§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0903201610262400
DOI 10.6846/TKU.2016.00259
論文名稱(中文) 無線網狀網路路由演算法之性能模擬比較
論文名稱(英文) Performance Comparison of Routing Protocols for Wireless Mesh Networks: A Simulation Study
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 1
出版年 105
研究生(中文) 劉柏辰
研究生(英文) Po-Chen Liu
學號 602410846
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2016-01-19
論文頁數 114頁
口試委員 指導教授 - 林其誼(chiyilin@mail.tku.edu.tw)
委員 - 林振緯(jwlin@csie.fju.edu.tw)
委員 - 許輝煌(h_hsu@mail.tku.edu.tw)
關鍵字(中) 無線區域網路
無線網狀網路
OMNeT++
IEEE802.11s
關鍵字(英) WLAN
WMN
OMNet++
IEEE802.11s
第三語言關鍵字
學科別分類
中文摘要
在現在的社會中,人們對於便利性的需求不斷上升,有線設備礙於繁雜的線路與昂貴的佈線暨維護成本,有線傳輸方式已經不能滿足人們的需求,隨著科技的日新月異,無線通訊已經取代了有線的連接方式。
IEEE 802.11 標準於1997 年被制訂完成,它是IEEE 所提出的第一個無線區域網路標準協定,是一組用來管理無線網路傳輸方法的IEEE 標準,而802.11b 是第一個被廣泛使用的協定,其次是802.11a、802.11g、802.11n 最後是802.11ac。
IEEE 802.11s 標準是IEEE 802.11 針對mesh network 的修訂,它
定義了無線設備可以互相連接並創建一個WLAN mesh network,並且可以用在static topology 以及ad-hoc topology。IEEE 802.11s 擴增了IEEE 802.11 的MAC 標準並且支援broadcast、multicast 以及unicast 傳播,IEEE 802.11s 本身依賴IEEE 802.11a、IEEE 802.11b、IEEE 802.11g 或IEEE 802.11n 任一種模式乘載實際流量,並採用Hybrid Wireless Mesh Protocol (HWMP)作為預設路由協定,但其他的路由協定像是OLSR,B.A.T.M.A.N、AODVUU、DYMOUM 等
這些支援MAC address 的協定也可以使用。
本研究目的是利用OMNeT++ 模擬器模擬Wireless mesh networks (WMNs),在車載網路環境中分析現有的路由協定以及於不同的traffic type 下效能差異,像是throughput, end-to-end delay, packet delivery ratio。
英文摘要
In recent years, the increasing demand for a more convenient life has led to the development of wireless network technologies. Traditional wireline communication infrastructure suffers from the complexity of both deployment and maintenance, while wireless network technologies can cope with these problems easily.
IEEE 802.11-1997 is the first wireless LAN standard, followed by 802.11b, 802.11a, 802.11g, 802.11n, and 802.11ac. IEEE 802.11s is an IEEE 802.11 amendment for mesh networking that supports unicast, broadcast, and multicast delivery using radio-wave metrics over self-configuring multi-hop topologies. The default routing protocol in IEEE 802.11s is Hybrid Wireless Mesh Protocol (HWMP), however other mesh protocols such as OLSR, B.A.T.M.A.N., AODVUU, DYMOUM are also supported.
In this research, we use OMNeT++ to simulate wireless vehicular mesh networks based on the IEEE 802.11s standard. Then we measure the network performance with the combination of different traffic types and different wireless mesh protocols. The measurement includes packet delivery ratio, end-to-end delay, throughput, and jitter.
