淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0902200614074400
中文論文名稱 自適應三維飛彈導引律
英文論文名稱 Adaptive 3D Missile Guidance Laws
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 94
學期 1
出版年 95
研究生中文姓名 沈正夫
研究生英文姓名 Jeng- Fu Shen
學號 692370876
學位類別 碩士
語文別 英文
口試日期 2006-01-12
論文頁數 45頁
口試委員 指導教授-田豐
委員-袁平甲
委員-蕭富元
中文關鍵字 自適應法  飛彈導引律 
英文關鍵字 SDRE guidance  adaptive missile guidance 
學科別分類 學科別應用科學航空太空
中文摘要 本論文提出並探討使用適應控制法來設計三維飛彈導引律。傳統於卡氏座標或球座標下所得運動方程式較為複雜,為避免此一缺點,本文採用視線(Line-of-Sight, LOS)固定座標系來描述飛彈與目標物之間的相對運動。採用此座標系的優點在於可導出類似二維極座標下之運動方程式,有利於理論的分析及運算。首先本文將提出一簡單且易於實現的自適應律理想比例導引律(AIPN),並探討其性質與性能。針對目標物無逃逸的狀況,可求出相對運動方程式的解析解。另一方面,本文亦應用狀態相依 Riccati 方程式 ( state-dependent Riccati equation, SDRE) 於飛彈導引律上。使用 SDRE 法的好處是它可提供系統化的控制律推導,且可直接由權重矩陣以及狀態係數矩陣來影響控制律的性能。在使用 SDRE 法時我們將使用不同的狀態係數矩陣並比較其性能。透過例子可知,若能選擇了一組合適的權重矩陣以及狀態係數矩陣AIPN與SDRE導引律的性能相當接近。但在計算效率上,AIPN則遠優於SDRE。為了模擬空戰時目標物的逃逸,作者亦建立一套互動式模擬系統,目標物的逃逸方式可即時透過搖桿來控制。此系統可提供遊戲般互動的模擬飛彈追擊過程,且由於是模組化的建構,變換導引律相當方便,可謂提供了一富彈性且生動的驗證方式。
英文摘要 In this thesis, we propose and study two types of three dimensional missile guidance laws. At first, a simple yet effective adaptive ideal proportional navigation (AIPN) guidance law is considered. All the formulation and analysis are performed in a line-of-sight (LOS) fixed natural coordinate. With the aid of this coordinate, the closed-form solution for the case of nonmaneuvering target is derived. Also, a state feedback control law is constructed by using the state-dependent Riccati equation (SDRE) technique. The performance is affected directly by the choice of the state-dependent coefficient (SDC) form and weighting matrices. Different SDC forms will be considered and compared through numerical examples. Through numerical examples, we concluded that the performances of AIPN and SDRE are close if the SDC form and weighting matrices are chosen properly. But AIPN has great computational efficiency than that of SDRE. To mimic the random escape strategies adopted by pilot during air combat, an interactive simulation system was constructed.
In this system, target's maneuvering can be controlled through a game-like interface, a joystick input. The simulation system provides a flexible and helpful environment to verify the missile guidance laws.
論文目次 Contents

Abstract i
Acknowledgement iii
Nomenclature iv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Formulation of Missile Guidance 5
2.1 Relative Dynamics of Guidance Problem . . . . . . . . . . . . . . . . . . . 5
3 Adaptive Ideal Proportional Navigation 9
3.1 Quick Review Of IPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Adaptive GIPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Capture of Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 State Dependent Riccati Technique 16
4.1 SDRE Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 SDRE Design Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Controllable and Observable Parameterization . . . . . . . . . . . . . . . . 20
5 Virtual Reality Simulation System 22
5.1 Module of Target Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Module of Missile Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Module of Guidance Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Virtual Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Numerical Examples 29
7 Conclusion 41
A The Recursive Algorithm of Constructing Distribution 42
Bibliography 43
參考文獻 Bibliography
[1] P. J. Yuan and J. S. Chern, “Ideal Proportional Navigation,” Journal of Guidance,
Control and Dynamics, vol. 15, no. 5, pp. 1161–1165, Sep.-Oct. 1992.
[2] C. D. Yang and C. C. Yang, “Optimal Pure Proportional for Maneuvering Targets,”
IEEE Transactions on Aerospace and Electronic Systems, no. 3, pp. 949–957, 1997.
[3] M. Guelman, “A Qualitative Study of Proportional Navigation,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 3, pp. 337–343, July 1971.
