§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0903200917074000
DOI 10.6846/TKU.2009.00212
論文名稱(中文) 間接土壓力模式應用於側潰影響之樁基波動方程分析
論文名稱(英文) Study on Lateral Spreading Affected Piles Using Indirect Earth Pressure Model and Wave Equation Analysis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 1
出版年 98
研究生(中文) 徐守亨
研究生(英文) Shou-Heng Hsu
學號 694311027
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-01-07
論文頁數 158頁
口試委員 指導教授 - 張德文
委員 - 李維峰
委員 - 邱俊翔
關鍵字(中) 側潰
地盤變位
波動方程
樁基礎
關鍵字(英) lateral spreadiong
ground displacement
wave equation
pile foundtion
第三語言關鍵字
學科別分類
中文摘要
本研究之間接土壓力模式,係以一維波動方程模擬地盤側潰狀態下之樁基礎動力反應,依據現場土層鑽探資料與鄰近測站之地震紀錄,由Tokimatsu(2003)建議之地盤變位模式估算地盤永久變位量,再將地震加速度積分兩次而得之正規化地震位移視為地震力對地盤變位的影響,進而求得地盤受震過程之位移反應,並以此為前置解,最後藉由樁身土壤彈簧將地盤變位傳遞於樁身上。樁身剛度以簡易Bouc-Wen模式模擬其非線性行為,以瞭解液化地盤內基樁之變形行為與破壞機制。本研究以參數研究及日本地震時之基樁破壞案例驗證本模式之合理性。
研究結果顯示:(1)針對底層未液化土層,傳統方法僅適用於堅硬土層;本研究所採用Ishihara & Cubrinovski(2004)建議之方法可用於不同類型土層,並將底層未液化土壤以土壤彈簧模擬其非線性行為;(2)本研究採用簡易Bouc-Wen模式處理樁體非線性行為,其中α、z參數由基樁資料彎矩-曲率圖回算求得;(3)由參數研究發現,永久變位模式之五參數皆各有其影響力。其中地下水位深度的模擬效果較差;基樁長度與液化層厚度若太為相近,會使得樁底位移有所滑移;土壤彈簧折減因子β將使得基樁位移減小;(4)由參數研究與實際案例分析結果顯示,樁基礎之最大彎矩易發生於液化層上下方交界處而致使基樁發生破壞,其原因在於上下方交界處附近之土壤位移反應因弱化而造成基樁整體變形曲線中之轉折,應於液化層上下交界處加強樁基礎結構強度,確保其結構物之安全性;(5)本研究以樁基波動分析程序(EQWEAP)為架構,以地盤變位模式為前置解,進行地盤側潰後對樁基礎影響之行為分析。亦可以土壓力模式為前置解進行分析;(6)與直接土壓力模式比較之下,本研究之分析結果應較為略小;(7)本研究所建立之動力分析模式,可清楚反映樁基礎於受震期間對液化影響產生之變形行為與內力反應,亦能透過位移、彎矩、剪力之剖面圖,瞭解較能代表樁基礎實際受震行為之瞬間反應。
英文摘要
The indirect earth pressure model with one dimensional wave equation analyses is used to simulate the seismic responses of a single pile affected by soil lateral spreading. With the field investigation, the permanent ground displacement can be estimated according to the method proposed by Tokimatsu(2003). The permanent ground displacement multiplied by the normalized seismic displacement function is regarded as the seismic responses of the ground displacement. Finally, the dynamic ground displacement profile is applied to the pile elements through the soil springs , and the pile non-linearity is simulated by the simplified Bouc-Wen Model. Thus the deformations and failure mechanism of the pile are able to be understood. This analysis is also validated by the parameter studies and the case studies of pile failure due to earthquake in Japan.
  The results of this study are concluded as follows:(1)For the underlying non-liquefied layer, the soil springs are used to simulated its non-linearity. (2)The pile non-linear behavior is characterized by the simplified Bouc-Wen Model where α and z are back calculated from the tri-linear moment-curvature relationship. (3)From the parameter studies: It can be found that the five parameters of the Permanent Model all influence the analyses. However , the simulation of the factor, zw is not as fine as others. Compared with the thickness of the liquefied layer, if the length of the pile is not long enough, the displacement of the pile tip will be not so closer to zero. The pile response is smaller when the stiffness reduction coefficient, β, is applied. (4)The largest pile displacement would occurs at the pile head. The values of the moments at the pile head or the interface between the liquefied layer and the underlying non-liquefied layer may exceed the ultimate moment. So the two section of a pile is in need of strengthening to ensure the safety of the superstructure. (5)The frame of this study is based on the Earthquake Wave Equation Analysis of Pile(for short: EQWEAP). The pre-solution involved is the ground displacement profile, and it also can be the direct earth pressure profile. (6)Compared with the direct earth pressure model ,the responses of  this study are smaller. (7)The indirect earth pressure model is relatively simple, and the instant responses at different times are able to be caught easily.
