淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0906200612244500
中文論文名稱 運用懲罰機制遺傳演算法於水庫颱洪操作之規劃
英文論文名稱 Reservoir Flood Operation Planning Using Penalty Guided Genetic Search
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 王國威
研究生英文姓名 Kuo-Wei Wang
電子信箱 693331372@s93.tku.edu.tw
學號 693331372
學位類別 碩士
語文別 中文
口試日期 2006-05-20
論文頁數 70頁
口試委員 指導教授-張麗秋
委員-張斐章
委員-蕭政宗
中文關鍵字 水庫颱洪操作  簡形法  限制型遺傳演算法  懲罰函數 
英文關鍵字 Reservoir Flood Operation  Simplex Method  Constrained Genetic Algorithm  Penalty Function 
學科別分類 學科別應用科學環境工程
中文摘要 在人口數量快速成長,對於用水的需水量愈來愈大,而在水庫因日漸淤積造成有效蓄水量逐漸減少的情況下,對於如何提升現有水庫操作之效能性與效率性,達到水庫蓄水利用之最大利益,應是水庫經營管理的最重要課題。在颱洪時期是台灣地區水庫儲蓄水資源的重要時機,在此時期水庫的運轉操作除了必須保護水庫壩體結構之安全與降低壩頂溢流之風險外,對於防洪與蓄水也是防洪運轉操作的重要考量因素。
最佳化搜尋方法發展至今已有許多不同演算法應用於水庫的操作與經營管理,卻經常面臨到決策模式所求得之最佳結果與實際需求有一段差距的窘境,為了加強水庫合理操作效率,本研究以水庫防洪操作運轉辦法及其相關軟硬體設施限制來建立防洪操作運轉模式,並運用兩種不同最佳化搜尋法-簡形法(simplex method)與限制型遺傳演算法(constrained genetic algorithm)搜尋水庫最佳洩放歷程,以探討水庫合理的防洪運轉操作之決策。其中,先利用簡形法搜尋,必須先假定洩放流洪峰發生位置,方能使用此法搜尋最佳解;而遺傳演算法使用在有眾多的限制式的最佳化問題,必須先設定適當的懲罰函數以提昇限制型遺傳演算法之搜尋效能。因此,本研究以石門水庫防洪運轉操作為例,分別以簡形法與限制型遺傳演算法來搜尋洩放歷程,結果顯示兩種方法皆能有效地消減洪峰並儲存洪水,而限制型遺傳演算法所提供之洩放歷程較簡形法在實際操作上更為合理且具實用性。
英文摘要 Constant population growth and dramatic economic development have resulted in a tremendous demand for water resources. With the gradual decrease of the reservoir capacities, attention must focus on improving the operational effectiveness and efficiency of existing reservoirs for maximizing the beneficial use of water storage. In Taiwan, typhoon could bring abundant water resources for future use while cause downstream flood. Consequently, a real-time flood control of a reservoir should consider decreasing peak flood stage downstream and storing floodwaters for future usage.
Various optimization strategies (techniques) have been developed for reservoir system management and operation; however, there still exists a gap between academic research and real-world implementations. To provide information for enhancing rational operating decisions, we proposed a reservoir flood operation optimization model with flood control requirements and existing operational regulations and the simplex method and Genetic Algorithm (GA) as searching engines. However, there are some requirements before using these two search methods. For simplex method, the time of release peak is assumed at the stage of after the flood peak. For genetic algorithm, since they are usually designed for finding the optimum solution to unconstrained problems, they have to be adapted to handle constraints for constrained optimization problems. Due to many constraints and flood control requirements, it is difficult to reach a feasible solution without violation of constraints. To tackle this bottleneck, the proper penalty strategy for each parameter was proposed to guide the GA searching procedure. The two searching methods were applied to the problem of finding the optimal release and desired storage, taking the Shihmen reservoir in Taiwan as a case study. The results demonstrated that these two methods could effectively reduce flood damages and storage floodwaters after the flood operation; moreover, GA can provide an adequate and robust way for searching the rational flood operating hydrograph.
