淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0906201322391500
中文論文名稱 合作式通訊系統在快速雷利衰弱通道下之差動二元相位鍵移調變之研究
英文論文名稱 Differential BPSK Modulation for Cooperative Communication Systems in Fast Rayleigh Fading Channels
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 談胤宏
研究生英文姓名 Yin-Hung Tan
學號 600440340
學位類別 碩士
語文別 中文
口試日期 2013-05-30
論文頁數 51頁
口試委員 指導教授-易志孝
委員-曾憲威
委員-李揚漢
中文關鍵字 差動二元相位鍵移調變  合作式通訊系統  放大和前送中繼  快速雷利衰減通道  都卜勒展延 
英文關鍵字 DBPSK  Cooperative Communication Systems  Amplify-and-forward Relay  Fast Rayleigh Fading Channels  Doppler Spread 
學科別分類 學科別應用科學電機及電子
中文摘要 在本論文中,我們探討具有放大和前送中繼站的合作式通訊系統在快速雷利衰減通道下,使用差動二元相位鍵移調變之效能。當通道增益具有快速變化的特性時,使用差動調變可以使得通道估計的過程變得較為簡單,同時可以免除同調調變中導航信號所需消耗的功率及頻寬負擔。先前關於此主題的研究文獻,假設兩個相鄰符號週期的通道增益是相同的,且各通道間具有相同的都卜勒展延。於此論文中,我們將相鄰通道增益的時間選擇性及不同通道可能具有相異的都卜勒展延加入考慮。基於最大概似準則,我們針對具差動二元相位鍵移調變的合作式通訊系統推導出最佳多樣性組合權重。由於該最佳的組合權重值相依於中繼端到目的地端的通道增益,而使用差動二元相位鍵移調變的系統中確實得知通道狀態資訊是不實際的,因此我們提出了一種次佳多樣性的組合規則,它使用通道增益的二階統計量來取代瞬間通道增益。與並無考慮時間選擇性之多樣性組合規則在基於放大和前送中繼的合作式通訊系統於快速雷利衰減通道下之效能做一比較,電腦模擬的結果顯示出我們所提出的多樣性組合規則具有較優越的性能,尤其是當中繼節點和目的節點有不同的都卜勒展延時。
英文摘要 In this thesis, we consider the amplify and forward relaying cooperative communication system employing differential binary phase shift keying modulation in fast Rayleigh fading channels. When channel gains are fast varying, it is well known that differential modulation can ease the channel estimation process and reduce the power and bandwidth overhead occurred in coherent modulation schemes. Unlike the previous work on this topic which always assumed the channel gains are the same over two adjacent symbol periods, we model the channel time selectivity exactly in our formulation and derive the optimal diversity combining weights for the amplify and forward relaying system based on the maximum likelihood criterion. Since the optimum combining rule depends on the channel gains of the relay to destination links which are usually unavailable in the context of differential modulation, we propose a suboptimal diversity combining rule which replaces the instantaneous channel gains by their second order statistics. Compared with the performance of the diversity combining rule without taking the time selectivity into account, computer simulation results show that the proposed diversity combining rule has superior performance for the amplify and forward relaying system in fast Rayleigh fading channels, especially when the relay and destination nodes have different Doppler spreads.
論文目次 誌謝...................................................................Ⅰ
中文摘要...............................................................Ⅱ
英文摘要...............................................................Ⅳ
目錄...................................................................Ⅵ
圖目錄.................................................................Ⅶ
第一章 緒論............................................................1
1.1 文獻回顧與研究動機............................................1
1.2 論文架構......................................................4
第二章 基於放大和前送中繼之合作式通訊系統..............................5
2.1 差動二元相位鍵移調變介紹......................................5
2.2 合作式通訊系統模型介紹........................................7
第三章 無線行動通道模型...............................................13
3.1 概述.........................................................13
3.2 固定至行動的通道模型.........................................13
3.3 行動至行動的通道模型.........................................19
第四章 差動二元相移鍵控調變之合作式通訊系統...........................23
4.1 概論.........................................................23
4.2 系統模型.....................................................24
4.3 最佳和次佳的檢測規則.........................................27
4.3.1 最佳的檢測規則...........................................27
4.3.2 次佳的檢測規則I.........................................33
4.3.3 次佳的檢測規則II........................................35
4.4 數值結果.....................................................37
第五章 結論...........................................................45
參考文獻...............................................................46
圖目錄
圖2-1 合作式通訊系統示意圖...........................................7
圖3-1 單環模型簡圖..................................................15
圖3-2 雙環模型簡圖..................................................21
圖3-3 離去角度 和到達角度 之示意圖..............................21
圖4-1 一個雙跳中繼系統的示意圖......................................24
圖4-2 AF中繼系統的DBPSK調變在快速雷利衰減通道的位元BER效能圖......36
圖4-3 AF中繼系統的DBPSK調變在快速雷利衰減通道的位元BER效能圖......38
圖4-4 AF中繼系統的DBPSK調變在快速雷利衰減通道的位元BER效能圖......39
圖4-5 AF中繼系統的DBPSK調變在快速雷利衰減通道的位元BER效能圖......40
圖4-6 AF中繼系統的DBPSK調變在快速雷利衰減通道的位元BER效能圖......41
圖4-7 AF中繼系統的DBPSK調變在快速雷利衰減通道的位元BER效能圖......42
圖4-8 AF中繼系統的DBPSK調變在快速雷利衰減通道的位元BER效能圖......43
圖4-9 AF中繼系統的DBPSK調變在快速雷利衰減通道的位元BER效能圖......44
參考文獻 [1] E. C. Van der Meulen, Transmission of Information in a T-Terminal Discrete Memoryless Channel. Department of Statistics, University of California, Berkeley, 1968.
