
系統識別號 
U00020809201412264700 
中文論文名稱

應用於H.264/AVC畫面內編碼的高效率分層方法及其部署 
英文論文名稱

Hierarchical Approach to Efficient Intra Encoding in H.264/AVC and Its Deployments 
校院名稱 
淡江大學 
系所名稱(中) 
資訊工程學系博士班 
系所名稱(英) 
Department of Computer Science and Information Engineering 
學年度 
102 
學期 
2 
出版年 
103 
研究生中文姓名 
鄭國祥 
研究生英文姓名 
KuoHsiang Cheng 
學號 
897410055 
學位類別 
博士 
語文別 
英文 
口試日期 
20140612 
論文頁數 
88頁 
口試委員 
指導教授王英宏 委員廖弘源 委員陳振炎 委員陳朝欽 委員楊錦潭 委員陳瑞發 委員林慧珍 委員王英宏

中文關鍵字 
H.264/AVC
失真率優化
畫面內編碼
畫面內過濾
區塊大小選擇
預測模式

英文關鍵字 
H.264/AVC
ratedistortion optimization (RDO)
intra coding
intra skip
block size selection
prediction mode

學科別分類 
學科別＞應用科學＞資訊工程

中文摘要 
H.264/AVC視頻編碼標準比以往的標準，如MPEG2, MPEG4, 以及H.263，編碼效率有顯著的提高。為增進編碼效率，H.264/AVC編碼器在畫面內編碼上運用了多種的預測模式以採用及率失真優化(RDO)來決定最佳的模式。因為編碼器要運算所有可能的模式，運算的複雜度也隨之劇烈地增加。
本研究針對在H.264/AVC中的畫面內編碼減少運算複雜度，提出階層式高效率畫面內編碼演算法。該演算法共有四個主要部分，即1.快速的畫面內過濾決策;2.基於量化的區塊大小選擇決策;3.基於方向的預測模式決策;與4.快速的畫面內部分過濾決策。
本研究的實驗結果顯示階層式高效率畫面內編碼演算法，其低解析的視訊編碼中可達到平均85%以上的時間節省，在高解析的視訊編碼中可達到平均90%以上的時間節省，同時在品質下降方面是可被忽略的，在編碼長度的上昇是非常微小的。 
英文摘要 
The H.264/AVC video coding standard can achieve higher coding efficiency than any other previous coding standards, such as MPEG2, MPEG4, and H.263. In order to improve the coding efficiency, the H.264/AVC encoder employs various prediction modes in the intra coding and adopts the ratedistortion optimization (RDO) method for selection of an optimum mode. Since the encoder computes the ratedistortion (RD) costs of all possible coding modes to decide the optimum mode, the computational complexity is dramatically increased.
In this study, an efficient hierarchical approach which consists of the four algorithms: 1) fast intra skip decision; 2) quantbased block size selection decision; 3) directionbased prediction mode decision; and 4) fast partial intra skip decision for H.264/AVC intra encoding is proposed to reduce the computational complexity.
Our experimental results have shown that the proposed algorithms outperform the previous methods. Our overall algorithm can significantly reduce above 85% encoding time for lowresolution video sequences on average, and reduce above 90% encoding time for highresolution video sequences on average, while the PSNR degradation is negligible and the bit rate increment is minimal. 