論文目次 章節目錄
謝誌 I
中文摘要 II
ABSTRACT III
章節目錄 V
表目錄 VIII
圖目錄 IX
一、前言 1
1.1研究動機與目的 1
1.2研究方法 2
二、文獻回顧 3
2.1數學規劃理論的發展 3
2.2遺傳演算法的演進 3
2.3水資源方面的應用 4
三、理論概述 7
3.1數學規劃概述 7
3.1.1 線性規劃 8
3.1.2非線性規劃 11
3.1.3動態規劃 13
3.2遺傳演算法 13
3.2.1遺傳演算法之基本架構 14
3.2.2遺傳演算法之基本元素與運算子 16
3.2.3有限制式遺傳演算法 26
3.2.4遺傳演算法之特性 30
四、研究案例 32
4.1石門水庫簡介 32
4.2水庫防洪操作 34
4.2.1防洪運轉操作規則 34
4.2.2相關水利法規 35
4.3颱風資料蒐集與分析 36
4.4水庫颱洪操作之決策模式 37
4.5簡形法 41
4.6限制型遺傳演算法 45
4.6.1運算方法及相關參數設定 45
4.6.2懲罰函數設定 46
4.6.3搜尋範圍設定 49
4.6.4結果 51
五、結論與建議 64
5.1結論 64
5.2建議 65
參考文獻 67
表目錄
表4.1石門水庫颱風資料 36
表4.2簡形法之防洪操作結果 42
表4.3遺傳演算法及相關設定參數 45
表4.4歷時40小時的颱風限制式個數 46
表4.5 限制型GA與原始之防洪操作結果比較 54
圖目錄
圖3.1 遺傳演算法演化流程圖 15
圖3.2非整數變數之二位元編碼法示意圖 17
圖3.3 實數編碼組成之範例 17
圖3.4 輪盤式選取法之示意圖 19
圖3.5 輪盤式選取法流程圖 21
圖3.6 單點交配示意圖 23
圖3.7 多點交配示意圖 23
圖3.8 字罩交配示意圖 24
圖3.9實數編碼算術交配示意圖 25
圖3.10在解空間中的可行解區與不可行解區的分布 29
圖4.1水庫防洪操作決策模式建構與搜尋演算流程圖 32
圖4.2石門水庫集水區位置圖 34
圖4.3石門水庫運轉規線示意圖 38
圖4.4洪峰發生前後階段區別示意圖 41
圖4.5珀西颱風以簡形法搜尋之洩放量與水庫水位趨勢圖 43
圖4.6賀伯颱風以簡形法搜尋之洩放量與水庫水位趨勢圖 44
圖4.7 29場颱風以遺傳演算法搜尋之洩放量趨勢圖 53
圖4.8芙安颱風以GA搜尋之洩放量與水庫水位趨勢圖 56
圖4.9畢莉颱風以GA搜尋之洩放量與水庫水位趨勢圖 57
圖4.10裘恩颱風以GA與原操作之洩放量與水庫水位趨勢圖 58
圖4.11提姆颱風以GA搜尋之洩放量與水庫水位趨勢圖 59
圖4.12賀伯颱風以GA與原操作搜尋之洩放量與水庫水位趨勢圖 60
圖4.13瑞伯颱風以GA搜尋之洩放量與水庫水位趨勢圖 61
圖4.14象神颱風以GA搜尋之洩放量與水庫水位趨勢圖 62

參考文獻 Akter, T. and Simonovic, S. P. 2004. Modelling uncertainties in short-term reservoir operation using fuzzy sets and a genetic algorithm. Hydrol. Sci. J. 49(6): 1081-1097.
Archibald, T.W., McKinnon, K.I.M. and Thomas, L.C. 1996. An aggregate stochastic dynamic programming model of multireservoir systems. Water Resources Research 33(2):333-340.
Bellman, R. 1957. Dynamic Programming, Princeton University Press Princeton, N. J.
Bhave, P. and Sonak, V. 1992. A critical study of the linear programming gradient method for optimal design of water supply networks. Water Resour. Res. 28(6): 1577-1584.
Chang, L.C. and Chang, F.J. 2001. Intelligent control for modeling of real time reservoir operation. Hydrological Processes 15:1621-1634.
Chang, F.J., Hui, S.C. and Chen, Y.C. 2002. Reservoir operation using grey fuzzy stochastic dynamic programming. Hydrological Processes 16:2395-2408.
Chang, J.X., Huang, Q. and Wang, Y.M. 2005. Genetic algorithms for optimal reservoir dispatching. Water Resour. Manage. 19:321-331.
Chong, P. K. and Zak, S. H. 2001. An Introduction to Optimization. John Wiley & Sons, New York, NY.
