§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0903201714434400
DOI 10.6846/TKU.2017.00302
論文名稱(中文) 可適性線性常模反向QR分解遞回式最小平方和波束型成器演算法之研究
論文名稱(英文) Adaptive Linearly Constrained Constant Modulus (LCCM) Inverse QRD-RLS Beam-forming Algorithm
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 1
出版年 106
研究生(中文) 黃鈺盛
研究生(英文) YU-SHENG HUANG
學號 603460220
學位類別 碩士
語言別 英文
第二語言別
口試日期 2017-01-13
論文頁數 40頁
口試委員 指導教授 - 陳巽璋
委員 - 馬金溝
委員 - 易志孝
關鍵字(中) 線性限制最小變異
最小平方和
限制性常模
關鍵字(英) LCMV
LCCM
RLS
IQRD
RLS Algorithm
第三語言關鍵字
學科別分類
中文摘要
在文獻中,已經有許多線性限制 (Linearly constraints) 的可適性陣列波束成型演算法 (Adaptive array beamforming algorithm ) 被提出,用以討論有關干擾源抑制 (Jammer cancellation) 的問題。線性限制最小變異 (Linearly constrained minimum-variance; LCMV ) 波束成型器 (Beam-former) 是其中被認為能有效抑制干擾訊號的重要方法之一。另外,在有關傳統適應性演算法方面,最小平方和(Recursive least square; RLS) 演算法與最小均方值 (Least mean square; LMS) 演算法是兩種最常被使用的適應性技術。相較於最小均方值(LMS)適應性演算法,最小平方和(RLS)演算法有較佳的收斂速度、均方誤差 (Means-square error; MSE ) 和參數追蹤能力 (Tracking capability)。然而最小平方和演算法,在有限的位元數 (Finite precision) 情況下,會有數值不穩定 (Numerical instability) 的現象,此問題可以藉由 QR分解-RLS(QRD-RLS)演算法來解決。 基本上,它可以採用由吉文斯旋轉(Givens rotation) 方法以計算出 QR 分解的輸入數據矩陣(Input data matrix),再利用反向代回 (Backward substitution) 方法來求解 LS 權重向量 (Weights vector) 。如此,可以減少計算量及改善數值不穩定等問題。 因為在實際應用上, 在求解最佳權重向量過程中需要在每次疊代後,對應的執行反向代回。 然而,反向代回在 VLSI 設計及利用DSP的技術來實現硬體時,其所採用陣列結構 (Systolic array structure) 中是一種昂貴的操作 (Costly),為了改善這個問題我們可以採用所謂反向QRD-RLS (Inverse QRD-RLS)演算法以求取最佳權重向量。 再則,採用傳統的線性限制最小變異 (LCMV) 法則的演算法時經常會因為不匹配效應 (Mismatch effect) ,而使得系統效能降低 (Performance degradation)。文獻中已證實如果能採用所謂的常模 (Constant modulus; CM) 方法,可以有效改善上述問題。 常模方法可有效抑制干擾源。 然而,在無線通訊系統中,在資訊傳輸過程中如果干擾源 (Jammer user) 的功率強度較理想用戶 (Desired user) 訊號強的情況下。 單獨利用常模 ( CM) 法可能會發生所謂的捕獲問題 (Capture Problem), 即接收端檢測器會鎖住功率強的干擾訊號而無法將功率弱的理想用戶訊號檢測出來。一般會結合加入與理想用戶相關的限制性條件,已改善捕獲問題(Capture Problem),稱之為限制性常模 (LCCM) 法則。 本論文希望探討如何利用限制性常模 (LCCM) 法之最小平方值法則 (Least Square Criterion),推導出改良式的可適性線性常模反向QR分解遞回式最小平方和 (Inverse QRD-RLS) 演算法,以解決上述所探論的不匹配效應及有效抑制干擾源的問題。再則, 因為反向QR分解法可以利用平行計算 (Systolic array) 來提高運算速度,也可同時有效消除多重使用著的相互干擾 (Multiple access interference; MAI )。
英文摘要
Various adaptive array beamforming algorithms with linearly constraints have been proposed to deal with the nulling processes for jammer cancellation. Among them the linearly constrained minimum variance (LCMV) Beam-former has been extensively used to effectively suppressing the interference signals. While the so-called recursive least squares (RLS) adaptive algorithm is considered to be one of the significant approaches to offer better convergence rate, steady-state means-square error (MSE), and parameter tracking capability. It is normally performed better than the adaptive least mean square (LMS) based algorithms. But, the widespread acceptance of the RLS filter has been impeded by a sometime unacceptable numerical performance in limited precision environments. To overcome this problem, an alternative numerical stable RLS algorithm, referred to as the QR-decomposition RLS (QRD-RLS) algorithm, is adopted. Basically, it computes the QR decomposition of the input data matrix using Givens rotation and solving the LS weight vector by the back substitution to reduce the computations, numerical instability, and other issues. Since in practical applications, the solution to the optimal weight vector during updating iteration, the corresponding implementation of the backward substitution must be performed. The backward substitution is a costly operation in the Systolic array structure used in VLSI design and DSP technology for implementing hardware. To avoid this problem, the inverse QRD-RLS algorithm is one of the good candidates to approaching the minimum weight vector solution. On the other hand, the use of LCMV will result in system performance degradation when a mismatch effect occurred. It has been proved in the literature that the above problems can be effectively improved if the constant modulus (CM) criterion is employed. For instances, in wireless communication systems, if the power of the jammer user is relatively higher than the desired user during the transmission of the information, the use of the constant modulus approach could effectively suppress the interference sources. To avoid the capture problem when the constant modulus approach is apply, a linear constrained CM approach is considered. In this thesis, we discuss the use of the LCCM approach to derive the adaptive LCCM inverse QR-RLS algorithm (IQRD-RLS algorithm) for solving the mismatch effect and interference sources suppression problems. Furthermore, the inverse QR decomposition method can make use of the Systolic array to improve the speed of operation, and at the same time to effectively eliminate the multiple user interference (MAI).
