淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0809201014581800
中文論文名稱 研磨的機械化學作用促進焚化飛灰重金屬穩定化及燒結資源化之研究
英文論文名稱 The Mechanochemical Milling Effect on Heavy Metal Stabilization and Sintering Recovery for Municipal Solid Waste Incinerator Fly Ash
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系博士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 李明國
研究生英文姓名 Ming-Guo Li
學號 893330083
學位類別 博士
語文別 中文
口試日期 2010-06-28
論文頁數 125頁
口試委員 指導教授-高思懷
委員-張祖恩
委員-魏玉麟
委員-魏銘彥
委員-王鯤生
中文關鍵字 焚化飛灰  濕式研磨  機械化學  重金屬穩定  燒結資源化 
英文關鍵字 MSWI fly ash  wet milling  mechanochemistry  heavy metal stabilization  sintering recovery 
學科別分類
中文摘要 都市垃圾焚化飛灰處理是廢棄物管理中相當棘手的課題,在掩埋場設置不易的情況下,尋求適當的技術將飛灰無害化及資源化是目前的趨勢,本研究使用球磨機對水萃飛灰進行濕式研磨的處理,研磨劑為水、乙醇及磷酸溶液,探討研磨的機械化學作用促進焚化飛灰重金屬穩定的機制及效果;最後再探討將水萃飛灰與調質材料淨水污泥、廢玻璃粉共同研磨後燒結,對促進燒結體工程特性及減小重金屬揮發的影響及作用機制。本研究以粒徑分析儀測定研磨前後粉體粒徑變化,以TCLP及序列萃取法(SEP)分析重金屬的穩定性,配合場發射掃描式電子顯微鏡(FE-SEM)、X光繞射儀(XRD)分別研究粉體表面微觀特性及結晶強度、結晶物種等變化。
實驗結果顯示,濕式研磨能有效減少水萃飛灰粉體的粒徑至2 μm左右,濕式研磨對水萃飛灰的鉛最具穩定的作用,使用水研磨1小時即可抑制鉛TCLP溶出,從5.2 降至1.2 mg/L,研磨96小時鉛的TCLP溶出可減少96%;序列萃取結果也顯示研磨之後,鉛傾向形成較穩定的重金屬型態;推測研磨穩定鉛的機制是鉛在飛灰顆粒不斷的破碎及團聚的過程中被限制在粉體當中;XRD分析顯示研磨過程中粉體結晶缺陷會增加甚至趨向無結晶化,而鉛有機會擴散到缺陷組織內而不易溶出。研磨劑的選用對增進研磨穩定鉛效率有很大影響,選用乙醇及0.2 M磷酸在1小時研磨即有93%以上的穩定效率,選用水及0.02M磷酸則需要48小時的研磨時間才能達到90%以上的穩定效率。水萃飛灰與調質材料共同研磨的燒結實驗結果則顯示燒結體重金屬鉛、鋅、銅、鉻及鎘的揮發率皆可抑制在20%左右甚至更低,由SEM分析發現適當調質研磨能促進液相燒結的形成,使燒結體緻密化,進而促進燒結體的工程特性及降低重金屬揮發作用,是一種深具潛力的飛灰無害化與資源化的處理技術。
英文摘要 Municipal solid waste incinerator (MSWI) fly ash has complex composition and contains plenty of heavy metals, which has become a thorny issue in solid waste management. However, new landfill sites are hardly to be set in Taiwan, looking for suitable technologies to detoxify and recycle the fly ash is a tendency at present. In this study, ball milling technology was applied in the treatment after water-extraction. The different milling solutions included water, ethanol and phosphoric acid were used to explore the mechano-chemical mechanism on the effect of heavy metals stabilization. Finally, the mutual milling of the fly ash, adjusting materials of water-treatment sludge and waste cullet, and sintering process were conducted to investigate the mechanism and effect of the engineering characteristics of sintering specimens and reducing of heavy metals evaporation. Laser particle diameter analyzer was used to analyze the diameter variation of fly ash during milling. The stabilization and leaching behavior of heavy metals were determined by TCLP and sequential extraction procedure (SEP); the surface microstructure was observed by field emission scanning electron microscopy (FE-SEM), and the crystalline structure was identified by X-ray diffraction (XRD).