第三語言摘要
論文目次
目錄
第一章 緒論 1
1.1 研究背景  1
1.2 研究動機  3
1.3 研究目的與重要性  4
1.4 論文架構  5
第二章 相關研究  7
2.1 OMNeT++基本介紹  7
2.2 IEEE802.11s 標準基礎概念  10
2.3 Optimized Link State Protocol 演算法  15
2.4 Ad hoc On-demand Distance Victor 演算法  17
2.5 Dynamic MANET On-demand 演算法  19
2.6 Hybrid Wireless Mesh Protocol 演算法  22
第三章 實驗架構  25
3.1 OMNeT++介面說明  25
3.2 實驗操作  30
3.2.1 匯入想要模擬的模組  30
3.2.2 選擇合適節點  31
3.2.3 建立環境以及選擇mobility type  33
3.2.4 採用其他路由協定  36
3.2.5 模擬傳送traffic type  39
第四章 實驗結果分析  45
4.1 TractorMobiliy 介紹  45
4.2 環境參數設定  49
4.3 模擬VoIP traffic  50
4.3.1 以Tractormobility1 移動方式模擬  51
4.3.2 以Tractormobility2 移動方式模擬  54
4.3.3 以Tractormobility3 移動方式模擬  57
4.4 模擬CBR traffic  60
4.4.1 以Tractormobility1 移動方式模擬  62
4.4.2 以Tractormobility2 移動方式模擬  65
4.4.3 以Tractormobility3 移動方式模擬  68
4.5 模擬HTTP traffic  71
4.5.1 以Tractormobility1 移動方式模擬  73
4.5.2 以Tractormobility2 移動方式模擬  78
4.5.3 以Tractormobility3 移動方式模擬  83
4.6 實驗分析總結  88
4.6.1 整體分析比較  88
4.6.2 針對特定移動模式進行分析比較  93
第五章 結論 95
參考文獻  97
附錄 – 英文論文  101

圖目錄
圖 1-1 WMN 裡的節點介紹  2
圖 2-1 各個無線技術的頻率  10
圖 2-2 Frame Forwarding 過程  12
圖 2-3 RM-AODV route discovery  13
圖 2-4 RM-AODV Forwarding RREQ with better metric  13
圖 2-5 OLSR 選擇MPR 的條件  17
圖 2-6 DYMO 路由資訊建立過程  20
圖 3-1 OMNeT++工作區介紹  27
圖 3-2 Project References  29
圖 3-3 OMNeT++模擬介面  30
圖 3-4 將inetmanet 匯入OMNeT++  31
圖 3-5 WMNs 之Host  32
圖 3-6 WMNs 之forwarding node  33
圖 3-7 實驗環境  34
圖 3-8 Tractormobility 移動方式  35
圖 3-9 HWMP 演算法參數設置  37
圖 3-10 選用AODV 演算法  37
圖 3-11 在同一個.ini 檔對OLSR 及AODV 進行參數設置  37
圖 3-12 在同一個.ini 檔對DYMO 進行參數設置  38
圖 3-13 模擬OLSR 過程  38
圖 3-14 模擬AODV 過程  38
圖 3-15 模擬DYMO 模擬過程  39
圖 3-16 模擬HWMP 過程  39
圖 3-17 VoIP traffic 參數設置  40
圖 3-18 模擬傳送VoIP traffic  40
圖 3-19 CBR traffic 參數設置  42
圖 3-20 模擬傳送CBR traffic  42
圖 3-21 HTTP traffic 參數設置  43
圖 3-22 模擬傳送HTTP traffic (SYN, SYN_ACK)  43
圖 3-23 模擬傳送HTTP traffic (ACK)  44
圖 3-24 模擬傳送HTTP traffic (data)  44
圖 4-1 Tractormobility1 移動方式  47
圖 4-2 Tractormobility2 移動方式  47
圖 4-3 Tractormobility1、Tractormobility2 參數設定  48
圖 4-4 Tractormobility3 移動方式  48
圖 4-5 Tractormobility3 參數設定  49
圖 4-6 Packet Delivery Ratio for VoIP with Tractormobility1  52
圖 4-7 Throughput for VoIP with Tractormobility1  52
圖 4-8 Average end-to-end delay for VoIP with Tractormobility1  53
圖 4-9 Delay standard derivation for VoIP with Tractormobility1  54
圖 4-10 Packet Delivery Ratio for VoIP with Tractormobility2  55
圖 4-11 Throughput for VoIP with Tractormobility2  55
圖 4-12 Average end-to-end delay for VoIP with Tractormobility2  56
圖 4-13 Delay standard derivation for VoIP with Tractormobility2  57
圖 4-14 Packet Delivery Ratio for VoIP with Tractormobility3  58
圖 4-15 Throughput for VoIP with Tractormobility3  58
圖 4-16 Average end-to-end delay for VoIP with Tractormobility3  59
圖 4-17 Delay standard derivation for VoIP with Tractormobility3  60
圖 4-18 Packet Delivery Ratio for CBR with Tractormobility1 63
圖 4-19 Throughput for CBR with Tractormobility1  63
圖 4-20 Average end-to-end delay for CBR with Tractormobility1  64
圖 4-21 Delay standard derivation for CBR with Tractormobility1  65
圖 4-22 Packet Delivery Ratio for CBR with Tractormobility2 66