第三語言摘要
論文目次
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 Recursive Least Square Based Adaptation Algorithms	4
2.1 Introduction	4
2.2 Least Square Solutions	4
2.2.1 Recursive Least Squares (RLS) algorithm	4
2.2.2 QR Decomposition for Recursive Least Squares Adaptive Filters	6
2.2.3 The Inverse QRD-RLS Algorithm	7
2.3 Linear Constrained RLS Algorithm	9
2.3.1 Linear Constrained RLS Algorithm	9
2.3.2 Optimal Linearly Constrained QRD-LS Filter 10
2.3.3 The Adaptive LC-IQRD-RLS Filtering Algorithm 11
2.4 The GSC Implementation of the LC-IQRD-RLS Algorithm	15
CHAPTER 3 Adaptive Linear Constrained Inverse QRD-RLS Beamforming Algorithm	20
3.1 Introduction	20
3.2 Linearly Constrained Minimum Variance IQRD-RLS Beamforming Algorithm	20
3.3 Linearly Constrained Constant Modulus with IQRD-RLS Algorithm	25
3.4 Computer simulation	29
CHAPTER 4 CONCLUSIONS	34
Appendix A	35
References	38
 


LIST OF FIGURES
Fig.3.1 SINR performance comparison of the beam-former using different approaches without pointing error	30
Fig.3.2 Beam pattern in terms of nulling capability with different approaches	31
Fig 3.3 The learning curves in terms of MSE for different approaches	31
Fig 3.4 SINR performance comparison of the beam-former using different approaches with pointing error	32
Fig 3.5 Beam pattern in terms of nulling capability using different approaches, with pointing error	33
Fig 3.6 The learning curves in terms of MSE for different approaches, with pointing error	33
參考文獻
[1] O. L. Frost III, “An algorithm for linearly constraint adaptive array processing,” Proc. IEEE, vol. 60, pp. 926–935, Aug. 1972.
[2] L. J. Griffths and J. W. Jim, “An alternative approach to linearly constraint adaptive beamforming,” IEEE Trans. Antennas Propagat., vol. AP-30, pp. 27–34, Jan. 1982.
[3] S. J. Chern and C. Y. Sung, “The performance of hybrid adaptive beamforming algorithm for jammers suppression,” IEEE Trans. Antennas Propagat., vol. 42, pp. 1223–1232, Sept. 1994.
[4] L. S. Resende, J. M. T. Romano, and M. G. Bellanger, “A robust FLS algorithm for LCMV adaptive broad band beamformer,” Proc. IEEE Int. Conf. Acoustics, Speed, and Signal Processing, vol. 3, pp. 1826–1829, 1996.
[5] S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[6] J. G. McWhirter and T. J. Shepherd, “Systolic array processor for MVDR beamforming,” Proc. Inst. Elect. Eng. , pt. F, vol. 136, pp.75–80, Apr. 1989.
[7] J. M. Cioffi and T. Kailath, “Fast RLS transversal filters for adaptive filtering,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 304–337, June 1984.
[8] J. M. Cioffi, “Limited precision effects for adaptive filtering,” IEEE Trans. Circuits Syst., vol. CAS-34, pp. 821–833, July 1987.
[9] P. Fabre and C. Gueguen, “Improvement of fast recursive least squares algorithms via normalization: A comparative study,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 296–308, Apr. 1986.
