淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0903200821200200
中文論文名稱 探討石灰石溶解於密閉式流體化床反應系統中和硫酸及草酸之反應
英文論文名稱 Discussion on Limestone Dissolution and Neutralization Capacity within Sulfate and Oxalate in FLB System
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 96
學期 1
出版年 97
研究生中文姓名 林義笙
研究生英文姓名 Yi-Sheng Lin
學號 693331398
學位類別 碩士
語文別 中文
口試日期 2008-01-10
論文頁數 97頁
口試委員 指導教授-李柏青
委員-李奇旺
委員-陳孝行
中文關鍵字 密閉式流體化石灰石床系統  石灰石的溶解量  鹼度  二氧化碳  Ca2+濃度 
英文關鍵字 Fluidized Limestone Bed  Limestone Dissolution  Alkalinity  Carbon dioxide  Ca2+ concentration 
學科別分類 學科別應用科學環境工程
中文摘要 本文利用流體化石灰石床系統 (Pulsed Limestone Bed, PLB)的設計原理改良以密閉式流體化石灰石床系統(Fluidized Limestone Bed, FLB),用以探討石灰石的溶解量,界定其在測定與估計石灰石溶解方法上的溶解特性與機制。
第一階段研究主要設計密閉式流體化石灰石床系統(Fluidized Limestone Bed, FLB)與密閉式振盪系統(Vibration System, VS),目的為瞭解氣體、液體及固體三相在不同擾動與混合特性下對水質變化之影響,比較兩系統與自來水反應後溶液中的pH值、酸度與鹼度以及Ca2+濃度的變化情形。
研究結果發現:反應過程中產生的鹼度部分主要由石灰石溶解所提供,FLB系統隨著反應時間的增加石灰石溶解有較穩定增加的趨勢,VS系統的石灰石溶解則較不穩定
第二階段為藉由FLB系統探討在不同的二氧化碳壓力(PCO2);酸水溶液性質(硫酸與草酸);酸水溶液濃度(2.95 mM硫酸與5.76 mM硫酸)的改變條件下,對於溶液反應前後水質變化的影響與石灰石溶解之的關係。
研究結果發現:實驗證明反應過程中產生的鹼度變化可利用In Acid + Out Alk測得,結果將會等同於系統中石灰石的溶解量;於反應系統中加入二氧化碳能有效提高石灰石的溶解能力;在石灰石與酸性溶液反應的中間過程當中將會產生OH-,易產生特定的鹽類沉殿,加入二氧化碳能快速的中和H+與OH-為HCO3-,能緩和石灰石與酸性溶液之間的反應過程;草酸根非常容易與Ca2+形成鹽類沉澱;當溶液中含有能與Ca2+形成沉澱的物質,以反應後的Ca2+濃度來表示在石灰石的溶解程度會產生誤差;在中和反應後發現反應溶液中有多少濃度的酸便會產生多少濃度的Ca2+,且Ca2+與HCO3-濃度維持著一定的比例關係:Ca2+ (mM) = 2 HCO3- (mM)。
第三階段則利用即時監測以及第二階段的結果嘗試建立並預估石灰石溶解反應過程中的變化特性。
研究結果發現:初期PCO2能快速幫助石灰石中和酸水溶液並降低反應時間;在H+主導石灰石溶解時PCO2的影響遠小於H+對於石灰石溶解反應速率, CO2主導石灰石溶解階段時,PCO2越大石灰石溶解反應速率將越快。H+轉為CO2主導石灰石溶解的過度期,此時HCO3-將能緩衝H+與石灰石的反應。
英文摘要 Accelerating limestone dissolution in fluidized limestone bed (FLB), modified from pulsed limestone bed (PLB) (Watten, 1999), within acid (sulfate, oxalate) environments were discussed in this research. The characteristics of acid neutralization and related mechanisms were monitored also.
In order to better understanding the phase reaction within limestone particles, carbon dioxide and acid solutions, simple vibration system (VS) were conducted for comparison in the first stage of the experiments. The differences of pH, alkalinity, acidity and calcium concentration between influent and effluent were tested. The results come out that the alkalinity mostly generated from limestone dissolution with the increment of longer reaction time in FLB system while not cleared seen in VS system.
Various pressure of carbon dioxide (0, 68 and 136 kPa) applied to the FLB system with sulfate (2.95 and 5.76 mM) and oxalate (5.76 mM) were conducted in the second stage of experiments for comparison of the effects due to the addition of carbon dioxide. The alkalinity generated (influent Acid plus effluent Alkalinity) were identical to the calcium disolved in the sets sulfate tests while more limestone dissolution with higher neutralization capacity and rapid precipitation of calcium oxalate were monitored in the system. The calcium dissolved from limestone (includes precipitated with oxalate) is half the amount of bicarbonate (HCO3-) which is calculated from the alkalinity generated.