論文目次 
Contents
Chapter 1. Introduction 1
1.1. H.264/AVC Overview 1
1.2. H.264/AVC Intra Prediction Overview 4
1.3. H.264/AVC compliant encoder 8
1.4. Organization of Dissertation 10
Chapter 2. Related Works 11
2.1. Related Works on Intra Skip Decision 11
2.2. Related Works on Block Size Selection Decision 14
2.3. Related Works on Fast Prediction Mode Decision 15
Chapter 3. PreExperimental Analysis 19
3.1. Intra Skip Decision 19
3.2. Block Size Selection Decision 32
3.3. Prediction Mode Decision 34
3.4. Partial Intra Skip Decision 39
Chapter 4. The Proposed Algorithms 42
4.1. Fast Intra Skip Decision 42
4.2. Quantbased block size selection decision 44
4.3. Directionbased prediction mode decision 55
4.4. Fast Partial Intra Skip Decision 58
Chapter 5. Experimental Results 60
5.1. Fast Intra Skip Decision 60
5.2. Quantbased Block Size Selection Decision and Directionbased Prediction Mode Decision 67
5.3. Fast Partial Intra Skip Decision and Overall Algorithm 72
Chapter 6. Conclusion and Future Work 78
Bibliography 80
Publication List 88
List of Figures
Fig. 11. H.264 Encoder Block Diagram. 3
Fig. 12. I4MB prediction block. 7
Fig. 13. I16MB prediction block. 7
Fig. 14. H.264 encoder flowchart. 9
Fig. 15. Mode decision hierarchy of an H.264 compliant encoder. 10
Fig. 31. The percentage of the intra MB occupied in Pslice. 23
Fig. 32. CIF format Foreman test sequence. (a) the 89th frame, (b) the 90th frame. 29
Fig. 33. Integer 8 × 8 DCT. 33
Fig. 34. Sum up the absolute quantization AC coefficients. 34
Fig. 35. Calculation of variance for (a) vertical, (b) horizontal, (c) downright, and (d) downleft modes. 36
Fig. 36. Candidate modes selection. 37
Fig. 37. Partial intra skip decision. 40
Fig. 41. Flowchart of the proposed algorithm. 44
Fig. 42. H.264 compliant intra encoder flowchart. 45
Fig. 43. An ideal distribution of QuantACsum for I4MB, I8MB, and I16MB. 45
Fig. 44. Distribution of QuantACsum for I4MB, I8MB, and I16MB (unbalanced error). 48
Fig. 45. Distribution of QuantACsum for I4MB, I8MB, and I16MB (I8MB curve bias error). 51
Fig. 46. Flowchart of the proposed algorithm. 59
Fig. 51. RD curves of Mobile. 75
Fig. 52. RD curves of Shields. 76
List of Tables
Table 31. Video properties. 20
Table 32. Skipping all intra MBs in the inter frame. 24
Table 33. The probability of the hit rate and skip rate, and RD performance using adaptive thresholds. 28
Table 34. The proportion of the corresponding MB of the proceeding frame is the resulting optimal intra mode. 30
Table 35. The proportion of the upper or left MB of the current frame is the resulting optimal intra mode. 30
Table 36. The Probability of the hit rate and skip rate, and RD performance when applying an additional rule. 31
Table 37. The probability of the hit rate and skip rate, and RD performance using adaptive thresholds. 40
Table 38. The Probability of the hit rate and skip rate, and RD performance when applying an additional rule. 41
Table 41. Hit rate for block size selection algorithms. 50
Table 42. Percentages for four conditions. 54
Table 43. Hit rate and filter rate for directionbased intra prediction mode algorithm. 58
Table 51. Results of the simulation with 300 frames for each test sequence. 61
Table 52. Results of the simulation with 100 frames for each test sequence. 62
Table 53. Performance comparison of the proposed and Fuzz_HR algorithms. 64
Table 54. Performance comparison of proposed algorithm and algorithm of Kim BG. 65
Table 55. Performance comparison of proposed algorithm and algorithm of Kim et al. 65
Table 56. Results of simulations with 200 frames for each test sequence. 67
Table 57. Performance of our proposed algorithms. 68
Table 58. Average performance comparison. 71
Table 59. Results of simulations with 200 frames for each test sequence. 73
Table 510. Results of simulations with 200 frames for each test sequence. 73 
參考文獻 
[1] ISO/IEC 1449610: “Information technology – coding of audiovisual objects – Part 10: advanced video coding,” December 2003.