[2] E. C. Van der Meulen, “Three-terminal communication channels,” Adv. Appl. Prob., vol. 3, pp. 120-154, 1971.
[3] E. C. Van der Meulen, “A survey of multi-way channels in information theory: 1961-1976,” IEEE Trans. Inform. Theory, vol. 23, no. 2, pp. 1-37, Jan. 1977.
[4] A. Host-Madsen and J, Zhang, “Capacity bounds and power allocation for wireless relay channel,” IEEE Trans. Inform. Theory, vol. 51, no. 6, pp. 2020-2040, Jun. 2005.
[5] T. M. Cover and A. El Gamal, “Capacity theorems for the relay channels,” IEEE Trans. Inform. Theory, vol. 25, no. 9, pp. 572-584, Sep. 1979.
[6] A. Reznik, S. R. Kulkarni, and S. Verdu, “Capacity and optimal resource allocation in the degraded Gaussian relay channel with multiple relays,” in Proc. Allerton Conf. Commun., Control, Comput., Oct. 2002, pp. 377-386.
[7] B. Schein and R. Gallager, “The Gaussian parallel relay network,” in Proc. IEEE Int. Symp. Information Theory (ISIT), July 2002, pp. 22.
[8] P. Gupta and P. R. Kumar, “Toward an information theory of large networks: An achievable rate region,” IEEE Trans. Inform. Theory, vol. 49, no. 8, pp. 1877-1894, Aug. 2003.
[9] L. Xie and P. R. Kumar, “A network information theory for wireless communication: Scaling laws and optimal operation,” IEEE Trans. Inform. Theory, vol. 50, no. 5, pp. 748-767, May 2004.
[10] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Trans. Inform. Theory, vol. 51, no. 9, pp. 3037-3063, Sep. 2005.
[11] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity – Part I: System description,” IEEE Trans. Commun. vol. 51, no. 11, pp. 1927-1938, Nov. 2003.
[12] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity – Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939-1948, Nov. 2003.
[13] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[14] T. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, “High-performance cooperative demodulation with decode-and-forward relays,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1427-1438, July. 2007.
[15] D. Chen and J. N. Laneman, “Modulation and demodulation for cooperative diversity in wireless systems,” IEEE Trans. Wireless Commun., vol. 5, no. 7, pp. 1785-1794, July 2006.
[16] K. Azarian, H. El Gamal, and P. Schniter,”On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels”, IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4152-4172, Dec. 2005.
[17] M. Yuksel and E. Erkip, “Multiple-antenna cooperative wireless systems: A diversity–multiplexing tradeoff perspective,” IEEE Trans. Inform. Theory, vol. 53, no. 10, pp. 3371-3393, Oct. 2007.
[18] J. N. Laneman and G. W. Wornell, “Exploiting distributed spatial diversity in wireless networks,” in Proc. Allerton Conf. Communications, Control, Computing, Urbana-Champagne, IL, Oct. 2000.
[19] V. Emamian and M. Kaveh, “Combating shadowing effects for systems with transmitter diversity by using collaboration among terminals,” in Proc. Int. Symp. Commun., Taiwan, Nov. 2001, pp.105.1-105.4.
[20] M. O. Hasna and M.-S. Alouini, “Performance analysis of two-hop relayed transmissions over Rayleigh fading channels,” In Proc. Vehicular Technology Conf., Birmingham, AL, 2002, pp. 1992-1996.
[21] M. O. Hasna and M.-S Alouini, “Harmonic mean and end-to-end performance of transmission systems with relays,” IEEE Trans. Commun, vol. 52, no. 1, pp. 130-135, Jan. 2004.
