淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0809202001342000
中文論文名稱 史蒂芬生第三型六連桿機構桿件旋轉一圈的條件
英文論文名稱 Full Revolution of a Link in a Stephenson Type III Six-bar Mechanism
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 劉曜維
研究生英文姓名 Yao-Wei Liou
學號 607370276
學位類別 碩士
語文別 中文
口試日期 2020-07-09
論文頁數 130頁
口試委員 指導教授-劉昭華
委員-劉昭華
委員-陳冠辰
委員-陳正光
中文關鍵字 葛氏條件  史蒂芬生第三型六連桿機構  奇異位置  死點構形 
英文關鍵字 Grashoff`s law  Stephenson III six-bar mechanism  Singular position  Dead center configurations 
學科別分類 學科別應用科學機械工程
中文摘要 本論文針對史蒂芬生第三型平面六連桿機構且由五連桿迴圈的接地桿件驅動的情況,尋找能夠使此驅動桿件可以繞地桿旋轉一圈的條件。方法是找出機構的死點位置,並且推導出使死點不會發生的桿長條件。尋找死點位置是推導出速度分析的Jacobian矩陣,尋找此矩陣行列式為零的位置,再利用高斯消去法判別此奇異位置是死點或是不確定位置,本文只針對死點位置,得到每個構形,再找出此構形不會發生的條件。在分析六連桿機構之前,本論文先針對平面四個旋轉接頭的四連桿機構,重新推導出葛氏條件。
英文摘要 In this thesis full revolution conditions for the grounded link in the five-bar chain of a Stephenson type III six-bar mechanism are determined. The method is to locate all dead center positions of the mechanism and obtain conditions that these dead center configurations do not occur. Singular positions are obtained from the Jacobian matrices in velocity analysis, and Gaussian elimination are used on the augmented matrices to determine if a singular position is a dead center or an uncertain position. Only dead point positions are dealt with in this article, and conditions for the occurrence of these configurations are derived in this thesis. The above mentioned technique is first used on planar four-bar mechanisms, which leads to Grashoff condition.
論文目次 目錄
中文摘要 ii
英文摘要 iii
目錄 iv
第一章 緒論 1
1.1 前言與文獻回顧 1
第二章 平面四連桿機構的葛氏條件 3
2.1 第②桿驅動 3
2.2 第③桿驅動 12
2.3 第④桿驅動 22
2.4第二章小結 22
第3章 史蒂芬生第三型六連桿機構桿件旋轉一圈條件 23
3.1 AGDFCBA與BEFCB迴圈 23
3.1.1 情況I.1:當θ6=θ5 且 θ5=θ4 29
3.1.2 情況I.2:當θ6+π=θ5 且 θ5=θ4 32
3.1.3 情況I.3:當θ6+π=θ5 且 θ5=θ4+π 33
3.1.4 情況I.4:當θ6=θ5 且 θ5=θ4+π 36
3.1.5 情況I.5:當θ6=θ5 且 θ3=θ6 36
3.1.6 情況I.6:當θ6+π=θ5 且 θ3=θ6 40
3.1.7 情況I.7:當θ6+π=θ5 且 θ3=θ6+π 44
3.1.8 情況I.8:當θ6=θ5 且 θ3=θ6+π 47
3.1.9 情況I.9:當θ3-θ4+ϕ6=0 且 θ5=θ4 51
3.1.10 情況I.10:當θ3-θ4+ϕ6+π=0 且 θ5=θ4 52
3.1.11 情況I.11:當θ3-θ4+ϕ6+π=0 且 θ5=θ4+π 54
3.1.12 情況I.12:當θ3-θ4+ϕ6=0 且 θ5=θ4+π 56
3.1.13 情況I.13:當θ3=θe 且 θ3=θ6 57
3.1.14 情況I.14:當θe=θ3+π 且 θ3=θ6 59
3.1.15 情況I.15:當θ3-θ4+ϕ6+π=0 且 θ3=θ6+π 60
3.1.16 情況I.16:當θ3-θ4+ϕ6=0 且 θ3=θ6+π 62
3.2 AGDFCBA與AGDEBA迴圈 64
3.2.1情況I I.1: θ5=θ3 且 θf=θ5 68
3.2.2情況I I.2: θ5+π=θ3 且 θf=θ5 70
3.2.3情況I I.3: θ5+π=θ3 且 θf=θ5+π 72
3.2.4情況I I.4: θ5=θ3 且 θf=θ5+π 74
3.2.5情況I I.5: θe=θ6 且 θf=θ5 76