The results showed that wet milling has great effect to stabilize Pb within the water-extracted fly ash. The TCLP concentration of Pb was inhibited from 5.2 to 1.2 mg/L after 1 h of milling when water be the milling solution. And after 96 h of milling, the releasing was reduced about 96%. The SEP analysis also showed that Pb tended to become more stable phase after milling. The median size of the fly ash was significantly reduced from 36 to 5 μm after 0.5 h of milling, and then only slightly reduced from 5 to 2 μm by milling from 0.5 to 95 h as a result of the concurrent actions of fragmentation and/or agglomeration. The mechanism of the stabilization of Pb by milling was possibly that Pb was bound in the milled fly ash during the fragmentation and agglomeration of particles. The results by XRD analysis also showed that defect structure of crystalline particle increased by milling process and even tended to be amorphous structure which led the diffusivity of Pb into the matrix of the fly ash to result in stabilization. The choice of milling solutions has apparently influence on stabilization efficiency of Pb. When milling with ethanol or 0.2 M phosphoric acid, the stabilization efficiency exceed 93% after 1 h of milling. However, it needs 48 h to exceed 90% when used water or 0.02 M phosphoric acid. The results of the sintering for the mutual milling of the water-extracted fly ash and the adjusting materials shows that the evaporation rate of Pb, Zn, Cu, Cr and Cd could all be inhibited fewer than 20%. The observation of SEM indicates that milling with proper adjusting the composition could enhance the development of liquid phase sintering, which will dense the sintered specimen thus improve the engineering properties and reduce the evaporation of heavy metals.
論文目次 目 錄
中文提要 I
英文提要 II
圖目錄 VI
表目錄 IX
第一章 前 言 1
1-1 研究緣起與目的 1
1-2 研究內容 2
第二章 文獻回顧 3
2-1 焚化飛灰特性 3
2-1-1 物理特性 3
2-1-2 化學特性 4
2-1-3 重金屬含量、萃取及溶出特性 4
2-2 機械化學之研究 6
2-2-1 機械化學定義 6
2-2-2 機械化學的作用 7
2-2-3 機械化學的機制 9
2-2-4 研磨穩定重金屬之研究 13
2-3 磷酸穩定重金屬之研究 15
2-4 燒結之研究 17
2-4-1 燒結原理 17
2-4-2 影響因子 17
2-4-3 燒結資源化之研究 18
第三章 研究方法、材料與設備 20
3-1 研究方法與流程 20
3-1-1 水萃混合飛灰濕式研磨參數試驗 20
3-1-2 水萃混合飛灰濕式研磨穩定重金屬之研究 22
3-1-3 水萃反應灰濕式研磨穩定重金屬之研究 24
3-1-4 研磨對飛灰燒結再利用影響之研究 24
3-1-5 研究流程 26
3-2 實驗材料、藥品 27
3-2-1 實驗材料 27
3-2-2 實驗藥品 28
3-3 實驗設備 29
3-4 分析方法 31
3-5 分析設備 35
第四章 濕式研磨對焚化飛灰粉體特性影響及重金屬穩定之探討 37
4-1濕式研磨參數試驗 37
4-1-1 鍋爐灰、反應灰及水萃混合飛灰特性分析 37
4-1-2 研磨粉體的粒徑d50變化 42
4-1-3 研磨粉體的微觀特性分析 43
4-1-4 研磨粉體的XRD分析 45
4-2水萃混合飛灰之研磨穩定探討 54
4-2-1 重金屬鉛穩定現象 54
4-2-2 重金屬鉛穩定之可能機制 56
4-3水萃混合飛灰添加氧化鉛之研磨穩定探討 62
4-3-1 研磨液及TCLP萃出液pH變化 62
4-3-2 研磨液鉛濃度變化 64
4-3-3 研磨灰TCLP鉛溶出變化 65
4-3-4 研磨穩定鉛效率計算 65
4-3-5 鋅、銅、鉻、鎘研磨穩定現象 68
4-3-6 研磨灰XRD分析 76
4-4水萃反應灰之研磨穩定探討 81
4-4-1 反應灰及水萃反應灰基本特性分析 81
4-4-2 水萃液及研磨液重金屬濃度變化 84
4-4-3 研磨灰TCLP重金屬溶出變化及序列萃取結果 84
4-4-4 質量平衡分析結果 87
第五章 濕式研磨提升飛灰以燒結再利用效果之探討 89
5-1 燒結原料特性分析 89
5-2 調質燒結實驗結果 92
5-2-1 燒結體抗壓強度 92
5-2-2 燒結體健度 93
5-3 研磨對燒結體工程特性的影響 94
5-3-1 研磨後的粉體特性變化 94
5-3-2 燒結體抗壓強度 95
5-3-3 燒結體健度 97
5-3-4 燒結體體積收縮率 98