第三語言摘要
論文目次
第一章	緒論
1-1  研究動機與目的                                        1
1-2  研究方法與內容                                        2

第二章	文獻回顧
2-1  前言                                                  5
2-2  土壤液化與側潰                                        7
2-3  液化之定義與發生機制                                 10
2-4  影響土壤液化之因素                                   18
2-5  側潰位移量分析之相關研究                             25
2-6  樁基礎破壞機制與非線性模擬方法                       33
2-7  樁基礎耐震之動力分析                                 51

第三章	分析方法與理論推導
3-1  前言                                                 56
3-2  地盤變位模式                                         57
3-3  公式建立與推導                                       64
3-4  地盤反力模數                                         72
3-5  分析流程與樁體非線性模式                             76

第四章	參數研究
4-1  前言                                                 84
4-2  假設案例與參數說明                                   85
4-3  樁基礎受側潰影響之行為分析                           91

第五章	案例分析
5-1  前言          				  102
5-2  案例一 Kobe Tank TA72			           103
5-3  案例二 Kobe Pier 211                                124

第六章	結論與建議
6-1  結論       					  138
6-2  展望與建議   					  143

參考文獻                                                 144

表2-1		霧峰測站量測之加速度表(摘自 林成川,2002)	24
表2-2		1906年加州地震之LSI(摘自 吳俊逸,2000)	27
表2-3		最小旋轉半徑計算表(摘自Bhattacharya et al., 2004)	43
表3-1		反覆與永久變位模式之參數	34
表3-2		地盤反力常數經驗值(摘自Terzaghi,1955)	74
表3-3		地盤反力常數經驗值(摘自Johnson & Kavanaugh,1968)	74
表3-4		地盤反力常數經驗值(摘自Group3.0使用手冊)	75
表3-5		水位之下地盤反力常數經驗值	75
表3-6		各樁徑與α、z參數之關係表(摘自張紹倫,2008)	81
表4-1		參數研究對照表	90
表4-2		921集集大地震霧峰地區側潰調查(摘自林成川,2000)	91
表4-3		參數研究結果統整表	94
表5-1		人工回填島之土壤參數表(摘自 黃俊鴻等人,2006)	105
表5-2		Tank TA72基樁材料性質參數(摘自 黃俊鴻等人,2006)	105
表5-3		反覆與永久變位模式參數表	113
表5-4		Tank TA72各液化潛能評估法分析結果(摘自李漢珽,2008)	114
表5-5		土壤參數表	127
表5-6		Pier 211基樁材料性質參數	127
表5-7		地盤變位參數表	133

圖1-1		研究分析流程圖	4
圖2-1		液化示意圖(李漢珽重繪自Ishihara, 1985)	7
圖2-2		側潰發生示意圖(重繪自Hamada et al.,1986)	9
圖2-3		飽和砂土不排水試驗液化潛能狀態示意圖
(李漢珽重繪自 Castro, 1969)	10
圖2-4		流動液化發生機制示意圖(李漢珽重繪自 Kramer, 1996)	12
圖2-5		1957年於舊金山MERCED湖沿岸發生流動液化情形
(摘自 Kramer,1996)	12
圖2-6		1976年瓜地馬拉於MOTAGUA河流發生側潰情形
(摘自 Kramer,1996)	14
圖2-7		反覆流動性發生機制示意圖(李漢珽重繪自 Kramer,1996)	15
圖2-8		液化土壤中地盤變位模式
(重繪自 Cubrinovski & Ishihara,2004)	16
圖2-9		1995年神戶地震中各災區之側潰位移
(摘自 Cubrinovski,2006)	31
圖2-10		液化土層中樁-土-結構互制示意圖
(摘自 Tokimatsu and Asaka, 1998)	35
圖2-11		箍筋圍束下混凝土應力與應變模式
(李漢珽重繪自 Kent and Park, 1971)	37
圖2-12		典型基樁之彎矩與曲率關係圖	39
圖2-13		鋼筋混凝土結構之損害分類圖
(李漢珽重繪自 Luo et al., 2002)	39
圖2-14		樁體彎曲特性三線性模式	39
圖2-15		樁體彎曲特性雙線性模式	39
圖2-16		基樁破壞機制模式(摘自 Bhattacharya et al., 2004)	40
圖2-17		工程設計中之樁長與樁徑關係圖(摘自Bond, 1989)	42
圖2-18		蒐集案例之有效細長比(摘自Bhattacharya et al., 2004)	42
圖2-19		有效樁長示意圖(摘自Bhattacharya et al., 2004)	43