The characteristics of limestone dissolution were also monitored using the real-time detection of the pH and the ambient pressure in the system. The hydrogen ion (H+) dominated the major surface reaction to the limestone and the present of carbon dioxide plays the role of enhancing limestone dissolution due to further hydrogen ion generated from CO2 dissolved in water.
論文目次 中文摘要…I
英文摘要…II
目錄…III
表目錄…VI
圖目錄…VII
第一章 緒論…1
1-1 研究背景…1
1-2 研究目的…1
1-3 研究內容…2
第二章 文獻回顧…3
2-1 常見中和酸水材料…3
2-2 石灰石特性及應用…5
2-3 石灰石中和酸水溶液之應用…6
2-4 石灰石溶解反應…7
2-4.1 化學反應速率…8
2-4.2 溶液中H+於石灰石表面的傳輸反應速率…10
第三章 實驗設備與方法…16
3-1 實驗設備…16
3-1.1 進樣系統的設備…16
3-1.2 反應系統…18
3-1.3 取樣系統…22
3-1.4 監測系統…22
3-2 實驗材料…23
3-2.1 石灰石…23
3-2.2 酸水配製…23
3-3 實驗條件與流程…25
3-3.1 FLB 系統操作步驟…28
3-3.2 VS系統操作步驟…31
3-4 分析方法…32
3-4.1 離子交換層析儀(Ion Chromatography,IC)…32
3-4.2 高效能液相層析儀(HPLC,High performance liquid chromatography)…33
3-4.3 場發射掃描式電子顯微鏡(Field emission scanning electron microscopy,FE-SEM)…34
第四章結果與討論…35
4-1 實驗結果…35
4-1.1 擾動與混合方式對反應系統水質變化之影響…35
4-1.2 二氧化碳壓力(PCO2)對於反應系統水質變化之影響…42
4-1.3 硫酸溶液、草酸溶液及CO2壓力對於反應系統水質變化之影響…44
4-1.4 硫酸溶液、草酸溶液於FLB系統下CO2壓力變化對於溶液中硫酸根、草酸根含量的影響…52
4-1.5 中和反應後槽體中剩餘的石灰石表面分析(SEM 分析)…54
4-1.6 反應後水樣中懸浮固體物(濾餅)特性分析(SEM 分析)…58
4-2 分析與討論…65
4-2.1 總無機碳含量(CTCO3)與Ca2+濃度分析…65
4-2.2 酸水溶液濃度與Ca2+濃度分析…71
4-2.3 即時監測下石灰石之溶解反應分析…74
4-2.4 即時監測之應用…79
第五章結論與建議…89
參考文獻…93

表目錄
Table.2.1 一般中和酸水溶液最常見中和材料…3
Table.2.2 常見的石灰石溶解速率之研究…14
Table.3.1 VS與FLB實驗條件與組數表…25
Table.4.1 FLB系統中和自來水、硫酸和草酸水溶液反應後水質比較表…51

圖目錄
Fig.2.1 石灰石於酸性溶液下溶解反應速率對數值與pH關係圖…9
Fig.3.1 密閉式流體化石灰石床系統示意圖…20
Fig.3.2 密閉式振盪系統示意圖…21
Fig.3.3 實驗流程與分析項目…27
Fig.3.4 FLB系統操作之石灰石清洗模式…30
Fig.3.5 FLB系統操作之進、排水模式模式…30
Fig.3.6 FLB系統操作之循環模式…31
Fig.4.1 FLB系統在A1系列條件下反應前、後pH值變化柱狀圖…36
Fig.4.2 VS系統在A1系列條件下反應前、後pH值變化柱狀圖…37
Fig.4.3 FLB系統在A1系列條件下經過曝氣的水樣反應前、後物種濃度變化柱狀圖…40
Fig.4.4 VS系統在A1系列條件下經過曝氣的水樣反應前、後物種濃度變化柱狀圖…40
Fig.4.5 FLB及VS系統在A1系列條件下反應後 濃度柱狀圖…41
Fig.4.6 FLB系統在A-c系列條件下反應前、後物種濃度變化柱狀圖…43
Fig.4.7 FLB系統在A-c系列條件下反應後的 濃度與反應過程所產生的鹼度比較圖…43
Fig.4.8 FLB系統在B-c、C-c與D-c系列條件下反應前、後pH值變化柱狀圖…45
Fig.4.9 FLB系統在B-c系列條件下反應前、後物種濃度變化柱狀圖…46
Fig.4.10 FLB系統在C-c系列條件下反應前、後物種濃度變化柱狀圖…46
Fig.4.11 FLB系統在D-c系列條件下反應前、後物種濃度變化柱狀圖…47
Fig.4.12 FLB系統在B-c、C-c及D-c系列條件下反應後的Ca2+濃度與反應過程所產生的鹼度比較圖…48
Fig.4.13 FLB系統在B-c系列條件下反應後溶液中硫酸根去除率變化比較圖…53