5-3-5 燒結體燒失量 99
5-3-6 燒結體XRD分析 100
5-3-7 燒結體SEM微觀分析 105
5-3-8 燒結體重金屬TCLP溶出及揮發 112
第六章 結論與建議 118
6-1 結論 118
6-2 建議 119
參考文獻 120

圖目錄
Fig. 2–1 Ball-powder-ball collision of powder mixture during mechanical alloying. (Suryanarayana 2001) 11
Fig. 2–2 Schemaitc illustration of activation energy. (Lu and Lai 1995) 12
Fig. 2–3 Dependence of D on surface, grain boundary and lattice duffusion at different temperatures. (Lu, Lai et al. 1997) 13
Fig. 3–1 The diagram of milling situation at critical rotation speed. 22
Fig. 3–2 Flow chart of the research 27
Fig. 3–3 Ball milling machine 29
Fig. 4–1 Particle size distribution of raw fly ash and water-extracted ash 38
Fig. 4–2 XRD results for (a) boiler ash, (b) reaction ash and (c) water-extracted ash 41
Fig. 4–3 Median particle size after the various grinding periods with 93 rpm rotation (a) water (b) ethanol as the milling solution. 43
Fig. 4–4 SEM observation results of ground fly ash with 5 mm milling balls by 10 kX magnification (a) water, 24 h, (b) water, 96 h, (c) ethanol, 24 h, (d) ethanol, 96 h. 44
Fig. 4–5 SEM observation results of ground fly ash with 5 mm milling balls by 100 kX magnification (a) water, 24 h, (b) water, 96 h, (c) ethanol, 24 h, (d) ethanol, 96 h. 45
Fig. 4–6 XRD patterns of milled samples which used water as milling solution. (a) all 5 mm, (b) all 15 mm, (c) 2:1, (d) 1:2, and (e) 1:1. 48
Fig. 4–7 XRD patterns of milled samples which used ethanol as milling solution. (a) all 5 mm, (b) all 15 mm, (c) 2:1, (d) 1:2, and (e) 1:1. 51
Fig. 4–8 Change in X-ray amorphization degree of water-extracted fly ash with grinding time. (a) water, (b) ethanol. 53
Fig. 4–9 SEP results for water-extracted ash after the various grinding periods: (a) water, (b) ethanol. 56
Fig. 4–10 Median particle size after the various grinding periods. 57
Fig. 4–11 Particle-size distribution after the various grinding periods which use water as milling solution with combination of 1:1 milling ball: (a) 0-2h; (b) 2-24h; (c) 24-96h. 58
Fig. 4–12 Particle-size distribution after the various grinding periods which use ethanol as milling solution with combination of 1:1 milling ball: (a) 0-2h; (b) 2-8h; (c) 24-96h. 59
Fig. 4–13 SEM observation results of ground fly ash which used water as milling solution with combination of 1:1 milling balls for: (a) 0 h, water-extracted mixed fly ash at 5kx;(b) 24 h at 5kx;(c) 96 h at 5kx;(d) 0 h, water-extracted mixed fly ash at 50kx; (e) 24 h at 50kx;(f) 96 h at 50kx. 60
Fig. 4–14 The pH of the different milling solutions (ethanol, water, 0.02M and 0.2M H3PO4) during the milling process. 63
Fig. 4–15 The pH of the different extracted solutions (ethanol, water, 0.02M and 0.2M H3PO4) after TCLP for the milled samples of different milling time. 63
Fig. 4–16 The efficiency of the treatment for Pb in fly ash with different milling solutions (ethanol, water, 0.02M H3PO4 and 0.2M H3PO4) at different milling times. 67