圖2-20		Diado混凝土彎曲試驗法(李漢珽重繪自Meyersohn, 1994)	45
圖2-21		試樁之彎矩與曲率關係圖(摘自Meyersohn, 1994)	45
圖2-22		矩形斷面混凝土與鋼筋之彎矩曲率分析示意圖	47
圖2-23		基樁之等值線性模式(摘自Cubrinovski et al., 2004)	48
圖2-24		鋼筋混凝土之撓度變化(摘自 Arthur H. Nilson et al., 2003)	50
圖2-25		慣性矩 對彎矩-轉角關係的影響(摘自 楊宗勳,2000)
50
圖3-1		液化流動地盤中樁-土互制行為模擬模型
(摘自 鐘明劍,2006 )	56
圖3-2		地震時之最大反覆剪應變(摘自 Tokimatsu and Asaka, 1998)	59
圖3-3		側潰範圍與河岸線水平位移關係圖
(摘自 Tokimatsu and Asaka, 1998)	60
圖3-4		海岸距離與地盤水平位移關係
(摘自 Tokimatsu and Asaka, 1998)	61
圖3-5		分析模型(重繪自Ishihara,2003)	63
圖3-6		樁頂之節點編號	66
圖3-7		樁頂內緣一點之節點編號	66
圖3-8		樁底之節點編號	67
圖3-9		樁底內一點之節點編號	67
圖3-10		樁頂邊界條件(自由端)	67
圖3-11		樁頂邊界條件(剛性端)	67
圖3-12		地盤反力係數 與不排水剪力強度之關係圖
(摘自 Group 3.0使用手冊)
	73
圖3-13		分析流程圖	77
圖3-14		樁身剛度折減示意圖(摘自張紹倫,2008)	81
圖3-15		彎矩回歸分析結果(摘自張紹倫,2008)	82
圖3-16		曲率回歸分析結果(摘自張紹倫,2008)	83
圖4-1		標準案例之基樁與地盤剖面圖	88
圖4-2		921地震加速度歷時圖(TCU110)	89
圖4-3		修正後 921地震加速度歷時圖	89
圖4-4		標準案例	94
圖4-5		參數研究分析結果(D0)	96
圖4-6		參數研究分析結果(L)	97
圖4-7		參數研究分析結果(S)	98
圖4-8		參數研究分析結果(H )	99
圖4-9		參數研究分析結果(Zw )	100
圖4-10		參數研究分析結果(樁長)	101
圖4-11		參數研究分析結果(β)	102
圖5-1		Mikagehama Island地理位置圖(摘自Ishihara, 2003)	106
圖5-2		人工島上儲油槽Tank TA72位置示意圖
(摘自Ishihara and Cubrinovski, 2004)	106
圖5-3		地盤側向變形量(摘自Ishihara and Cubrinovski, 2004)	107
圖5-4		液化後地盤位移示意圖
(摘自Ishihara and Cubrinovski, 2004)	107
圖5-5		儲油槽結構剖面與土層分佈概況
(摘自Ishihara and Cubrinovski, 2004)	108
圖5-6		群樁基礎與擠壓砂樁之配置示意圖
(摘自Ishihara and Cubrinovski, 2004)	109
圖5-7		高強度預鑄混凝土樁之彎矩-曲率圖
(摘自Ishihara and Cubrinovski, 2004)	109
圖5-8		No.2基樁之側向位移及樁身損害示意圖
(摘自Ishihara and Cubrinovski, 2004)	110

圖5-9		
No.9基樁之側向位移及樁身損害示意圖
(摘自Ishihara and Cubrinovski, 2004)	
111
圖5-10		神戶地震(1995)加速度歷時曲線圖	112
圖5-11		神戶地震(1995)正規化位移歷時曲線圖	113
圖5-12		地盤反覆變位(Tank TA72)	116
圖5-13		地盤反覆變位之樁身位移(Tank TA72)	117
圖5-14		地盤反覆變位之樁身剪力(Tank TA72)	118
圖5-15		地盤反覆變位之樁身彎矩(Tank TA72)	119
圖5-16		地盤永久變位(Tank TA72)	120
圖5-17		地盤永久變位之樁身位移(Tank TA72)	121
圖5-18		地盤永久變位之樁身剪力(Tank TA72)	122
圖5-19		地盤永久變位之樁身彎矩(Tank TA72)	123
圖5-20		永久與反覆變位模式比較圖(Tank TA72)	124
圖5-21		間接與直接土壓力模式比較圖(Tank TA72)	124
圖5-22		Osaka與Kobe之高速公路系統圖(摘自 Ishihara, 2003)	128
圖5-23		地層高低輪廓示意圖(摘自 Ishihara, 2003)	128
圖5-24		Hanshin公路破壞示意圖(摘自 葉健輝,2006)	129
圖5-25		地表永久變位圖(摘自 Ishihara, 2003)	129
圖5-26		碼頭結構與樁基系統示意圖(摘自 Ishihara, 2003)	130
圖5-27		Pier 211之樁基彎矩與曲率關係圖(摘自 Ishihara, 2003)	131
圖5-28		樁基損害示意圖(摘自 Ishihara, 2003)	131
圖5-29		樁身位移與彎矩分佈曲線(摘自 Ishihara, 2003)	132
圖5-30		地盤變位(Pier 211)	135
圖5-31		樁身位移(Pier 211)	136
圖5-32		樁身剪力(Pier 211)	137
圖5-33		樁身彎矩(Pier 211)	138
圖5-34		分析結果與其他學者之比較圖(Pier 211)	139
圖5-35		分析結果與直接土壓力模式比較圖(Pier 211)	139
參考文獻
1.	Abdoun, T. and Dobry, R. (2002), “Evaluation of Pile Foundation Response to Lateral Spreading,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.1051-1058.
