§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0903201713232500
DOI 10.6846/TKU.2017.00301
論文名稱(中文) 使用以靜電力場輔助電鍍法製備具微米構形聚二氧乙基噻吩-鉑複合薄膜光電致色變元件之製作與性質分析
論文名稱(英文) Fabrication and Characterization of Photoelectrochromic Devices Using Micropatterned Poly(3,4-ethylenedioxythiophene)-Platinum Composited Thin Films Prepared by Electrostatic Field-Assisted Electrodeposition
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 1
出版年 106
研究生(中文) 鄭宗麟
研究生(英文) Tzung-Lin Cheng
學號 603400051
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-01-11
論文頁數 64頁
口試委員 指導教授 - 林正嵐
委員 - 許世杰
委員 - 陳志賢
關鍵字(中) 光電致色變元件
聚二氧乙基噻吩
關鍵字(英) Photoelectrochromic Devices
Poly(3,4-ethylenedioxythiophene)
第三語言關鍵字
學科別分類
中文摘要
本研究以靜電力場輔助電鍍法製備具微米構形聚二氧乙基噻吩-鉑複合薄膜光電致色變元件之製作與性質分析,實驗分為兩部分。
Part 1:以靜電力場輔助電鍍法製備聚二氧乙基噻吩(PEDOT)和鉑複合薄膜,並且改變PEDOT不同析鍍電量參數(15 ~ 35 mC/cm2,mPEDOT Q15 ~ Q35),對薄膜以光學顯微鏡、循環伏安法、計時安培法及紫外線可見光光譜分析其表面、電致色變和光學性質。由紫外線可見光光譜與電化學測試發現穿透率調幅(delta T)與著色效率(C.E.)以mPEDOT Q25效果最好。再以脈衝電沉積鉑製備出聚二氧乙基噻吩-鉑複合薄膜,藉由改變電鍍的先後順序,製備出mPEDOT、Pt-mPEDOT (先沉積PEDOT)和mPEDOT-Pt (先沉積鉑)薄膜,發現電致色變的應答時間為mPEDOT-Pt < mPEDOT< Pt-mPEDOT。
Part 2 : 以微米構形聚二氧乙基噻吩-鉑複合薄膜作為光電致色變元件(photoelectrochromic device, PECD)工作電極,對電極用15 wt% P25漿料以旋轉塗佈方式塗佈,再以450℃鍛燒。PECD閉環狀態經由紫外燈照光(365 nm, 5 mW/cm2)一分鐘著色,再以關燈閉環或開環去色觀察元件照光應答時間,以微米構形的聚二氧乙基噻吩-鉑複合薄膜的PECD去色應答時間優於聚二氧乙基噻吩的PECD,表示鉑助於電解質中氧化還原對I3-再生還原成I-過程,使去色應答時間縮短。
英文摘要
In this study, the fabrication and characterization of photoelectrochromic devices with micropattern poly(3,4-ethylenedioxythiophene)-platinum composite thin films prepared by electrostatic field-assisted electrodeposition were studied. The experiment was divided into two parts. Part 1 : Micropattern poly(3,4-ethylenedioxythiophene)-platinum composite thin films were prepared by electrostatic field-assisted electrodeposition. The different electrodeposition charge parameters (15 ~ 35 mC / cm2, mPEDOT Q15 ~ Q35) of the thin films were studied. The films were characterized by optical microscopy (OM), cyclic voltammetry (CV), chronoamperometry (CA) and ultraviolet/visible (UV/Vis) spectroscopy to analyze their surface structure, electrochromism and optical properties. UV/Vis spectrum and electrochemical tests showed that mPEDOT Q25 had the best effect on transmittance modulate (
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄    	IV
圖目錄	VI
表目錄	X
第一章、緒論	1
1.1	簡介	1
1.2	光電致色變元件 (photoelectrochromic device, PECD)	3
1.3	靜電力場輔助微米構形 (Electrostatic Field-Assisted Electrodeposition)	6
1.4 文獻回顧	7
第二章、實驗	12
2.1實驗材料	12
2.2實驗儀器	13
2.3實驗架構	14
2.4實驗步驟	15
2.5 實驗分析	21
2.5.1表面性質分析	21
2.5.2電化學性質分析	21
2.5.3光學性質分析	22