Dandy, G.C., Simpson, A.R. and Murphy, L.J. 1996. An improved genetic algorithm for pipe network optimization. Water Resources Research. 32(2): 449-458.
Fahmy, H.S., King J.P., Wentzel M.W. and Seton J.A. 1994. Economic optimization of river management using genetic algorithms. ASAE 1994 International Summer Meeting. American Society of Agricultural Engineers., St. Joseph, Michigan, USA
Franchini, M. 1996. Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. J. Comp. civil Eng. ASCE 1(2): 128-141.
Gen, M. and Cheng, R. 1996. A Survey of Penalty Techniques in Genetic Algorithms, In Toshio Fukuda and Takeshi Furuhashi, editors, Proceedings of the conference International Conference on Evolutionary Computation, pages 804-809 Nagoya, Japan, IEEE.
Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addisson-Wesley
Holland, J.H. 1975. Adaptation in Natural and Artificial Systems, Ann Arbor, MI: The University of Michigan Press.
Kantorovich, L.V. 1939. Mathematical methods in the organization and planning of production (in Russian). Publication House of the Leningrad State University 68 pp. English Translation: Management Science, Volume 6 (1960), pp. 363–422
Karush, W. 1939. Minima of functions of several variables with inequalities as side conditions, M. S. Thesis, Department of Mathematics, University of Chicago, Chicago.
Kuhn, H.W. and Tucker, A.W. 1951. Nonlinear programming. In J. Negman, Ed., Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. of California Press, Berkeley. 481-492
Michalewicz, Z. and Schienauer, M. 1996. Evolutionary Algorithms for Constrained Parameter optimization Problems, Evolutionary Computation, Vol.4, No.1, pp.1-32
Oliveira, R. and Loucks, D.P. 1997 Operating rules for multireservoir system. Water Resour. Res. 33(4): 839-852.
Samani, H.M.V., and Mottaghi, A. 2006. Optimization of water distribution networks using integer linear programming. J Hydraulic Engineering-ASCE 132 (5): 501-509
Samani, H.M.V. and Naeeni, S. T. 1996. Optimization of water distribution networks. J. Hydraulic Research. 34(5): 623-632.
Trezos, T. and Yeh, W.W.-G. 1987. Use of stochastic dynamic programming for reservoir management. Water Resources Research 23(6):983-996.
Wardlaw, R. and Sharif, M. 1999. Evaluation of genetic algorithms for optimal reservoir system operation. J. Water Resour. Plan. Manage. Div. ASCE 125(1): 25-33.
Wright, A.H. 1991. “Genetic Algorithm for Real Parameter Optimization,” Foundations of Genetic Algorithms 1, G. J. E. Rawlin (Eds.), Morgan Kaufmann Publishers, San Mateo, pp. 205-218.
Wu, Z.Y. and Simpon, A.R. 2002. A self-adaptive boundary search genetic algorithm and its application to water distribution systems. Journal of Hydraulic Research 40(2): 191-203
向子菁,1999,智慧型控制理論於水庫操作決策之研究,國立台灣大學農業工程研究所碩士論文
吳明賢,2001,應用遺傳演算法於群樁基礎低價化設計,國立中央大學土木工程學系碩士論文
邱昱禎,2003,模糊規劃理論與優選法於水庫操作之研究,國立臺灣大學生物環境系統工程學系暨研究所
林慈傑,2002,以遺傳演算法求解類運輸問題模式化的多廠訂單分配問題,國立台灣大學工業工程學研究所碩士論文
許少瑜,2001,水庫操作規線問題的模式與解法,國立臺灣大學農業工程學研究所碩士論文
徐弘光,1998,遺傳演算法於結構最佳化設計之研究,國立台灣大學機械工程研究所碩士論文
徐錫川,2000,利用模糊推論決定懲罰參數之結構最佳設計遺傳演算法,國立台灣大學機械工程學研究所碩士論文
經濟部水利署北區水資源局,石門水庫水門操作規定,2005
經濟部水利署北區水資源局,石門水庫營運四十年特刊,2005
經濟部水利署北區水資源局,經濟部石門水庫運用要點,2005
鄭蔚辰,2001,應用遺傳演算法探討多目標水資源系統分析—以濁水溪流域為例,國立臺灣大學土木工程學研究所
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-06-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-06-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信