2.	ACI Committee 318 (1995), “Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95),” American Concrete Institute.
3.	Ambraseys, N.N. (1988), “Engineering Seismology,” earthquake engineering and structural dynamics, Vol. 17, pp.1-105.
4.	API (1993), “Recommended Practice for Planning, Design, and Constructing Fixed Offshore Platforms,” API RP 2A-WSD, 20th ed., American Petroleum Institute.
5.	Arulanadan, K., Li, X.S. and Sivathasan, K. (2000), “Numerical Simulation of Liquefaction-induced Deformations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 7, pp. 657-666.
6.	Bartlett, S.F., and Youd, T.L. (1995), “Empirical Prediction of Liquefaction-Induced Lateral Spread,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 4, pp. 316-329.
7.	Berrill, J.B., Christensen, S.A., Keenan, R.P., Okada, W., and Pettinga, J.R. (2001), “Case Study of Lateral Spreading Forces on a Piled Foundation,” Geotechnique, Vol. 51, No. 6, pp.501-517.
8.	Bhattacharya, S., Madabhushi, S. and Bolton, M.D. (2004), “An Alternative Mechanism of Pile Failure in Liquefiable Deposits During Earthquakes,” Geotechnique, Vol. 54, No. 3, pp.203-213.
9.	Bhattacharya, S., Bolton, M.D. and Madabhushi, S.P.G. (2005), “A Reconsideration of the Safety of Piled Bridge Foundation in Liquefiable Soils.” Soil and Foundations, Vol.45,No. 4,pp. 13-25.
10.	Bond, A.J. (1989), “Behavior of Displacement Poles in Overconsolidated Clays,” Doctor’s dissertation, Imperial College, London.
11.	Borms, B.B. (1964), “Lateral Resistance of Piles in Cohesionless Soils,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 3, pp.123-156.
12.	Borms, B.B. (1964), “Lateral Resistance of Piles in Cohesive Soils,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 2, pp.27-63.
13.	Casagrande, A. (1936), “Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics, BSCE, 1940, pp.257-276.
14.	Castro, G. (1969), “Liquefaction of Sands,” PhD. Thesis, Harvard University; reprinted as Harvard Soil Mechanics Series, No.81, 112 pp.
15.	Castro, G. and Poulos, S.J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.501-516.
16.	Chang, D. W. and Yeh, S. H. (1999), “Time-Domain Wave Equation analysis of single Piles Utilizing Transformed Radiation Damping,” Soils and foundations, JGS. , Vol. 39, No. 2, pp.31-44.
17.	Chang, D. W., Roesset, J .M. and Wen, C. H. (2000), “A Time-Domain Viscous Damping Model Based on Frequency-Depend Damping Ratios,” Soil Dynamic and Earthquake Engineering, Vol. 19, pp.551-558.
18.	Chang, Y.L. (1937), “Discussion on Lateral Pile-Loading Tests,” by Feagin, Trans. ASCE, Paper No. 1959, pp. 272-278.
19.	Chung, K.Y.C. and Wong, I.H. (1982), “Liquefaction Potential of Soils with Plastic Fines,” Soil Dynamics and Earthquake Engineering Conference, Southampton, pp.887-897.
20.	Cubrinovski, M. (2006), “Pile Response to Lateral Spreading of Liquefied Soils,”NZGS 2006 Symposium: Earthquakes and Urban Development, Nelson, February 2006: 127-142.
21.	Dobry, R. and Gazetas, G. (1988), “Simple Method for Dynamic Stiffness and Damping of Floating Pile Groups,” Geotechnique, Vol. 38, No. 4, pp.557-574.
22.	Dobry, R., Abdount, T., O’Rourke, T.D. and Goh, S.H. (2003), “Single Piles in Lateral Spreads Field Bending Moment Evaluation,” Journal of the Geotechnical Engineering, ASCE, Vol. 129, No. 10, pp.879-889.
23.	Finn, W.D.L. (1976), “Seismic Response and Liquefaction of Sands,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No.GT8, pp. 841-856.
24.	Finn, W.D.L (1977), “An Effective Stress Model for Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol.103, No. SM7, pp. 657-692.