2.5.4 電致色變性質分析	23
第三章、結果與討論	29
Part 1 鉑與微米構型PEDOT (mPEDOT)複合薄膜	29
3.1 mPEDOT及PEDOT表面性質分析	29
3.2 mPEDOT及PEDOT 電化學與光學性質分析	33
3.3 mPEDOT與PEDOT電致色變性質分析	39
3.4 mPEDOT及Pt-mPEDOT 電化學與表面性質分析	44
3.5 mPEDOT及Pt-mPEDOT 電致色變與光學性質分析	46
Part 2 光電致色變元件(photoelectrochromic device, PECD)	50
3.6 PECD光電致色變性質分析	50
第四章、結論	55
參考文獻	56
附錄	59
 
圖目錄
圖1-1 (a) NTERA電子標籤 (b) Gentex防眩光後視鏡 (c) 汽車天窗 (d) 波音787智慧窗戶	2
圖1-2 壓克力樹酯構型PE膜之光學顯微鏡圖(x10)	2
圖1-3 典型光電致色變元件結構示意圖	3
圖1-4 PEDOT鏈聚合反應過程	4
圖1-5 PEDOT高分子摻雜示意圖	5
圖1-6 polaron和bipolaron能帶圖	5
圖1-7各種物質之接觸代電系列	6
圖1-8 (a)分離式PECD結構 (b)合併式PECD結構示意圖	7
圖2-1 EDOT單體結構	12
圖2-2 貼絕緣膠帶及銅膠的ITO玻璃工作電極	15
圖2-3 ITO glass接觸起電程序圖	16
圖2-4 PEDOT及mPEDOT電鍍流程圖	17
圖2-5 鉑與PEDOT複合薄膜示意圖	18
圖2-6 定電位脈衝電鍍示意圖	18
圖2-7 電鍍Pt流程圖	19
圖2-8 N3 dye/TiO2薄膜製備流程圖	20
圖2-9 元件封裝流程圖	20
圖2-10 同步電化學和微型光譜儀實驗裝置(a)微型光譜儀和裝置載台(b)裝置載台內三電極系統PEDOT薄膜去色態(0.3 V) (c) PEDOT薄膜著色態(-1.1 V) (d) CHI 611定電流定電位分析儀 (e) 照射紫外燈和微型光譜儀實驗裝置	22
圖2-11 PEDOT Q25 (沉積電量25 mC/cm2)施加0.3 ~ -1.3V定電位20 s下之UV/Vis光譜圖	23
圖2-12 光譜應答時間示意圖	24
圖2-13 著色和去色電量示意圖	25
圖2-14 PEDOT著色電量與光學密度差圖(斜率為著色效率)	26
圖2-15 染敏太陽能電池照光下電流電壓圖	28
圖3-1 mPEDOT電沉積電量(15~35mC/cm2)光學顯微鏡圖(50、100、200倍率)	289
圖3-2 微米構形孔洞減少百分比圖	30
圖3-3 PEDOT Q15~35薄膜表面輪廓圖,scan rate為10 μm/s,掃描模式調整為up/down,探針高低範圍1~5 μm	31
圖3-4 mPEDOT Q15~35薄膜表面輪廓圖,scan rate為10 μm/s,掃描模式調整為up/down,探針高低範圍1~5 μm	32
圖3-5 PEDOT與mPEDOT Q15之循環伏安圖,在0.1 M LiClO4, 1 mM HClO4的PC,掃描速率為0.1 V/s	34
圖3-6 PEDOT與mPEDOT Q20~35之循環伏安圖,在0.1 M LiClO4, 1 mM HClO4的PC,掃描速率為0.1 V/s	34
圖3-7 PEDOT Q20~35階梯電位圖,電位設定在0.3和 - 1.1 V,在0.1 M LiClO4, 1 mM HClO4的PC	35
圖3-8 mPEDOT Q20~35階梯電位圖,電位設定在0.3和- 1.1 V,在0.1 M LiClO4, 1 mM HClO4的PC	35
圖3-9 PEDOT Q25施加0.3 ~ -1.3V定電位20 s下之UV/Vis光譜圖,在0.1 M LiClO4, 1 mM HClO4的PC溶液	37
圖3-10 PEDOT與mPEDOT Q15、25和35之UV/Vis全波長光譜圖,施加-1.1 V(著色態)定電位20 s下,在0.1 M LiClO4, 1 mM HClO4的PC溶液	37
圖3-11 PEDOT與mPEDOT Q15~35薄膜在630 nm穿透度下著色(-1.1 V)與去色(0.3 V)穿透度,在0.1 M LiClO4, 1 mM HClO4的PC溶液	38
圖3-12 PEDOT與mPEDOT Q15~35薄膜在630 nm穿透度下穿透度調幅(
參考文獻
[1] Feng, J.; Gao, C.; Shen, J, “Micropatterning Biomacromolecules on Aldehyde-Enriched Polyester Surfaces by a Microtransfer Technique”, Chem. Mater. 2004, 16, 1319-1322
[2] Campbell, C. J.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. “Reactive Surface Micropatterning by Wet Stamping”, Langmuir. 2005, 21, 2637-2640.
[3] Asoh, H.; Sakamoto, S.; Ono, S. “Metal patterning on silicon surface by site-selective electroless deposition through colloidal crystal templating”, J. Colloid Interface Sci. 2007, 316,547-522.
[4] Yang, P.; Zou, S.; Yang, W. “Positive and Negative ZnO Micropatterning on Functionalized Polymer Surfaces”, Small 2008, 4, 1527-1536.