Fig.4.14 FLB系統在D-c系列條件下反應後溶液中草酸去除率變化比較圖…53
Fig.4.15 VS系統在A1-c條件下反應後槽體中剩餘的石灰石100-250-450倍SEM圖…55
Fig.4.16 VS系統在A3-c條件下反應後槽體中剩餘的石灰石100-250-450倍SEM圖…55
Fig.4.17 VS系統在B1-c條件下反應後槽體中剩餘的石灰石100-250-450倍SEM圖…56
Fig 4.18 VS系統在B3-c條件下反應後槽體中剩餘的石灰石100-250-450倍SEM圖…56
Fig.4.19 VS系統在D1-c條件下反應後槽體中剩餘的石灰石100-250-450倍SEM圖…57
Fig.4.20 VS系統在D3-c條件下反應後槽體中剩餘的石灰石100-250-450倍SEM圖…57
Fig.4.21 試藥級碳酸鈣SEM圖,30000倍…59
Fig.4.22 VS系統在B1-c條件下反應後之濾餅SEM圖,30000倍…60
Fig.4.23 VS系統在B3-c條件下反應後之濾餅SEM圖,30000倍…61
Fig.4.24 自製草酸鈣SEM圖,35000倍…62
Fig.4.25 VS系統在D1-c條件下反應後之濾餅SEM圖,30000倍…62
Fig.4.26 VS系統在D3-c條件下反應後之濾餅SEM圖,30000倍…63
Fig.4.27 FLB系統在D2-a條件下反應後之濾餅SEM圖,30000倍…63
Fig.4.28 FLB系統在D2-c條件下反應後之濾餅SEM圖,30000倍…64
Fig.4.29 FLB系統在D3-c條件下反應後之濾餅SEM圖,30000倍…64
Fig.4.30 FLB系統在不同反應溶液性質下Ca2+與HCO3-濃度關係圖…70
Fig.4.31 FLB系統反應後水樣中Ca2+濃度與氫離子濃度關係圖…73
Fig.4.32 FLB系統在A-c系列條件下反應即時監測圖…75
Fig.4.33 FLB系統在B-c系列條件下反應即時監測圖…77
Fig.4.34 FLB系統在C-c系列條件下反應即時監測圖…77
Fig.4.35 FLB系統在D-c系列條件下反應即時監測圖…78
Fig.4.36 FLB系統在1-c系列條件下,石灰石溶解反應速率(log R)與反應時間、pH值及logHCO3-關係圖…87
Fig.4.37 FLB系統在2-c系列條件下,石灰石溶解反應速率(log R)與反應時間、pH值及logHCO3-關係圖…87
Fig.4.38 FLB系統在3-c系列條件下,石灰石溶解反應速率(log R)與反應時間、pH值及logHCO3-關係圖…88
參考文獻 1.Alkattan M., Oelkers E.H., Dandurand J., and Schott J., “An experimental study of calcite and limestone dissolution rates as a function of pH from −1 to 3 and temperature from 25 to 80 °C.”, Chemical Geology, Vol 151, Issues 1-4, pp. 199-214, 1998.
2.Alkattan M., Oelkers E.H., Dandurand J., and Schott J., “An experimental study of calcite dissolution rates at acidic conditions and 25 °C in the presence of NaPO3 and MgCl2.”, Chemical Geology, Vol 190, Issues 1-4, pp. 291-302, 2002.
3.Benjamin M.M., “Water chemisity”, Mc Graw Hill, Third Edition, pp. 131-292, 2000.
4.Busenberg, E., and Plummer, L.N., “A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite.”, In: Mumptom, F.A. (Ed.), Studies Diagenesis. U.S.G.S. Bull. 1578, pp. 139-168, 1986.
5.Dreybrodt W., Lauckner J., Liu Z. H., Svensson U., and Buhman D., “The kinetics of the reaction CO2 + H2O → H + + HCO3-, as one of the rate limiting steps for the dissolution of calcite in the system H2O - CO2 - CaCO3. Geochimica et Cosmochimica Acta.”, Vol 60, No 18, pp. 3375-3381, 1996.