[10] H. Leung and S. Haykin, “Stability of recursive QRD-RLS algorithm using finite precision systolic array implementation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 760–763, May 1989.
[11] P. A. Regalia and M. G. Bellanger, “On the duality between fast QR methods and lattice methods in least squares adaptive filtering,” IEEE Trans. Signal Processing, vol. 39, pp. 879–891, Apr. 1991.
[12] S. T. Alexander and A. L. Ghirnikar, “A method for recursive least squares filtering based upon an inverse QR decomposition,” IEEE Trans. Signal Processing, vol. 41, pp. 20–30, Jan. 1993.
[13] C. T. Pan and R. J. Plemmons, “Least squares modifications with factorization:
Parallel implications,” J. Comput. Applied Math., vol. 27, no. 1-2, pp. 109–127, Arp. 1989.
[14] J. B. Schodorf and D. W. Williams, “Array processing techniques for multiuser detection,” IEEE Trans. Commun., vol. 45, pp. 1375–1378, Nov. 1997.
[15] W. M. Gentleman, “Least squares computations by Givens transformations without square roots.” IMA Journal of Applied Mathematics, vol. 12, no. 3, pp. 329–336 (1973)
[16] W. M. Gentleman and H. T. Kung, “Matrix triangularization by systolic arrays. Real-Time Signal Processing IV”, SPIE Proceedings, vol. 298, pp. 19–26 (1981)
[17] J. G. McWhirter, “Recursive least-squares minimization using a systolic array. Real-Time Signal Processing VI”, SPIE Proceedings, vol. 431, pp. 105–112 (1983)
[18] J. G. McWhirter, “Systolic array for recursive least-squares minimisation. Electronics Letters”,vol. 19, no. 18, pp. 729–730 (September 1983)
[19] C. R. Ward, P. J. Hargrave, and J. G. McWhirter, “A novel algorithm and architecture for adaptive digital beamforming”. IEEE Transactions on Antennas and Propagation, vol. AP-34,no. 3, pp. 338–346 (March 1986)
[20] H. V. Poor and X. Wang, “Code-Aided Interference Suppression for DS/CDMA Communications-Part II: Parallel Blind Adaptive Implementations,” IEEE Trans. Commun., vol. 45, no. 9, pp. 1112-1122, Sep. 1997.
[21] C. H. Sun, S. J. Chern and J. N. Li, “Blind Adaptive Multiuser Detection for DS-CDMA Systems with Linear Constrained Inverse QRD-RLS Algorithm,” The 6th International Symposium on Communications, National Cheng Kung University, Tainan, Taiwan, R.O.C., Nov. 13-16, 2001, session 13-1.
[22] S. J. Chern and C. Y. Chang, “Adaptive linearly constrained inverse QRD-RLS beamformer for moving jammers suppression.” IEEE Transactions on Antennas and Propagation, vol. 50,no. 8, pp. 1138–1150 (August 2002)
[23] L. S. Resende, J. T. Romano, and M. G. Bellanger, “A fast least-squares algorithm for linearly constrained adaptive filtering.” IEEE Transactions on Signal Processing, vol. 44, no. 5,pp. 1168–1174 (May 1996)
[24] G. H. Golub and C. F. Van Load, Matrix Computation. 3rd edition John Hopkins University Press, Baltimore, MD, USA (1996)
[25] J. Miguez, L. Castedo, “A linearly constrained constant modulus approach to blind adaptive multiuser interference suppression”, IEEE Commun. Lett. 2 (8) (August 1998) 217–219.
[26] R. Pickholtz, K. Elbarbary, “The recursive constant modulus algorithm; a new approach for real-time array processing, Signals, Systems and Computers”, IEEE Conference on Record of The Twenty-Seventh Asilomar, Vol. 1, 1993, pp. 627–632.
[27] S. J. Chern, “Adaptive Array Processing with Application to Mobile Communications,” Report of the 38th Research Fellowship of National Science Council, Taiwan, R.O.C.
[28] C. Y. Chang and S. J. Chern, “Adaptive Linearly Constrained Inverse QRD-RLS Beamformer for Multiple Jammers Suppression” The Third IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Westin Resort, Ta-Shee, Taoyuan, Taiwan, R.O.C., pp. 294-297, March 20-23, 2001
[29] S. J. Chern and C. Y. Chang, “Adaptive Linearly Constrained Inverse QRD-RLS Beamforming Algorithm for Moving Jammers Suppression” IEEE Trans. on Antennas Propagat. (revised)
[30]M. Moonen and I. K. Proudler, “MVDR beamforming and generalized sidelobe cancellation based on inverse updating with residual extraction,” IEEE Trans. Circuit Syst. II, vol. 47, pp. 352–358, Apr. 2000.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信