[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.
[3] I. G. Richardson, “H.264 and MPEG4 Video Compression,” Wiley, 2003.
[4] G. J. Sullivan and T. Wiegand, “Ratedistortion optimization for video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, 1998.
[5] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, “Rateconstrained coder control and comparison of video coding standards,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 688–703, 2003.
[6] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video coding with H.264/AVC: Tools, performance and complexity,” IEEE Circuits and Systems Magazine, vol. 4, no. 1, pp. 7–28, January–March 2004.
[7] Y. W. Huang, B. Y. Hsieh, S. Y. Chien, S. Y. Ma, and L. G. Chen, “Analysis and complexity reduction of multiple reference frames motion estimation in H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 4, pp. 507–522, April 2006.
[8] G. J. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions,” in proceedings of the SPIE conference on Applications of Digital Image Processing (ADIP), pp. 454–474, August 2004.
[9] T. Wiegand, and S. Gordon, “H.264/MPEG4AVC fidelity range extensions: tools, profiles, performance, and application areas,” in proceedings of the 2001 IEEE International Conference on Image Processing (ICIP), pp. 593–596, September 2005.
[10] A. M. Tourapis, “Enhanced predictive zonal search for single and multiple frame motion estimation,” in proceedings of Visual Communications and Image Processing (VCIP2002), pp. 1069–1079, January 2002.
[11] Z. B. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional pel motion estimation for JVT,” document JVTF017, 6th Meeting, Awaji, Japan, December 2002.
[12] X. Yi, J. Zhang, N. Ling, and W. Shang “Improved and simplified fast motion estimation for JM,” document JVTP021, 16th Meeting, Poznan, Poland, July 2005.
[13] I. Choi, J. Lee and B. Jeon, “Fast coding mode selection with ratedistortion optimization for MPEG4 part10 AVC/H.264,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 12, pp. 1557 1561, December 2006.
[14] B.G. Kim, “Fast selective intramode search algorithm based on adaptive thresholding scheme for H.264/AVC encoding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 1 pp. 127133, January 2008.
[15] P.J. Lee and Y.J. Shih “Fast interframe coding with intra skip strategy in H.264 video coding,” IEEE Transactions on Consumer Electronics, vol. 55, no. 1, pp. 158164, February 2009.
[16] T.J. Kim, J.E. Hong, and J.W. Suh “A Fast Intra Mode Skip Decision Algorithm Based on Adaptive Motion Vector Map,” IEEE Transactions on Consumer Electronics, vol. 55, no. 1, pp. 179184, February 2009.
[17] M. Kim, S. Jung, C.S. Kim, and S. Sull, “An Efficient InterFrame Coding with Intra Skip Decision in H.264/AVC,” IEEE Transactions on Consumer Electronics, vol. 56, no. 2, pp. 856862, May 2010.
[18] A. Yu, G. Martin, and H. Park, “Fast intermode selection in the H.264/AVC standard using a hierarchical decision process,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 2, pp. 186–195, Februray 2008.
[19] Y.H. Huang, T.S. Ou, and H. H. Chen, “Fast Decision of Block Size, Prediction Mode, and Intra Block for H.264 Intra Prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 8, pp. 11221132, August 2010.
[20] T. Zhang, G. Tian, and S. Goto, “A frequencybased fast block type decision algorithm for intra prediction in H.264/AVC high profile,” in proceedings of the IEEE Asia Pacific Conference Circuits and Systems (APCCAS), pp. 1292–1295. November 2008.
[21] Y. C. Wei and C. H. Tseng, “Transformed domain block size and intra mode decision for advanced video coding,” Computer Communication Control and Automation (3CA), 2010 International Symposium, vol. 1, no. 1, pp. 221–224, 2010.
[22] Y. Lin, Y.M. Lee, and C.D. Wu, “Efficient Algorithm for H.264/AVC Intra Frame Video Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 10, pp. 13671372, October 2010.