[22] T. Himsoon, W. Su, and K. J. R. Liu, “Differential transmission for amplify-and-forward cooperative communications, ” IEEE Signal Proc. Letters, vol. 12, no. 9, pp. 597-560, Sep. 2005.
[23] Q. Zhao and H. Li, “Differential modulation for cooperative wireless systems,” IEEE Trans. Signal Proc., vol. 55, no. 5, pp. 2273-2283, May 2007.
[24] T. Himsoon, W. P. Siriwongpairat, W. Su, and K. J. R . Liu, “Differential modulation for multinode cooperative communications, ” IEEE Trans. Signal Proc., pp. 2941-2955, July 2008.
[25] A. S. Ibrahim, A. K. Sadek, W. Su, and K. J. R. Liu, “Cooperative communications with relay-selection: when to cooperate and whom to cooperate with relay-selection” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2814-2827, July, 2008.
[26] A. Bletsas, H. Shin, and M. Z. Win, “Cooperative communications with outage optimal opportunistic relaying,” IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 3450-3460, Sep. 2007.
[27] V. Shah, N. B. Mehta, and R. Yim, “The relay selection and transmission trade-off in cooperative communication systems,” IEEE Trans. Wireless Commun., vol. 9, no. 8, pp. 2505-2515, Aug. 2010.
[28] B. Rankov and A. Wittneben, “Spectral efficient protocols for half-duplex fading relay channels,” IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 379-389, Feb. 2007.
[29] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physical-layer network coding,” in Proc. ACM MobiCom, Los Angeles, CA, 2006, pp. 358–365.
[30] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” in Proc. ACM SIGCOMM, Kyoto, Japan, Aug. 2007, pp. 397–408.
[31] R. Zhang, Y.-C. Liang, and S. Cui, “Optimal beamforming for two-way multi-antenna relay channel with analogue network coding,” IEEE J. Sel. Areas Commun., vol. 27, no. 5, pp. 699–712, Jun. 2009.
[32] T. Cui, F. Gao, and C. Tellambura, “Differential modulation for two-way wireless communications, a perspective of differential network coding at the physical layer,” IEEE Trans. Commun., vol. 57, no.10, pp. 2977-2987, Oct. 2009.
[33] M. Dohler and Y. Li, “Cooperative Communication - Hardware, Channel & PHY,” England: John Wiley & Sons, 2010.
[34] L. Tong, B. M. Sadler, and M. Dong, “Pilot-assisted wireless transmissions: general model, design criteria, and signal processing,” IEEE Signal Proc. Mag., vol. 21, no. 6, pp. 12-25, Nov. 2004.
[35] C. S. Patel and G. L. Stuber, “Channel estimation for amplify and forward relay based cooperation diversity systems,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 2348-2356, June 2007.
[36] F. Gao, T. Cui, and A. Nallanathan, “On channel estimation and optimal training design for amplify and forward relay networks,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1907-1916, May 2008.
[37] B. Gedik and M. Uysal, “Two channel estimation methods for amplifyand- forward relay networks,” Canadian Conference on Electrical and Computer Engineering, pp. 615-618, May 2008.
[38] C.-H. Yih, “LMMSE estimation of equivalent noise variance in amplifyand- forward relay communication systems,” International Journal of Electrical Engineering, vol. 18, no. 5, pp. 235-243, Oct. 2011.
[39] J. D. Parsons, The Mobile Radio Propagation Channel, England: John Wiley & Sons, 2000.
[40] M. K. Varanasi, “A systematic approach to the design and analysis of optimum DPSK receivers for generalized diversity communications over Rayleigh fading channels,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1365-1375, Sep. 1999.
[41] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels, England: John Wiley & Sons, 2005.
[42] W. C. Jakes, Microwave Mobile Communications, 2nd ed. New Jersey : IEEE Press, 1994.
[43] D. Tse and P. Viswanath , Fundamentals of Wireless Communications, New York: Cambridge University Press, 2005 .
[44] A. S. Akki and F. Haber, “A statistical model for mobile-to-mobile land communication channel”, IEEE Trans. Veh. Technol., vol. 35, no. 1, pp. 2-7, Feb. 1986. 215-220.
[45] A. S. Akki, “Statistical properties of mobile-to-mobile land communication channels,” IEEE Trans. Veh.Technol., vol. 43, pp. 826-831, Nov. 1994.
[46] C. S. Patel, G. L. Stuber, and T. G. Pratt, “Simulation of Rayleigh faded mobile-to-mobile communication channels,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1876-1884, Nov. 2005.
[47] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. New Jersey: Prentice-Hall, 1993.
[48] Y. R. Zheng and C. Xiao, “Simulation models with correct statistical properties for Rayleigh fading channels,” IEEE Trans. Commun., vol. 51, no. 6, pp. 920-928, June 2003.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-06-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-06-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信