Fig. 4–17 SEP results of Pb for fly ash ball milled with (a) ethanol; (b) water; (c) 0.02M and (d) 0.2M H3PO4 milling solutions, at different milling times. 68
Fig. 4–18 SEP results of Zn for fly ash ball milled with (a) ethanol; (b) water; (c) 0.02M and (d) 0.2M H3PO4 milling solutions, at different milling times. 74
Fig. 4–19 SEP results of Cu for fly ash ball milled with (a) ethanol; (b) water; (c) 0.02M and (d) 0.2M H3PO4 milling solutions, at different milling times. 74
Fig. 4–20 SEP results of Cr for fly ash ball milled with (a) ethanol; (b) water; (c) 0.02M and (d) 0.2M H3PO4 milling solutions, at different milling times. 75
Fig. 4–21 SEP results of Cd for fly ash ball milled with (a) ethanol; (b) water; (c) 0.02M and (d) 0.2M H3PO4 milling solutions, at different milling times. 75
Fig. 4–22 XRD results for the added compound of lead. 76
Fig. 4–23 XRD results for water-extracted mixed fly ash with added PbO after milling treatment with different milling solutions: (a) ethanol; (b) water; (c) 0.02 M H3PO4 and (d) 0.2 M H3PO4. 79
Fig. 4–24 XRD comparison between standard pattern of lead and 96 h milled ash which use water as milling solution. 80
Fig. 4–25 Identification of XRD patterns for raw reaction fly ash. 82
Fig. 4–26 Identification of XRD patterns for water-extracted reaction fly ash. 82
Fig. 4–27 Median particle size after the various grinding periods. 83
Fig. 4–28 Particle-size distributions after the various grinding periods: (a) 0-4h; (b) 4-48h. 83
Fig. 4–29 SEP results of Pb. 86
Fig. 4–30 SEP results of Zn. 86
Fig. 4–31 SEP results of Cu. 86
Fig. 4–32 SEP results of Cr. 87
Fig. 4–33 SEP results of Cd. 87
Fig. 5–1 Particle size distribution for water treatment sludge (WTS), Cullet and water-extracted reaction fly ash. 90
Fig. 5–2 SEM observation results of (a) water-extracted reaction fly ash, 10 kX (b) water treatment sludge, 10 kX, (c) cullet, 10 kX. 91
Fig. 5–3 The compression strength of the sintered specimen for different sintering temperature and mixed proportion. 93
Fig. 5–4 Particle size distribution for different mixture composition with 1 h of milling treatment. 95
Fig. 5–5 The compression strength results of sintered specimen with milling. 97
Fig. 5–6 The volume shrinkage rate of sintered specimen for (a) non-milled sample and (b) milled sample. 99
Fig. 5–7 The weight loss of sintered specimen for (a) non-milled sample and (b) milled sample. 100
Fig. 5–8 XRD comparison results for scheme 442. 102
Fig. 5–9 XRD comparison results for scheme 361. 102
Fig. 5–10 XRD comparison results for scheme 334. 103
Fig. 5–11 XRD comparison results for scheme 244. 104
Fig. 5–12 XRD comparison results for scheme 424. 105
Fig. 5–13 SEM micrographs of sintered specimens for scheme 442: (a) non-milled 1 kX, (b) non-milled 30 kX, (c) milled 1 kX, (d) milled 30 kX. 107
Fig. 5–14 SEM micrographs of sintered specimens for scheme 361: (a) non-milled 1 kX, (b) non-milled 30 kX, (c) milled 1 kX, (d) milled 30 kX. 107