25.	Finn, W.D.L. (1982), “Soil Liquefaction Studies in the People’s Republic of China,” Soil Mechanics-Transient and Cyclic Loads, Ch. 22, pp.609-626, John Wiley & Sons, Ltd.
26.	Finn, W.D.L.(1991), “Assessment of Liquefaction Potential and Post Liquefaction Behavior of Earth Structure: Development 1981-1991”, Proc. 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Vol. 2, pp. 1883-1850.
27.	Guo, T. and Prakash, S. (2000), “Liquefaction Silt-Clay Mixtures,” Proc. 11th World Conf. On Earthquake Engg Auckland NZ, CD Rom.
28.	Haigh S.K. and Madabhushi S.P.G. (2005), “The Effects of Pile Flexibility on Pile-Loading in Laterally Spreading Slops,” Proc. Int. Workshop Simulation and Seismic Performance of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE, 14 p.
29.	Hamada, M., Yasuda, S., Isoyama, R., and Emoto, K.(1986). “Study on Liquefaction Induced Permanent Ground Displacement.” Mngrph., Association for the Development of Earthquake Prediction in Japan, Tokyo.
30.	Hamada M. (1992), “Large Ground Deformations and Their Effects on Lifelines:1964 Niigata Earthquake,” in Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, NCCER, Buffalo, NY, USA. 3.1-3.123.
31.	Hetenyi, (1946), “Beams on Elastic Foundation,” University of Michigan Press.
32.	Ishibashi, I.M., Sherlif, M.A. and Cheng, W.L. (1982), “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp.37-48.
33.	Ishihara, K., Sodekawa, M., and Tanaka, Y. (1978), “Effect of Over consolidation on Liquefaction Characteristics of Sand Containing Fine,” Dynamics Geotechnical Test, ASCE, STP 654, ASTM, pp.246-264.
34.	Ishihara, K. (1985), “Stability of Natural Depsoit during Earthquake,” Proc., 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376.
35.	Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol. 43, No. 3, pp.351-415.
36.	Ishihara, K. (2003), “Liquefaction-Induced Lateral Flow and Its Effects on Foundation Piles,” 5th National Conference on Earthquake, Istanbul, Turkey, 28 p.
37.	Ishihara, K. and Cubrinovski M. (2004), “Case Studies of Pile Foundations Undergoing Lateral Spreading in Liquefied Deposits,” Proc. 5th International Confernce on Case Histories in Geotechnical Engineering, New York, Paper SOAP5.
38.	Johnson, S.M, and Kavanaugh, T.C. (1968), “The Design of Foundations for Buildings,” McGraw-Hill, New York.
39.	Iwasaki, T., Arakawa, T., and Tokida, K. (1982), “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” Soils Dynamics and Earthquake Engineering Conference, Southamption, pp.925-939.
40.	Kent, D.C, and Park, R. (1971), “Flexural Member with Confined Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
41.	Knappett, J.A. and Madabhshi, S.P.G (2005), “Modeling of Liquefaction-induced Instability in Pile Groups,” Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Lateral Spreading Ground, University of California, Davis, March.
42.	Kramer, S.L.(1996), “Geotechnical Earthquake Engineering,” Prentice Hall, Inc., Upper Saddle River, New Jersey, pp. 348-368.
43.	Kunnath, S.K. and Reinhorn, A.M. (1989), “Inelastic Three-Dimensional Response Analysis of RC Buildings (IDARC) Part I – Modeling,” Technical Report NCEER-89-0009, National Center for Earthquake Engineering Research, SUNY/Buffalo.
44.	Lee, K.L., and Fitton, J.A. (1969), “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils the Foundations, ASTM STP450, pp.71-96.
45.	Li, X.S., Wang Z.L. and Shen, C.K. (1992), “SUMDES, a Nonlinear Procedure for Response Analysis of Horizontal-Layer Sites Subjected to Multi-Directional Earthquake Loading”, Report to the Department of Civil Engineering University of California, Davis.
46.	Liang, M. and Husein, A.I. (1993), “Simplified Dynamic Method for Pile-Driving Control,” Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 4, pp.694-713.
47.	Liang, R.W., Bai, X. H., and Wang J. C. (2000), “Effect of Clay Particle Content on Liquefaction of Soil,” Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
48.	Lin, S.S. (1997) “Use of Filamented Beam Elements for Bored Pile Analysis”, Journal of Structural Engineering, ASCE, Vol. 123, No. 9, pp. 1236-1244.
49.	Lin, S.S., Tseng Y.J, Chiang C.C., and Hung C.L. (2005), “Damage of Piles Caused by Laterally Spreading Study of Three Cases.” Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
50.	Luo, X., Murono, Y., and Nishimura, A. (2002), “Verifying Adequacy of the Seismic Deformation Method by Using Real Example of Earthquake Damage,” Soil Dynamics and Earthquake Engineering, Vol.22, pp.17-28.