圖 4-23 Throughput for CBR with Tractormobility2  66
圖 4-24 Average end-to-end delay for CBR with Tractormobility2  67
圖 4-25 Delay standard derivation for CBR with Tractormobility2  68
圖 4-26 Packet Delivery Ratio for CBR with Tractormobility3 69
圖 4-27 Throughput for CBR with Tractormobility3  69
圖 4-28 Average end-to-end delay for CBR with Tractormobility3  70
圖 4-29 Delay standard derivation for CBR with Tractormobility3  71
圖 4-30 Throughput for HTTP with Tractormobility1  73
圖 4-31 Average end-to-end delay for HTTP with Tractormobility1 (1 組) 74
圖 4-32 Average end-to-end delay for HTTP with Tractormobility1 (2 組) 74
圖 4-33 Average end-to-end delay for HTTP with Tractormobility1 (4 組) 75
圖 4-34 Average end-to-end delay for HTTP with Tractormobility1 (8 組) 75
圖 4-35 Delay standard derivation for HTTP with Tractormobility1 (1 組) 76
圖 4-36 Delay standard derivation for HTTP with Tractormobility1 (2 組) 76
圖 4-37 Delay standard derivation for HTTP with Tractormobility1 (4 組) 77
圖 4-38 Delay standard derivation for HTTP with Tractormobility1 (8 組) 77
圖 4-39 Throughput for HTTP with Tractormobility2  78
圖 4-40 Average end-to-end delay for HTTP with Tractormobility2 (1 組) 79
圖 4-41 Average end-to-end delay for HTTP with Tractormobility2 (2 組) 79
圖 4-42 Average end-to-end delay for HTTP with Tractormobility2 (4 組) 80
圖 4-43 Average end-to-end delay for HTTP with Tractormobility2 (8 組) 80
圖 4-44 Delay standard derivation for HTTP with Tractormobility2 (1 組) 81
圖 4-45 Delay standard derivation for HTTP with Tractormobility2 (2 組) 81
圖 4-46 Delay standard derivation for HTTP with Tractormobility2 (4 組) 82
圖 4-47 Delay standard derivation for HTTP with Tractormobility2 (8 組) 82
圖 4-48 Throughput for HTTP with Tractormobility3 83
圖 4-49 Average end-to-end delay for HTTP with Tractormobility3 (1 組) 84
圖 4-50 Average end-to-end delay for HTTP with Tractormobility3 (2 組) 84
圖 4-51 Average end-to-end delay for HTTP with Tractormobility3 (4 組) 85
圖 4-52 Average end-to-end delay for HTTP with Tractormobility3 (8 組) 85
圖 4-53 Delay standard derivation for HTTP with Tractormobility3 (1 組) 86
圖 4-54 Delay standard derivation for HTTP with Tractormobility3 (2 組) 86
圖 4-55 Delay standard derivation for HTTP with Tractormobility3 (4 組) 87
圖 4-56 Delay standard derivation for HTTP with Tractormobility3 (8 組) 87
圖 4-57 三種不同Mobility Type 的Packet Delivery Ratio for VoIP 88
圖 4-58 三種不同Mobility Type 的Throughput for VoIP  89
圖 4-59 三種不同Mobility Type 的Average end-to-end delay for VoIP 89
圖 4-60 三種不同Mobility Type 的Delay standard derivation for VoIP 90
圖 4-61 三種不同Mobility Type 的Packet Delivery Ratio for CBR 91
圖 4-62 三種不同Mobility Type 的Throughput for CBR  91
圖 4-63 三種不同Mobility Type 的Average end-to-end delay for CBR 92
圖 4-64 三種不同Mobility Type 的Delay standard derivation for CBR 92
圖 4-65 三種不同Mobility Type 的Throughput for HTTP  93

表目錄
表 4-1 環境參數配置表  49
表 4-2 VoIP traffic type 參數配置  51
表 4-3 CBR traffic type 參數配置  61
表 4-4 HTTP traffic type 參數配置  72
參考文獻
[1] IEEE802.11s,HTTP://www.ieee802.org/802_tutorials/06-November/802.11s_Tutorial_r5.pdf, last accessed Nov. 2015.