[23] K. Lim, S. Kim, J. Lee, D. Pak, and S. Lee, “Fast Block Size and Mode Decision Algorithm for Intra Prediction in H.264/AVC,” IEEE Transactions on Consumer Electronics, vol. 58, no. 2, pp. 1367–1372, May 2012.
[24] C.H. Tseng, H.M. Wang, and J.F. Yang, “Enhanced intra4×4 mode decision for H.264/AVC coder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 8, pp. 1027–1032, August 2006.
[25] Y.M. Lee, Y.T. Sun, and Y. Lin, “SATDBased Intra Mode Decision for H.264/AVC Video Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 3, pp. 463–469, March 2010.
[26] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu, and S. Wu, “Fast mode decision algorithm for intra prediction in H.264/AVC video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 7, pp. 813–822, July 2005.
[27] J.C. Wang, J.F. Wang, J.F. Yang, and J.T. Chen, “A fast mode decision algorithm and its VLSI design for H.264/AVC intraprediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 10, pp. 1414–1422, October 2007.
[28] A.C. Tsai, A. Paul, J.C. Wang, and J.F. Wang, “Intensity gradient technique for efficient intraprediction in H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 5, pp. 694–698, May 2008.
[29] H. Li, K. N. Ngan, and Z. Wei, “Fast and efficient method for block edge classification and its application in H.264/AVC video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 6, pp. 756–768, June 2008.
[30] A.C. Tsai, J.F. Wang, J.F. Yang, and W.G. Lin, “Effective subblockbased and pixelbased fast direction detections for H.264 intra prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 7, pp. 975–982, July 2008.
[31] K. Bharanitharan, B.D. Liu, J.F. Yang, and W.C. Tsai, “A low complexity detection of discrete cross differences for fast H.264/AVC intra prediction,” IEEE Transactions on Multimedia, vol. 10, no. 7, pp. 1250–1260, November 2008.
[32] D.Y. Kim, K.H. Han, and Y.L. Lee, “Adaptive singlemultiple prediction for H.264/AVC intra coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 4, pp. 610–615, April 2010.
[33] D. Quan and Y.S. Ho, “Categorization for fast intra prediction mode decision in H.264/AVC,” IEEE Transactions on Consumer Electronics, vol. 56, no. 2, pp. 1049–1056, May 2010.
[34] Y. Adibelli, M. Parlak, and I. Hamzaoglu, “Pixel Similarity Based Computation and Power Reduction Technique for H.264 Intra Prediction,” IEEE Transactions on Consumer Electronics, vol. 56, no. 2, pp. 1079–1097, May 2010.
[35] H. Zeng, K.K. Ma, and C. Cai, “Hierarchical intra mode decision for H.264/AVC,” IEEE Transactions on Consumer Electronics, vol. 20, no. 6, pp. 907–912, June 2010.
[36] S.K. Kwon, A. Punchihewa, D. G. Bailey, S.W. Kim, and J. Lee, “Adaptive Simplification of Prediction Modes for H.264 IntraPicture Coding,” IEEE Transactions on Broadcasting, vol. 58, no. 1, pp. 125–128, March 2012.
[37] JVT reference software [Online]. Available: http://iphome.hhi.de/suehring/tml/download/
[38] G. Bjontegaard, “Calculation of average PSNR differences between RDcurves,” ITUT SC16/Q6, Document VCEGM33, 13th VCEG Meeting, Austin, Texas, USA, April 2001.
[39] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, “HEVC: The New Gold Standard for Video Compression,” IEEE Consumer Electronics Magazine, vol. 1, no. 3, pp. 36–46, July 2012.
[40] G. J. Sullivan, J.R. Ohm, W.J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, December 2012. 
論文使用權限 
同意紙本無償授權給館內讀者為學術之目的重製使用，於20140911公開。同意授權瀏覽/列印電子全文服務，於20140911起公開。 