[4] ——, “The Colsed-Form Solution of Ture Proportional Navigation,” IEEE Transac-
tions on Aerospace and Electronic Systems, no. 4, pp. 472–482, July 1976.
[5] F. Tyan, “An Unified Approach to Missile Guidance Laws: A 3D Extension,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 4, no. 41, pp. 1178–1199, Oct
2005.
[6] E. Kreindler, “Optimality of Proportional Navigation,” AIAA Journal, vol. 11, pp.
878–880, June 1973.
[7] M. Guelman, “Optimal Guidance Law in the Plane,” Journal of Guidance, Control
and Dynamics, vol. 7, pp. 471–476, July 1984.
[8] ——, “Three-Dimensional Minimum Energy Guidance,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 31, no. 2, pp. 835–841, April 1995.
[9] P. J. Yuan, “Optimal Guidance of Proportional Navigation,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 33, no. 3, pp. 1007–1012, July 1997.
[10] J. R. Cloutier, “State-Dependent Riccati Equation Techniques: An Overview,”
American Control Conference, vol. 2, pp. 932–936, June 1997.
[11] ——, “The Capabilities and Art of State-Dependent Riccati Equation-Based Design,”
American Control Conference, vol. 1, pp. 86–91, May 2002.
[12] P. J. Yuan and J. S. Chern, “Solutions of True Proportional Navigation for Maneuvering
and Nonmaneuvering Targets,” Journal of Guidance, Control and Dynamics,
vol. 15, no. 1, pp. 268–271, Jan.-Feb. 1992.
[13] D. Ghose, “True Proportional Navigation with Maneuvering Target,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 30, pp. 229–237, Jan 1994.
[14] C. D. Yang and C. C. Yang, “Analytical Solution of 3D Ideal Proportional Navigation,”
Automatic Control Conference, pp. 446–451, 1996.
[15] P. J. Yuan, M. G. Chen, and J. S. Chern, “Generalized Ideal Proportional Navigation,”
in Proceedings of SPIE, vol. 3692, April 1999, pp. 150–161.
[16] J. D. Pearson, “Approximation Methods in Optimal Control,” Journal of Electronics
and Control, vol. 13, pp. 453–465, May 1962.
[17] J. R. Cloutier, C. N. D’Souza, and C. P. Mracek, “Nonlinear Regulation and Nonlinear
H∞ Control Via the State-Dependent Riccati Equation Technique: Part 1,
Theory, Part 2, E xamples,” in Proceedings of the International Conference on Non-
linear Problems in Aviation and Aerospace, May 1996, pp. 117–130.
[18] E. B. Erdem and A. G. Alleyne, “Estimation of Stability Regions of SDRE Controlled
Systems Using Vector Norms,” American Control Conference, vol. 1, pp. 80–85, May
2002.
[19] H. T. Banks, B. M. Lewis, and H. T. Tran, “Nonlinear Feedback Controller and
Compensators: A States Dependent Riccati Equation Approach,” American Control
Conference, vol. 1, pp. 86–91, May 2002.
[20] J. W. Curtis and R. W. Beard, “Ensuring Stability of State-depend Riccati Equation
Controllers Via Satisficing,” in Proceedings of the 41st IEEE Conference on Decision
and Control, Dec 2002, pp. 2645–2650.
[21] S. N. Balakrishnan and M. Xin, “Robust State Dependent Riccati Equation Bbased
Guidance Laws,” American Control Conference, vol. 5, pp. 3352 – 3357, June 2001.
[22] A. J. Laub, “A Schur Method for Solving Algebraic Riccati Equations,” IEEE Trans-
actions on Automatic Control, vol. 24, pp. 913–921, Dec. 1979.
[23] F. Tyan, “The Capture Region of a General 3D TPN Guidance Law of Missile and
Target with Limited Maneuverability,” in Proceedings of the 2001 American Control
Conference, vol. 1, June 2001, pp. 512–517.
[24] A. Isidori, Nonlinear Control Systems, 3rd ed. Springer-Verlag Berlin Heidelberg
New York, 1994.
[25] J. R. Cloutier and P. H. Zipfel, “Hypersonic Guidance Via the State-Dependent
Riccati Equation Control Method,” Proceedings of IEEE Conference on Control Ap-
plications, vol. 1, pp. 219–224, Aug 1999.
[26] K. D. Hammett, C. D. Hall, and D. B. Ridgely, “Controllability Issues in Nonlinear
State-Dependent Riccati Equation Control,” Journal of Guidance, Control and
Dynamics, vol. 21, no. 5, pp. 767–773, Sep-Oct 1998.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-02-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-02-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信