3.2.6情況I I.6: θe=θ6+π 且 θf=θ5 78
3.2.7情況I I.7: θe+π=θ6 且 θf+π=θ5 79
3.2.8情況I I.8: θe=θ6 且 θf+π=θ5 80
3.3 設計例題 81
四.結論 84
參考文獻 85

圖目錄
圖一 4R平面四連桿機構 88
圖二 4R平面四連桿機構L3>L4 且 θ3=θ4的第一種情況 88
圖三 4R平面四連桿機構L3>L4 且 θ3=θ4的第二種情況 89
圖四 4R平面四連桿機構L3>L4 且 θ3=θ4±π 的情況 89
圖五 4R平面四連桿機構L4>L3 且 θ3=θ4 的兩種情況 90
圖六4R平面四連桿機構L2>L4 且 θ2=θ4 的第一種情況 90
圖七 平面四連桿機構L2>L4 且 θ2=θ4 的第二種情況 91
圖八 4R平面四連桿機構L4>L2 且 θ2=θ4 的兩種情況 91
圖九 4R平面四連桿機構θ4=θ2+π 的情況 92
圖十 4R平面四連桿機構θ2=θ4+π 的情況 92
圖十一 史蒂芬生第三型六連桿機構示意圖 93
圖十二 情況I.1 當 θ6=θ5 且 θ5=θ4 94
圖十三 情況I.2 當 θ5+π=θ6 且 θ5=θ4 95
圖十四 情況I.3 當 θ6+π=θ5 且 θ5=θ4+π 96
圖十五 情況I.4 當 θ6=θ5 且 θ5=θ4+π 97
圖十六 d2=a2+L6-L52-2aL6-L5cosθ 98
圖十七 d2=a2+L5-L62-2aL5-L6cosθ 98
圖十八 d2=a2+L5+L62-2aL5+L6cosθ 99
圖十九 情況I.5 當 θ6=θ5 且 θ3=θ6 100
圖二十 情況I.5 當 θ6=θ5 且 θ3=θ6 101
圖二十一 情況I.5 當 θ5=θ6 且 θ3=θ6 102
圖二十二 情況I.5 當 θ5=θ6 且 θ3=θ6 102
圖二十三 情況I.6當 θ6+π=θ5 且 θ3=θ6 103
圖二十四 情況I.6 當θ5=θ6+π 且 θ3=θ6 104
圖二十五 情況I.6 當θ5=θ6+π 且 θ3=θ6 104
圖二十六 情況I.7當θ6+π=θ5 且 θ3=θ6+π 105
圖二十七 情況I.7 當θ5=θ6+π 且 θ3=θ6+π 106
圖二十八 情況I.7 當θ5=θ6+π 且 θ3=θ6+π 106
圖二十九 情況I.8當θ6=θ5 且 θ3=θ6+π 107
圖三十 情況I.8 當θ5=θ6 且 θ3=θ6+π 108
圖三十一 情況I.8 當θ5=θ6 且 θ3=θ6+π 108
圖三十二 情況I.9當 θ3=θe 且 θ5=θ4 109
圖三十三 情況I.9 當θ3=θe 且 θ5=θ4 110
圖三十四 情況I.10 θ4=θ5 且 θ3=θe+π 111
圖三十五 情況I.10 θ4=θ5 且 θ3=θe+π 111
圖三十六 情況I.11 θ4=θ5+π 且 θ3=θe+π 112
圖三十七 情況I.11 θ4=θ5+π 且 θ3=θe+π 112
圖三十八 情況I.12 θ4+π=θ5 且 θ3=θe 113
圖三十九 情況I.12 θ4+π=θ5 且 θ3=θe 114
圖四十 情況I.13 當 θ3=θ6 且 θ3=θe 115
圖四十一 情況I.13 當 θ3=θ6 且 θ3=θe 115
圖四十二 情況I.13 當 θ3=θ6 且 θ3=θe 116
圖四十三 情況I.14 當 θ3=θ6 且 θ3+π=θe 117
圖四十四 情況I.14 當 θ3=θ6 且 θ3+π=θe 117
圖四十五 情況I.14 當 θ3=θ6 且 θ3+π=θe 118
圖四十六 情況I.15 當 θ3=θ6+π 且 θ3=θe 119
圖四十七 情況I.15 當 θ3=θ6+π 且 θ3=θe 120
圖四十八 情況I.15 當 θ3=θ6+π 且 θ3=θe 120
圖四十九 情況I.16 當 θ3=θ6+π 且 θ3=θe+π 121
圖五十 情況I.16 當 θ3=θ6+π 且 θ3=θe+π 121
圖五十一 情況I.16 當 θ3=θ6+π 且 θ3=θe+π 122
圖五十二 情況I I.1 當 θ3=θ5 且 θf=θ5 123
圖五十三 情況I I.1 當 θ3=θ5 且 θf=θ5 123
圖五十四 情況I I.2 當 θ3=θ5+π 且 θf=θ5 124
圖五十五 情況I I.2 當 θ3=θ5+π 且 θf=θ5 124
圖五十六 情況I I.3 當 θ3=θ5+π 且 θf=θ5+π 125
圖五十七 情況I I.3 當 θ3=θ5+π 且 θf=θ5+π 125
圖五十八 情況I I.4 當 θ3=θ5 且 θf=θ5+π 126
圖五十九 情況I I.4 當 θ3=θ5 且 θf=θ5+π 126
圖六十 情況I I.5 當 θ3=θ5 且 θf=θ5+π 127
圖六十一 情況I I.5 當 θ3=θ5 且 θf=θ5+π 127
圖六十二 情況I I.6 當 θf=θ5 且 θe=θ6+π 128
圖六十三 情況I I.6 當 θf=θ5 且 θe=θ6+π 128
圖六十四 情況I I.7 當 θf+π=θ5 且 θe+π=θ6 129
圖六十五 情況I I.7 當 θf+π=θ5 且 θe+π=θ6 129
圖六十六 情況I I.8 當 θf+π=θ5 且 θe=θ6 130
圖六十七 情況I I.8 當 θf+π=θ5 且 θe=θ6 130

參考文獻 參考文獻