51.	MacGregor, J.G. (1988), “Reinforced Concrete: Mechanics and Design,” Prentice Hall, New Jersey, U.S.A.
52.	Meyersohn, W.D. (1994), “Pile Response to Liquefaction-induced Lateral Spread,” Doctor’s dissertation, Cornell University, USA.
53.	Madabhushi, S.P.G. and Zeng, X. (1998), “Seismic Response of Gravity Quay Walls Ⅱ: Numerical Modeling”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 5, pp. 418-427.
54.	Matlock, H. (1970), “Correlations for Design of Laterally Loaded in Soft Clay,” Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp.577-594.
55.	Matlock, H. and Reese, L.C. (1960), “Generalized Solution for Laterally Loaded Piles,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 86, No. SM5, pp.1220-1246.
56.	Moriwaki, Y., Tan, P., and Choi, Y. (2005), “Nonlinear Analyses for Design of Piles in Liquefying Soils at Port Facilities”, Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
57.	Mulilis, J.P. (1975), “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center.
58.	Novak, M. and Beredugo, Y.O. (1972), ”Vertical Vibration of Embedded Footings,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98, pp. 1291-1310.
59.	Novak, M. (1974), “Dynamic Stiffness and Damping of Piles,” Journal of Canadian Geotechnical Engineering, Vol. 11, pp.574-598.
60.	Novak, M. (1977), “Vertical Vibration of Floating Piles,” Journal of Engineering Mecanics Division, ASCE, Vol. 103(EM-1), pp.153-168.
61.	Novak, M. and EI Sharnouby, B. (1983), “Stiffness and Damping Constants of Single piles,” Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp.153-168.
62.	O’Neill, M.W. and Murchison, J.M. (1983), “An Evaluation of P-Y in Sands,” Research Report No.GT-DF02-83, Department of Civil Engineering, University of Houston, Houston, Texas.
63.	Park, S. and Byme, P.M. (2005), “Multi-plane Model for Soil Liquefaction”, Geo-Frontiers 2005, ASCE, pp. 2577-2592.
64.	Peacock, W.H., & Seed, H.B.(1968)“Sand Liquefaction under Cyclic Loading Simple Shear Condition,” Journal of Soil Mech. Found. Div., ASCE, 94(SM3), pp.689-708.
65.	Poulos, H.G. (1989), “Cyclic Axial Loading Analysis of Piles in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 6, pp.836-852.
66.	Priestley, M.J.N., Seible, F., and Calvi, G.M. (1996), “Seismic Design and Retrofit of Bridges,” John Eiley & Sons, Inc.
67.	Rauch, A.F. and Martin, J.R. (2000), “EPOLLS Model for Predicting Average Displacement on Lateral Spreads,” Journal of Geotechnical and Geoenvironmental Engineering ,ASCE, vol. 126, No. 4, pp.360-371.
68.	Reese, L.C. (1983), “Executive Summary, Behavior of Piles and Pile Groups Under Lateral Load,” U.S. Department of Transportation Federal Highway Administration Office of Research Washington, D. C. 444 pp.
69.	Reese, L.C. and Welch, R.C. (1975), “Lateral Loading of Deep Foundations in Stiff Clay,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT7, pp.633-649.
70.	Reese, L.C.(1997), ”Analysis of Laterally Loaded Piles in Weak Rock,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No. 11,pp. 1010-1017.
71.	Reese, L.C., and Van Impe, W.F. (2001), “Single Piles and Pile Groups under Lateral Loading,” A.A. Balkema.
72.	Reese, L.C., Cox, W.R., and Koop, F.D. (1975), “Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay,” Proceedings of the 7th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. OTC 2312, pp.672-690.
73.	Santos, J.A.D., and Correia, A.G. (1995), “Analysis of Lateral Loading Piles Behavior Using Small Computers,” Proceeding Practice and Promotion of Computational Methods in Engineering Using Small Computers, Macao, pp.1353-1358.
74.	Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972), “SHAKE: a Computer Program for Earthquake Response Analysis of Horizontally Layered Sites”, Report No. EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley.
75.	Seed, H.B. and Lee, K.L.(1966),“Liquefaction of Saturation Sands during Cyclic Loading”, Journal of the Soil Mechanics and Foundations Division, ASCE, vol. 92, No, SM6, pp.105-134.
76.	Seed, H.B. and Idriss, I.M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1249-1274.
77.	Seed, H.B. and Idriss, I.M. (1976), “Analysis of Soil Liquefaction: Niigata Earthquake,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, Proc. Paper 4233.
78.	Seed, H.B. and Idriss, I.M. (1982), “Ground Motions and Soil Liquefaction During Earthquakes,” Earthquake Engineering Research Institute, Berkeley, AC, USA.
79.	Seed, H.B. and Peacock, W.H. (1971), “Test Procedure for Measuring Soil Liquefaction Characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1099-1119.
80.	Seed, H.B., (1979) “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquake,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp.201-255.