[5] Leftheriotis, G, G Syrrokostas, and P Yianoulis. "Photocoloration Efficiency and Stability of Photoelectrochromic Devices." Solid State Ionics 231 (2013): 30-36.
[6] Costa, Cl&aacute;udia, Isabel Mesquita, Lu&iacute;sa Andrade, and Ad&eacute;lio Mendes. "Photoelectrochromic Devices: Influence of Device Architecture and Electrolyte Composition." Electrochimica Acta 219 (2016): 99-106.
[7] Leftheriotis, G, G Syrrokostas, and P Yianoulis. "Development of Photoelectrochromic Devices for Dynamic Solar Control in Buildings." Solar Energy Materials and Solar Cells 94, no. 12 (2010): 2304-13.
[8] Roncali, J, R Garreau, A Yassar, P Marque, F Garnier, and M Lemaire. "Effects of Steric Factors on the Electrosynthesis and Properties of Conducting Poly (3-Alkylthiophenes)." Journal of Physical Chemistry 91, no. 27 (1987): 6706-14.
[9] Tung, Tsai-Shih and Kuo-Chuan Ho. "Cycling and at-Rest Stabilities of a Complementary Electrochromic Device Containing Poly (3, 4-Ethylenedioxythiophene) and Prussian Blue." Solar Energy Materials and Solar Cells 90, no. 4 (2006): 521-37.
[10]McCarty, L. S.; Whitesides, G. M. “Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets” , Angew. Chem. Int. Ed. 2008, 47, 2188 – 2207.
[11]Cannavale, Alessandro, Pierluigi Cossari, Giles E Eperon, Silvia Colella, Francesco Fiorito, Giuseppe Gigli, Henry J Snaith, and Andrea Listorti. "Forthcoming Perspectives of Photoelectrochromic Devices: A Critical Review." Energy & Environmental Science 9, no. 9 (2016): 2682-719.
[12]Bechinger, Clemens, S Ferrer, Arie Zaban, Julian Sprague, and Brian A Gregg. "Photoelectrochromic Windows and Displays." Nature 383, no. 6601 (1996): 608-10.
[13]Hauch, Anneke, Andreas Georg, Simone Baumg&auml;rtner, U Opara Krašovec, and Boris Orel. "New Photoelectrochromic Device." Electrochimica Acta 46, no. 13 (2001): 2131-36.
[14]Hauch, A., et al., Comparison of photoelectrochromic devices with different layer configurations. Journal of the Electrochemical Society, 2002. 149(9): p. H159-H163.
[15]Liao, J. and K. Ho, A photoelectrochromic device using a PEDOT thin film. Journal of New Materials for Electrochemical Systems, 2005. 8: p. 37-47.
[16]Krašovec, U.O., et al., Performance of a solid-state photoelectrochromic device. Solar energy materials and solar cells, 2004. 84(1): p. 369-380.
[17]Santa-Nokki, H., J. Kallioinen, and J. Korppi-Tommola, A dye-sensitized solar cell driven electrochromic device. Photochemical & Photobiological Sciences, 2007. 6(1): p. 63-66.
[18]Hsu, C.-Y., et al., A novel photoelectrochromic device with dual application based on poly (3, 4-alkylenedioxythiophene) thin film and an organic dye. Journal of Power Sources, 2008. 185(2): p. 1505-1508.
[19]Wu, J.-J., et al., Fast-switching photovoltachromic cells with tunable transmittance. ACS nano, 2009. 3(8): p. 2297-2303.
[20]Cannavale, A., et al., Highly efficient smart photovoltachromic devices with tailored electrolyte composition. Energy & Environmental Science, 2011. 4(7): p. 2567-2574.
[21]Jiao, Z., et al., A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films. Solar Energy Materials and Solar Cells, 2012. 98: p. 154-160.
[22]Yang, S., et al., A novel photoelectrochromic device based on poly (3, 4-(2, 2-dimethylpropylenedioxy) thiophene) thin film and dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2012. 97: p. 186-190.
[23]Cannavale, A., et al., Photovoltachromic device with a micropatterned bifunctional counter electrode. ACS applied materials & interfaces, 2014. 6(4): p. 2415-2422.
[24]Wu, X., J. Zheng, and C. Xu, Highly Optical Performance Photoelectrochromic Device Based on Br−/Br 3− Electrolyte. Electrochimica Acta, 2016. 191: p. 902-907.
[25] A. Cannavale, M. Manca, L. De Marco, R. Grisorio, S. Carallo, G. P. Suranna, et al., "Photovoltachromic device with a micropatterned bifunctional counter electrode," ACS applied materials & interfaces, vol. 6, pp. 2415-2422, 2014. 
[26] X. Wu, J. Zheng, and C. Xu, "Highly Optical Performance Photoelectrochromic Device Based on Br−/Br3− Electrolyte," Electrochimica Acta, vol. 191, pp. 902-907, 2016.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信