§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0809201612121400
DOI 10.6846/TKU.2016.00255
論文名稱(中文) 三維拍翼流場模擬之初探
論文名稱(英文) A Preliminary Study on The Three-Dimensional Flow Simulation of A Flapping Wing
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 李錫軍
研究生(英文) Hsi-Chun Lee
學號 603350116
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-06-27
論文頁數 70頁
口試委員 指導教授 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 王安邦(abwang@iam.ntu.edu.tw)
委員 - 宛同(twan@tacaviation.com.tw)
關鍵字(中) 拍翼
流固耦合
計算流體力學
關鍵字(英) Flapping wing micro-air-vehicle (FWMAV)
Fluid-structure interaction
Computational fluid dynamics(CFD)
第三語言關鍵字
學科別分類
中文摘要
本研究針對20cm拍翼機,進行三維拍翼流場模擬以及雙拍翼流場模擬,使用軟體為COMSOL Multiphysics。
  COMSOL-Multiphysics是一個有限元素(finite element method;FEM)分析套裝軟體,特別適用於耦合現象,或者多物理場。其優秀的流固耦合計算能力,可同時模擬出拍翼機翅膀的非定常動態邊界流場與拍翼面的氣動撓曲變形,使其計算結果接近拍翼機在風洞內的實驗情形;也將本團隊之風洞實驗結果,與之進行比對。再進一步針對編隊飛行的部份,進行前後兩隻拍翼機的流場模擬。盼望本研究能對拍翼機之三維非定常流場模擬有所助益。
英文摘要
In this study the anthor used the software COMSOL-Multiphysics to simulate the three-dimensional (3D) flow fields of a flapping wing and a formation of two flapping wings with 20 cm span. COMSOL-Multiphysics is a finite-element-method (FEM) software package, especially deals with the coupling phenomena, or multiphysics problems. Its outstanding capability of fluid-structure interaction (FSI) computation not only simulates the unsteady, moving-boundary flow field around a flapping wing, but also predicts the deformable wing surface profile due to the aeroelastic effect. Therefore the computation result would be approximately near to the wing beating in a wind tunnel.
     The author compared the numerical result of this work with the experimental data from the wind tunnel test accordingly. Finally a numerical simulation of a formation of two flapping wings placed streamwisely is done. Several percents of lift benefits for the latter wing was found. So far as we know, this paper may be the 1st time using COMSOL-Multiphysics to simulate the 3D flow fields of flapping wings.
第三語言摘要
論文目次
目錄
第一章 諸論......1
1-1 研究背景與目的......1
1-2 文獻回顧......5
1-3 論文架構......8
第二章 流場特性及計算流體力學- COMSOL Multiphysics......9
2-1 卡門渦街......9
2-2 計算流體力學-COMSOL-Multiphysics......10
2-3 模組功能介紹與建立......12
2-4 COMSOL-Multiphysics應用模擬器......17
第三章 CFD 3D 拍翼機模擬......18
3-1 COMSOL-Multiphysic 拍翼機模擬設定......18
3-2 網格疏密建構與計算模式......19
3-3 拍翼週期升推力分析......26
3-4 拍翼模擬與實驗結果比較......39
3-5 雙拍翼機模擬......46
第四章 CFD 2D拍翼流場模擬校正......50
4-1 Jane Wang的2D拍翼模擬	......50
4-2 COMSOL Multiphysics的2D拍翼模擬比對......52
第五章 結論......54
參考文獻......56
附錄A- COMSOL拍翼模擬設定流程......61
圖目錄
圖1-1 初探者......3
圖1-2 Eagle II......3
圖1-3 Pro-金探子......3
圖1-4 第一代金探子......3
圖1-5 拍翼模型示意圖......7
圖1-6 渦流矢量圖拍翼模型示意圖......7
圖1-7 von Kármán第一個假設之對稱渦流......7
圖2-1 圓柱繞流,非定常流場之卡門渦街......9