6.Dreybrodt W., Lauckner J., Liu Z. H., Svensson U., and Buhman D., “Dissolution kinetics of calcium carbonate minerals in H2O - CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O + CO2 H+ + HCO-3.”, Geochimica et Cosmochimica Acta, Vol 61, No 14, pp. 2879-2889, 1997.
7.Eisenlohr L., Meteva K., Gabrovšek F., and Dreybrodt W., “The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O–CO2 solutions.”, Geochimica et Cosmochimica Acta, Vol 63, Issues 7-8, pp. 989-1001, 1999.
8.Gregory D.P., and Riddiford A.C., “Transport to the surface of a rotating disc.”, Journal of the Chemical Society, pp. 3756–3764, 1956.
9.Hammarstrom J.M., Sibrell P.L., and Belkin H.E., “Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA.”, Applied Geochemistry, Vol 18, Issue 11, pp. 1705-1721, 2003.
10.Hasson D., and Bendrihem O., “Modeling remineralization of desalinated water by limestone dissolution.”, Desalination, Vol 190, Issues 1-3, pp. 189-200, 2006.
11.Kaufmann G., and Dreybrodt W., “Calcite dissolution kinetics in the system CaCO3 – H2O – CO2 at high undersaturation.”, Geochimica et Cosmochimica Acta, Vol 71, Issue 6, pp. 1398-1410, 2007.
12.Letterman R.D., Driscoll C.T., Haddad M., and Hsu A., “Limestone Contactors for Corrosion Control at Small Water Utilities.”, Final Research Report submitted to the U.S. Environmental Protection Agency, Water Engineering Research Laboratory, Cincinnati, OH (EPA/600/S2-86/099).
13.Liu Z.H., Wolfgang D., Jun H., and Li H.J., “Equilibrium chemistry of the CaCO3 - CO2 - H2O system and discussions.”, 中國岩溶(Carsologica Sinica), Vol 24, No 1 , 2005.
14.Morse J.W., and Arvidson R.S., “The dissolution kinetics of major sedimentary carbonate minerals.”, Earth-Science Reviews, Vol 58, No 1, pp. 51-84, 2002.
15.National Lime Association, “Fact Sheet on Using Lime for Acid Neutralization.”, Environmental, 2000, http://www.lime.org/ACIDNEUTfinal.pdf.
16.Pleskov Y.V., and. Filinovski V.Y., “In: The Rotating Disc Electrode, Consultant Bureau”, NY, pp. 402, 1976.
17.Plummer L.N., Wigley T.M.L. and Parkhurst D.L., “The kinetics of calcite dissolution in CO2-water systems at 5° to 60° C and 0.0 to 1.0 atm CO2.”, American Journal of Science, Vol 278, pp. 179-216, 1978.
18.Plummer L.N., Wigley T.M.L. and Parkhurst D.L. “Critical review of the kinetics of calcite dissolution and precipitation.”, In: E.A. Jeune, Editor, Chemical Modeling in Aqueous SystemsAmerican Chemical Society Symposium Series Vol. 93, American Chemical Society, Washington, D.C., pp. 537–573, 1979.
19.Plummer, L.N., Busenberg, E., “The solubilities of calcite, aragonite, and vaterite in CO2 - H2O solutions between 0 and 90° C, and an evaluation of the aqueous model for the system CaCO3 - CO2 - H2O.”, Geochimica Cosmochimica Acta, Vol 46, pp. 1011-1040, 1982.
20.Pokrovsky O.S., Golubev S.V., and Schott J., “Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2.” Chemical Geology, Vol 217, Issues 3-4, pp. 239-255, 2005.
21.Sabbides Th.G., and Koutsoukos P.G., “The effect of surface treatment with inorganic orthophosphate on the dissolution of calcium carbonate.”, Journal of Crystal Growth, Vol 165, No 3, pp. 268-272, 1996.
22.Sawyer C.N., McCarty P.L., and Parkin G.F., “Chemistry for Environmental Engineering and Science.”, Mc Graw Hill, Fifth Edition, pp. 536-563, 2003.
23.Wastech Controls & Engineering, Inc. “Limestone Treatment of Acid Waste”, http://www.wastechengineering.com/papers/limestone.htm
24.Watten, B.J., Sibrell, P.L., and Schwartz, M.F., “Effect of Acidity and Elevated PCO2 on Acid Neutralization within Pulsed Limestone Bed Reactors Receiving Coal Mine Drainage.” Environmental Engineering Science, Vol. 21, No 6, pp.786-802, 2004.
25.Wollast, R., “Rate and mechanism of dissolution of carbonates in the system CaCO3–MgCO3.”, In: Stumm, W. (Ed.), Aquatic Chemical Kinetics. Wiley, pp. 431–445, 1990.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-03-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-03-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信