[2] Joaquin Chung, Grace Gonzalez, Ivan Armuelles, Tomas Robles, Ramon Alcarria, Augusto Morales, “Characterizing the Multimedia Service Capacity of Wireless Mesh Networks for Rural Communities,” 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 628-635, Oct.2012.
[3] Michael Bahr, “Update on the Hybrid Wireless Mesh Protocol of IEEE 802.11s,” 2007. MASS 2007. IEEE International Conference on Mobile Adhoc and Sensor Systems, pp.1–6, Oct. 2007.
[4] Gary Shao, Francine Berman and Rich Wolski, “A Comparative Analysis of MANET RoutingProtocols for Low Cost Rural Telemetry WirelessMesh Networks,” 2015 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), pp.32-37, May. 2015.
[5] N. Elhaoudar and A. Maach, “LAmETx: The New Routing Metric with Load Balancing in WMNs,” World Applied Sciences Journal 32 (12), pp.2390-2397, 2014.
[6] Qasim Javed, Ravi Prakash, “Improving the performance of Hybrid Wireless Mesh Protocol,” 2012 Eighth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp.53-60, Dec. 2012.
[7] A. Ariza-Quintana, E. Casilari, A. Trivino Cabrera, “An architecture for the implementation of Mesh Networks in OMNeT++,” Proceedings of the 2nd International Conference on Simulation Tools and Techniques, Jan. 2009.
[8] I. Ibrahim, N. M. Abdul Latiff, S. K. Syed Yusof, N. N. Nik Abd Malik, S. H. Syed Ariffin, “Performance Comparison of AODV and HWMP Routing Protocols in Wireless Mesh Networks,” 2013 IEEE International RF and Microwave Conference (RFM), pp.116-120, Dec. 2013.
[9] Md. Arafatur Rahman, Md. Saiful Azad, Farhat Anwar, Aisha Hassan Abdalla, “A Simulation Based Performance Analysis of Reactive Routing Protocols in Wireless Mesh Networks,” 2009 International Conference on Future Networks, pp. 268-272, Mar. 2009.
[10] Fouzan Zulfiqar Mughal, Mohammad Imran Azam, “Comparative Analysis of Proactive,Reactive and Hybrid Ad Hoc Routing Protocols in Client Based Wireless Mesh Network,” 2010 International Conference on Information and Emerging Technologies (ICIET), pp.1-6, Jun. 2010.
[11] Azhar Hussain Mozumder, Tapodhir Acharjee and Sudipta Roy, “Scalability Performance Analysis of BATMAN and HWMP Protocols in Wireless Mesh Networks using NS-3,” 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), pp.1-5, Mar. 2014.
[12] OMNeT++, HTTPs://omnetpp.org/, last accessed Dec. 2015.
[13] Renato Pucci #, Luca Simone Ronga #, Enrico Del Re #, Demis Boschetti *, “Performance evaluation of an IEEE802.15.4 standard based Wireless Sensor Network in Mars exploration scenario,” 2009. Wireless VITAE 2009. 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, pp.161-165, May. 2009.
[14] IEEE 802.11s Wireless Mesh Networks, HTTP://www.csie.nuk.edu.tw/~lhyen/wn/WMN.pdf, last accessed Nov. 2015.