1. Oduori, Moses F., Mutuli, Stephen M., and Munyasi, David M., The kinematics and mechanical advantage of the double-toggle jaw crusher, Journal of Mechanical Engineering Science, Volume 232, 2018, Pages 3325-3336.
2. Agarwal, S., and Bandyopadhyay, S., Design of six-bar function generators using dual-order structural error and analytical mobility criteria, Mechanism and Machine Theory, 2017, Pages 326-351.
3. https://www.markplecnik.com/tag/six-bar-linkages/下載日期06302020.
4. Grashof, F., Theoretische Mashinenlehre, Leipzig, 1883, Pages 113-118.
5. Paul, B., A Reassessment of Grashof’s Criterion, Journal of Mechanical Design, Volume 101, 1979, Pages 515-518.
6. Mallik, A. K., Ghosh, A., Dittrich, G., Kinematic Analysis and Synthesis of Mechanisms, CRC Press, 1994, Pages 122- 125.
7. Ting, K.-L., On the Input Joint Rotation Space and Mobility of Linkage, Journal of Mechanical Design, Volume 130, 2008, Pages 1-12.
8. Ting, K.-L., Wang, J., Xue, C., and Currie, K.-R., Full rotatability and singularity of six-bar and geared five-bar linkages, Journal of Mechanisms and Robotics,Volume 2, Issue 1, 2010, Pages 1-9.
9. Zou, Y., Chu, J., and Guo, X., Detection of a crank in Stephenson-III six-bar mechanism, Applied Mechanics and Materials, Volume 52-54, Pages 909-914.
10. Guo, X.-N, and Chu, J.-K., The rotatability of Stephenson II Six-Bar mechanisms, 2008 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC 2008 Volume 2, Issue Part A, 2009, Pages 591-595.
11. Wang, J., Ting, K.-L., Zhao, D., Wang, Q., Sun, J., You, Y., and Nie, L., Full rotatability of watt six-bar linkages, Proceedings of the ASME Design Engineering Technical Conference, 5A, 2014, Paper No: DETC2014-34207
12. Tsai, C-C., and Wang, L. T., On the dead-centre position analysis of Stephenson six-link linkages, Mechanical Engineering Science, Volume 220, 2006, Pages 1393-1403.
13. Plecnik, M.-M., and McCarthy, J.-M., Computational Design of Stephenson II Six-bar Function Generators for 11 Accuracy Points, Journal of Mechanisms and Robotics of the ASME, 2015, Volume 2, Paper DOI 10.1115/1.4031124.
14. Kang, Y-H., and Yan H-S., Synthesizing Dead-Center and Uncertainty Configurations of Planar Six-Bar Linkages by Implicit Function Theorem, Journal of the Chinese Society of Mechanical Engineers. 1990, Volume 11, Pages 325-333.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-09-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-09-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信