81.	Seed, H.B., Martin, P.P., and Lysmer, J. (1975), “The Generation and Dissipation of Pore Water Pressure During Soil Liquefaction,” Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California.
82.	Seed, H.B., Mori, K., and Chan, C.K. (1975), “Influence of Seismic History on the Liquefaction Characteristics of Sands, ” Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California.
83.	Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985), ”Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 111, No. 12, pp.1425-1445.
84.	Shen, C.K., Vrymoed J.L. and Uyeno C.K. (1977), “The Effects of Fines on Liquefaction of Sands,” Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp.381-385.
85.	Sherif, M.A., Ishibashi, I. & Tsuchiga, C.(1977), “Saturation Effects on Initial Soil Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, pp. 914-917.
86.	Smith, E.A.L. (1960), “Pile Driving Analysis by The Wave Equation,” Journal of Soil Mechanics and Foundation Divisions, ASCE, Vol. 86, No. SM4, pp.35-61.
87.	Stevens, J.B. and Audibert, J.M.E. (1979), “Re-Examination of P-Y Curve Formulations,” Proceedings of 11th Annual Offshore Technology Conference, Houston, Texas, No. OTC 3402, pp.397-403.
88.	Stoke, K.H., Roesset, J.M., Bierschwale, J.G. and Aouad, M. (1988), “Liquefaction Potential of Sand from Shear Wave Velocity”, Proceedings, 9th World Conference on Earthquake Engineering, Tokyo, Vol. 3, pp. 213-218.
89.	Terzaghi, K. (1955), “Evaluation of Coefficients of Subgrade Reaction,” Geotechnique, Vol. 5, pp.297-326.
90.	Tokimatsu, K. (2003), “Behavior and Design of Pile Foundations Subjected to Earthquakes,” Proceedings of the 12th ARC on Soil Mechanics and Geotechnical Engineering, Vol II, pp. 1065-1096.
91.	Tokimatsu, K. and Asaka, Y. (1998), “Effects of Liquefaction Induced Ground Displacement on Pile Performance in the 1995 Hyogoken–Nambu Earthquake,” Special Issue of Soils and Foundations, No. 2, pp.163-178.
92.	Tokimatsu, K. and Yoshimi, Y. (1983), “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fines Content,” Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp.56-74.
93.	Tokimatsu, K., Suzuki, H. and Sato, M. (2005), “Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundation,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.753-762.
94.	Towhata, I. (1996), “Liquefaction and associated phenomenon,” Proceedings
of First International Conference on Earthquake GeotechnicalEngineering, Tokyo, Vol. 3, pp. 1411-1434 .
95.	Ueng, Y.S. and Chang C.S. (1982), “The Effects of Clay Content on Liquefaction of Fulung Sand,” Soil Dynamics and Earthquake Engineering Conference, Southampton.
96.	Xia H. and Hu T. (1991), “Effects of Saturation and Back Pressure on Sand Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 117.
97.	Yoshimi Y., Tokimatsu K. and Hosaka Y. (1989), “Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples,” Soils and Foundations, Vol. 29, No. 1, pp. 93-104.
98.	Youd, T.L. and Hoose, S.N. (1976), “Liquefaction during 1906 San Francisco Earthquake: American Society of Civil Engineerings,” Journal of Geotechnicl Division, Vol. 6, pp. 37-42.
99.	Youd, T.L., and Perkins, D.M. (1987), “Mapping of Liquefaction Severity Index,” Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 11, pp. 1374-1392.
100.	Youd Y.L., Hansen C.M., and Bartlett S.F. (2002), “Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement,”Journal of Geotechnical and Geoenvironment Engineering , Vol. 128, No. 12,pp. 1007-1017.