圖2-2 COMSOL Multiphysics程式圖......11
圖2-3 方程式說明......12
圖2-4 可選擇之物理量......14
圖2-5 不同的物理量選擇中操作都相同......15
圖2-6 操作區域......15
圖2-7 COMSOL App介面......17
圖3-1 風洞及拍翼機......18
圖3-2 對稱流場......19
圖3-3 翼面網格設定(較粗網格)......20
圖3-4 風洞及翼面網格設定(較粗網格)......21
圖3-5 翼面網格設定(較細化網格)......22
圖3-6 風洞及翼面網格設定(較細化網格)......22
圖3-7 翼面網格設定(高度細化網格)......23
圖3-8 風洞及翼面網格設定(高度細化網格)......24
圖3-9 升力趨勢圖(較粗網格)......24
圖3-10 升力趨勢圖(較細化網格)......25
圖3-11 升力趨勢圖(高度細化網格)......25
圖3-12 拍翼行程......27
圖3-13 風速=1m/s之升力趨勢圖(上)、推力趨勢圖(下) (53度)	......29
圖3-14 風速=2m/s之升力趨勢圖(上)、推力趨勢圖(下) (53度)	......30
圖3-15 風速=3m/s之升力趨勢圖(上)、推力趨勢圖(下) (53度)	......31
圖3-16 升力數值圖表(53度)......33
圖3-17 推力數值圖表(53度)......33
圖3-18 風速=1m/s之升力趨勢圖(上)、推力趨勢圖(下) (90度)	......34
圖3-19 風速=2m/s之升力趨勢圖(上)、推力趨勢圖(下) (90度)	......35
圖3-20 風速=3m/s之升力趨勢圖(上)、推力趨勢圖(下) (90度)	......36
圖3-21 升力數值圖表(90度)......38
圖3-22 推力數值圖表(90度)......38
圖3-23 拍翼機訊號擷取......39
圖3-24 實驗實際架設圖......39
圖3-25 LabVIEW撰寫之資料處理程式......40
圖3-26 高速攝影機影像處理畫面......40
圖3-27 拍翼行程角53度之渦流圖(煙線)......42
圖3-28 拍翼行程角53度之渦流圖(模擬)......43
圖3-29 拍翼行程角90度之渦流圖(模擬)......44
圖3-30 一週期之拍翼升力比較......45
圖3-31 推、阻力渦街示意圖......46
圖3-32 動態拍翼機編隊飛行......47
圖3-33 靜態拍翼機編隊飛行......48
圖3-34 雙拍翼機模擬......49
圖3-35 雙拍翼機流場圖......49
圖4-1 拍撲運動軌跡......51
圖4-2 簡化後的運動軌跡......51
圖4-3 一個週期中不同時刻之渦流等高線圖......52
圖4-4 本文仿文獻[13]與[31]之模擬結果......53
圖A-1 載入拍翼機翼檔案......61
圖A-2 將機翼沿x軸旋轉度,形成20度的攻角......61
圖A-3 建構風洞......62
圖A-4 組合起來,形成單翅對稱的風洞模擬......62
圖A-5 圖選擇風洞與拍翼機的材料......63
圖A-6 將風洞材料選擇為air......63
圖A-7 輸入拍翼機翼材料相關參數......64
圖A-8 選擇機翼為線性彈性材料......64
圖A-9 設定風洞入口及風速......65
圖A-10 設定風洞出口......65
圖A-11 設定固定約束......66
圖A-12 設定對稱流場......66
圖A-13 預定位移設定......67
圖A-14 網格設定......67
圖A-15 建立三角形網格......68
圖A-16 掃描整個機翼......68
圖A-17 使用轉換......69
圖A-18 建立四面體的網格......69
圖A-19 網格尺寸選為特別粗化並建立......70
圖A-20 在研究介面設定並計算......70

 
表目錄
表2-1	COMSOL與一般CFD軟體之比較	16
表3-1	網格配置表(較粗)	20
表3-2	網格配置表(較細化)	21
表3-3	網格配置表(高度細化)	23
表3-4	不同風速升力數值(53度)	32
表3-5	不同風速推力數值(53度)	32
表3-6	不同風速升力數值(90度)	37
表3-7	不同風速推力數值(90度)	37
表3-8	前後拍翼之平均升力數值	48
參考文獻
[1]	何仁揚,“拍撲式微飛行器之製作及其現地升力之量測研究”,淡江大學機械與機電工程學系碩士論文,2005年六月。
[2]	施宏明,“結合PVDF現地量測之拍撲式微飛行器製作”,淡江大學機械與機電工程學系碩士論文,2007年六月。
[3]	徐振貴,“拍翼式微飛行器之設計、製造與測試整合”,淡江大學機械與機電工程學系碩士論文,2008年六月。
[4]	高敏維,“微拍翼機可撓翼之氣動力實驗”,淡江大學機械與機電工程學系碩士論文,2008年六月。
[5]	高崇瑜,“應用精密模造技術於微飛行器套件組之設計與製造”,淡江大學機械與機電工程學系碩士論文,2009年六月。
[6]	L. J. Yang, C. Y. Kao, and C. K. Huang, “Development of flapping ornithopters by precision injection molding, ” Applied Mechanics and Materials, Vol.163, pp. 125-132, 2012.
[7]	廖俊瑋,“翼展10公分之拍翼式微飛行器研製”,淡江大學機械與機電工程學系碩士論文,2009年六月。 
[8]	葉星志,“可撓拍翼之三維軌跡與二維流場探索”,淡江大學機械與機電工程學系碩士論文,2012年。
[9]	L.J. Yang, F.Y. Hsiao, W.T. Tang, and I.C. Huang, “3D flapping trajectory of a micro-air-vehicle and its application to unsteady flow simulation, ” International Journal of Advanced Robotic Systems, Vol.10, paper no.264, 2013.
