactors: A Comparative Analysis”, Control Engineering Practice, 7, pp. 1085, 1999
Tung, K.-L., Chuang, C.-J., “Effect of pore morphology on fluid flow and particle deposition on a track-etched polycarbonate membrane. ”, Desalination 146 (1-3), pp. 129-134, 2002
Ueda, T., K. Hata and Y. Kikuoka, “Treatment of Domestic Sewage Fromrural Settlements by a Membrane Bioreactor”, Wat. Sci. Tech., 34, pp. 189, 1996
Urbain, J. C., “Bioflocculation in Activated Sludge: An Analytic Approach.”, Wat. Res., 27, pp. 829, 1993
Wei-Ming Lu and Shang-Chung Ju, “Selective Particle Deposition in Crossflow Filtration”, Separation Science and Technology, 24(7 & 8), pp. 517-540, 1989
Wei-Ming Lu and Kuo-Jen Hwang, “Mechanism of cake formation in constant pressure filtrations.”, Sep. Technol. 3, pp. 122-132, 1993
Wei-Ming Lu and Kuo-Jen Hwang, “Cake Formation in 2-D Cross-Flow Filtration.”, AIChE Journal, 41(6), pp. 1443-1455, 1995
Wisniewski, C., Grasmick, A., “Floc size distribution in a membrane bioreactor and consequences for membrane fouling. ”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 138 (2-3), pp. 403-411, 1998
Wontae, Lee, S. Kang, H. Shin, “Sludge Characteristics and Their Contribution to Microfiltrationin Submerged Membrane Bioreactors.”, J. Membrane Sci., 216, pp. 217, 2003
Xing, C. H., X. H. Wen, Y. Qian and E. Tardieu, “Ultrafiltration Membrane Bioreactor for Urban Wastewater Reclamation.”, J. Membr. Sci., 177, pp. 73, 2000
Yamamoto, K., M. Hiasa, T. Mahmood and T. Matsuo, “Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank.”, Water Science and Technology, 21 , pp. 43, 1989
Yeom, I. T; Nah, Y. M.; Ahn K. H., “Treatment of household wastewater using an intermittently aerated membrane bioreactor. ”, Desalination, 124, pp. 193, 1999
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信