[15] Naima EL Haoudar, Abdelilah MAACH, “Load Balancing
Enhancement in WMNs with New Routing Metric,” Science and
Information Conference (SAI), pp.1093-1097, July. 2015.
[16] Azila Zakaria*t, Hafizal Mohamad*, Nordin Ramli* and Mahamod Ismailt, “Performance Evaluation of Routing Protocols in Wireless Mesh Network,” 2013 15th International Conference on Advanced Communication Technology (ICACT), pp.1111-1115, Jan. 2013.
[17] S. M. S. Bari, F. Anwar, M. H. Masud, ” Performance Study of Hybrid Wireless Mesh Protocol (HWMP) for IEEE 802.11s WLAN Mesh Networks,” 2012 International Conference on Computer and Communication Engineering (ICCCE), pp.712-716, July. 2012.
[18] Laxmi Shrivastava, Sarita S.Bhadauria, G.S.T6omar, “Performance Evaluation of Routing Protocols in MANET with different traffic loads,” 2011 International Conference on Communication Systems and Network Technologies (CSNT), pp.13-16, June. 2011.
[19] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, L. Viennot*, “Optimized Link State Routing Protocol for Ad Hoc Networks,” Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings. IEEE International, pp.62-68, 2001.
[20] Optimized Link State Routing, HTTP://www.grep.it/RMD/06-OLSR.pdf, last accessed Mar. 2015.
[21] Efficient Routing For Mobile Ad-hoc Network,
HTTPs://www.academia.edu/2218454/Efficient_routing_in_mobil_ad-hoc_networks, last accessed Feb. 2015.
[22] Maya C Aravind, Sangeetha C P, C D Suriyakala, “Enhanced Dynamic MANET On-demand (En-DYMO) Routing Protocol for Mobile Adhoc Networks,” 2015 Global Conference on Communication Technologies (GCCT), pp.544-549, Apr. 2015.
[23] Nawel BENDIMERAD, Bouabdellah KECHAR, “Performance
evaluation of QoS aware Multipath extensions For the Dynamic MANET On-demand protocol in Wireless Sensor Networks,” 2011 10th International Symposium on Programming and Systems (ISPS), pp.24-31, Apr. 2011.
[24] Georgios Koltsidas, Stylianos Karapantazis, Georgios Theodoridis, Fotini-Niovi Pavlidou, “A Detailed Study of Dynamic Manet On-demand Multipath Routing for Mobile Ad hoc Networks,” 2007. WOCN '07. IFIP International Conference on Wireless and Optical Communications Networks, pp.1-5, July. 2007.
[25] Qasim Javed, Ravi Prakash, “Improving the performance of Hybrid Wireless Mesh Protocol,” 2012 Eighth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp.53-60, Dec. 2012.
[26] M. GUESMIA1, M. GUEZOURI, N. MBAREK, “Performance
evaluation of the HWMP proactive tree mode for IEEE 802.11s based Wireless Mesh Networks,” 2012 Third International Conference on Communications and Networking (ComNet), pp.1-7, Apr. 2012.
[27] Linhan Feng, Zhihong Qian, Dongcheng Jin, “Performance Analysis of IEEE 802.11s Wireless Mesh Network On RM-AODV Path Selection Protocol,” 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp.135-139, May. 2011.
[28] Dongcheng Jin, Ke Wang, Linhan Feng, “End-to-End QoS
Performance Analysis of Wireless Mesh Network On RM-AODV
Routing Protocol,” International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), pp.987-990, Mar. 2012
[29] OMNeT++ User Guide, HTTPs://omnetpp.org/doc/omnetpp/UserGuide.pdf, last accessed Dec. 2015.
[30] OMNeT++ User Manaul,
https://omnetpp.org/doc/omnetpp/manual/usman.html, last accessed Dec. 2015.
[31] INET Framework for OMNeT++,
HTTPs://omnetpp.org/doc/inet/api-current/inet-manual-draft.pdf, last accessed June. 2015.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信