[10]	L.J. Yang, J.C. Liou, H.L. Huang, K.C. Hung, S. Marimuthu, and U. Chandrasekhar, “2D quasi-steady flow investigation of a flexible flapping wing, ” The 9th International Conference on Intelligent Unmanned Systems (ICIUS), Japur, India, Sep. 25-27, 2013.
[11]	L.J. Yang, H.L. Huang, J.C. Liou, B. Esakki, and U. Chandrasekhar, “2D quasi-steady flow simulation of an actual flapping wing, ” Journal of Unmanned Systems Technology, Vol.2, pp.10-16, 2014.
[12]	黃心綸,“二維準定常拍翼流場及其泡膜顯像”,淡江大學機械與機電工程學系碩士論文,2014年。
[13]	Z. J. Wang , “ Vortex shedding and frequency selection in flapping flight”, Journal of Fluid Mechanics, Vol. 410, pp. 323-341, 2000. 
[14]	R. Knoller, “Die gesetze des luftwiderstands”, Flug und Motor-technik (Wien), Vol. 3, No. 21, pp. 1-7, 1909.
[15]	A. Betz , “ Ein beitrag zur erklärung des segelfluges”, Zeitschrift für Flugtechnik und Motorluftschiffahrt, Vol. 3, pp. 269-272, 1912.
[16]	R. Katzmayr, “Eeffect of periodic changes of angle of attack on behavior of airfoils”, NACA Report No. 147, Oct. 1922. (Translated from Zeitschrift fur Flugtechnik und Motorluftschiahrt, March 31, pp. 80-82, and April 13, 1922, pp. 95-101).
[17]	T. Von Karman, and J. M. Burgers, “ General aerodynamic theory perfect fluids.” Aerodynamic Theory, Division E, Vol. II. W.F. Durand, Ed. pp. 308, 1943.
[18]	K. D. Jones, C. M. Dohring , and M. F. Platzer , “ Experimental and computational investigation of the Knoller-Betz effect”, AIAA Journal, Vol. 36, No. 7, July 1998.
[19]	W. F. Torkel , “Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production”, The Journal of Experimental Biology, Vol. 59, pp. 169-230, 1973.
[20]	M. Dickinson, F. Lehmann, and S. Sane, “Wing rotation and the aerodynamic basis of insect flight”, Science, Vol. 284, pp. 1954-1960, 1999.
[21]	M. Tamai, Z. Wang, G. Rajagopalan, H. Hu, and G. He, “Aerodynamic performance of a corrugated dragonfly airfoil compared with smooth airfoils at low Reynolds number”, 45th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, Jan., 2007.
[22]	T. Y. Hubel and C. Tropea, “The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds, ” The Journal of Experimental Biology, Vol. 213, pp. 1930-1939, 2010.
[23]	T.N. Pornsin Sirirak, Parylene MEMS Technology for Adaptive Flow Control of Flapping Flight, California Institute of Technology, Ph. D. Dissertation, 2002.
[24]	T. Von Karman and J.M., Burgers,“General aerodynamic theory perfect fluids,” Aerodynamic Theory, Division E, Vol. II. W.F. Durand, Ed. pp.308, 1943.
[25]	陳泓嘉,“微飛行器風洞測試訊號截取半自動化之研究”,淡江大學機械與機電工程學系碩士論文,2010年。
[26]	H. Liu, C. P. Ellington, K. Kawachi, C. Van den Berg, and A. P. Willmott, “A computational fluid dynamic study of hawkmoth hovering, ” The Journal of Experimental Biology, Vol. 201, pp. 461-477, 1998.
[27]	Theodore von Karman, Aerodynamics., McGraw-Hill Book Company, 1963.
[28]	H. Weimerskirch, J. Martin, Y. Clerquin, P. Alexandre, S. Jiraskova, “Energy saving in flight formation—pelicans flying in a ‘V’ can glide for extended periods using the other birds’ air streams, ” Nature. , Vol. 413, pp. 697–698, 2001.
[29]	陳建瑋,“多拍翼編隊飛行節能之地面初測”,淡江大學機械與機電工程學系碩士論文,2015年
[30]	洪堃銓,“仿蜂鳥懸停機構套件” 淡江大學機械與機電工程學系碩士論文,2014年
[31]	杭亮同,“三維拍翼昆蟲在陣風條件下滯空飛行之數值模擬” 淡江大學機械與機電工程學系碩士論文,2014年
[32]	P. B. S. Lissaman and C. A. Shollenberger, “Formation flight of birds,” Science,Vol. 168, pp.1003-1005, 1970.
[33]	C. Wieselsberger, Z. Flugtechnik Motorluftschllfahrt, Vol.5, p.225 (1914).
[34]	J. H. Storer, “The Flight of Birds, ” Cranbrook Press, Bloomfield Hills, Mich., 1948.
[35]	T. Alerstam and G. Hogstedt, “Bird migration and reproduction in relation to habitats for survial and breeding, ”Ornis Scand, Vol.13, pp. 25-37, 1982.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信