101.	日本國鐵基礎構造物及抗土壓構造物設計標準研究委員會 (1986),“國鐵建造物設計標準同解說-基礎構造物及抗土壓構造物”。
102.	日本道路協會 (1990),「道路橋示方書‧同解說,V耐震設計編」。
103.	日本道路協會 (1996),「道路橋示方書‧同解說,V耐震設計編」。
104.	日本道路協會 (2002),「道路橋示方書‧同解說,V耐震設計編」。
105.	王世權 (2001),“垂直地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
106.	王志煒 (2002),“側向地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
107.	江鈞平 (1984),“壓密與顆粒性質對含微量黏土細砂之液化潛能的影響”,碩士論文,台灣大學土木工程研究所,台灣,台北。
108.	江承家 (2004),“土壤側潰對混凝土樁之影響分析”,碩士論文,海洋大學土木工程研究所,台灣,基隆。
109.	巫秀星 (2005),“液化土壤模數折減下樁基動力反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
110.	吳宗達 (2003),“樁基波動方程分析之視窗化研究與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
111.	吳俊逸 (2000),“土壤液化引致地盤永久位移之研究”,碩士論文,國立中央大學土木工程研究所,台灣,中壢。
112.	吳偉特,(1979) “台灣地區砂性土壤液化潛能評估之初步分析”,中國土木水利季刊,第六卷,第二期,第39-70頁。
113.	李佳翰 (2001),“沈箱式碼頭受震引致土壤液化之數值模擬”,碩士論文,中央大學應用地質研究所,台灣,中壢。
114.	林三賢、曾玉如、江承家、李維峰(2005),“液化土層產生側潰對基樁之影響分析”,地工技術,第103期,第43-52頁。
115.	林光宗 (1998),“群樁互制效應對基樁反應之影響”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
116.	林成川 (2002),“921集集大地震霧峰地區土壤側潰”,碩士論文,中興大學土木工程研究所,台灣,台中。
117.	林伯勳 (2002),“群樁受垂直向及側向載重之非線性變形研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
118.	林柏勳 (2006),“樁基礎受液化何地盤側向流動之結構行為分析”,博士論文,淡江大學土木工程研究所,台灣,淡水。
119.	林新哲 (1998),“考慮混凝土開裂之場鑄樁側向載重分析”,碩士論文,台灣科技大學土木工程研究所,台灣,台北。
120.	林冠吾 (2003),“層狀土壤中之樁基承載力及變形行為”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
121.	邱俊翔 (2001),“基樁側向荷載行為之研究”,博士論文,國立台灣大學土木工程研究所,台灣,台北。
122.	周功台、李志剛、廖瑞堂、俞清瀚、余榮生、郭漢興、黃富國、鄭清江(2000),“液化區基礎修復補強工法對策說明書”,台北市、台灣省大地工程技師公會,台北。
123.	邱建銘 (2000),“以剪力波速評估員林地區液化及其地層動態反應研究”,碩士論文,台灣大學土木工程研究所,台灣,台北。
124.	夏啟民 (1992),“細料塑性程度對台北盆地粉泥質砂液化潛能之影響”,碩士論文,台灣大學土木工程研究所,台灣,台北。
125.	葉健輝 (2006),“液化地盤樁基之靜力分析模式研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
126.	翁作新、陳正興、黃俊鴻 (2004),“國內土壤受震液化問題之檢討” 地工技術,第100期,第63-78頁。
127.	翁贊鈞 (2003),“員林地區傾斜地盤二維有效應力分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。
128.	馬志睿 (2001),“沈箱式碼頭受震反應之數值模擬”,碩士論文,中央大學土木工程研究所,台灣,中壢。
129.	梁慈婷 (2000),”土壤液化對混凝土之影響”,碩士論文,海洋大學土木工程研究所,台灣,基隆。
130.	張一郎 (2000),“波動方程式分析於群樁側向反應之應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
131.	張益銘 (2001),“霧峰地區土壤液化特性研究”,碩士論文,國立中興大學土木工程研究所,台灣,台中。
132.	陳正興 (2000),“側向荷重樁之非線性反應分析”,國立台灣大學土木工程系研究報告。
133.	黃俊鴻 (2000),“液化地盤中樁基礎之耐震設計”,地工技術,第82期,第65-78頁。
134.	黃俊鴻、鍾明劍 (2006),“液化流動壓作用下側向樁之簡化解析解”,中國土木水利工程學刊,第十八卷,第四期,第465~474頁。
135.	黃筱卿 (2002),“員林地區土壤液化之地盤反應分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。
136.	黃安斌,林志平,紀雲曜,古志生,蔡錦松,李德河,林炳森(2005),“台灣中西部粉土細砂液化行為分析”,地供技術雜誌,第103期,第5-30頁。
137.	楊宗勳 (2000),“地震力對混凝土樁之影響分析” ,碩士論文,國立海洋大學河海工程研究所,台灣,基隆。
138.	溫展華 (2000),“垂直群樁反應數值解比較研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
139.	賈志揚 (2004),“樁基波動方程分析網際網路化視窗程式之開發”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
140.	劉祉祥 (1999),“垂直載重群樁之波動方程式時域解”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
141.	鄭世豪 (2004),“簡易橋墩基礎之地震反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
142.	蘇順帆 (2001),“群樁基礎互制行為研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
143.	劉凱方 (2009),“直接土壓力模式應用於側潰影響之樁基波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
144.	盧見志,鍾賢慶,黃永和 (2005),“橋樑非維性側推分析”,2005年兩岸鐵道工程技術與營運管理學術研討會,台灣,12月,第207~221頁。
145.	歐陽金福 (1997),”垂直載重基樁土壤彈簧勁度與阻尼模式研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
146.	李漢珽 (2008),“土質參數折減係數應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
147.	張紹綸 (2008),“孔隙水壓模式應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
148.	蘇順帆 (2001),“群樁基礎互制行為研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
149.	鍾明劍 (2005),“樁基礎最佳化設計之研究”,博士論文,國立中央大學,台灣,桃園。
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信