Fig. 5–15 SEM micrographs of sintered specimens for scheme 334: (a) non-milled 1 kX, (b) non-milled 10 kX, (c) non-milled 1 kX, (d) milled 1 kX, (e) milled 10 kX, (f) milled 5 kX. 109
Fig. 5–16 SEM micrographs of sintered specimens for scheme 244: (a) non-milled 200 X, (b) non-milled 10 kX, (c) non-milled 30 kX, (d) milled 200 X, (e) milled 10 kX, (f) milled 30 kX. 111
Fig. 5–17 SEM micrographs of sintered specimens for scheme 424: (a) non-milled 1 kX, (b) non-milled 10 kX, (c) milled 1 kX, (d) milled 10 kX. 112
Fig. 5–18 The influence of milling treatment on metal evaporation of sintered specimen, the hollow circle is without milling and the full circle is milling. 115
Fig. 5–19 SEM micrographs of sintered specimens for scheme 433 by 1 kX observation: (a) non-milled 900 oC, (b) non-milled 950 oC, (c) non-milled 1000 oC, (d) milled 900 oC, (e) milled 950 oC, (f) milled 1000 oC. 116
Fig. 5–20 SEM micrographs of sintered specimens for scheme 433 by 10 kX observation: (a) non-milled 900 oC, (b) non-milled 950 oC, (c) non-milled 1000 oC, (d) milled 900 oC, (e) milled 950 oC, (f) milled 1000 oC. 117

表目錄
Table 2–1 Some divalent metal phosphate minerals and their solubility products. 16
Table 3–1 Mixture composition of experimental materials (dry weight) 26
Table 3–2 The used chemicals in the experiment 28
Table 3–3 The sieve and filter papers 29
Table 3–4 The SEP experimental conditions. 32
Table 4–1 The basic analysis of experimental materials. 37
Table 4–2 Chemical composition of the fly ashes. 39
Table 4–3 TCLP test results for fly ashes. 39
Table 4–4 TCLP results after milling (mg/L). 54
Table 4–5 The partitioning of Pb after 96 h of milling time. 55
Table 4–6 The Pb concentration for different milling solutions after milling treatment. 64
Table 4–7 Pb leaching TCLP results for different milling solutions after milling treatment. 65
Table 4–8 The statistical date of TCLP concentration of heavy metals in the fly ashes (mg/L). 69
Table 4–9 The Zn concentration for different milling solutions after milling treatment. 70
Table 4–10 The Cu concentration for different milling solutions after milling treatment. 70
Table 4–11 The Cr concentration for different milling solutions after milling treatment. 70
Table 4–12 The Cd concentration for different milling solutions after milling treatment. 70
Table 4–13 Zn leaching TCLP results for different milling solutions after milling treatment 71
Table 4–14 Cu leaching TCLP results for different milling solutions after milling treatment 71
Table 4–15 Cr leaching TCLP results for different milling solutions after milling treatment. 71
Table 4–16 Cd leaching TCLP results for different milling solutions after milling treatment. 72
Table 4–17 Chemical composition of the reaction fly ash. 81
Table 4–18 Concentration of heavy metals in the water-extracted and milling solutions. 84
Table 4–19 Concentration of heavy metals in TCLP test results for the water-extracted reaction fly ash after milling. 85
Table 4–20 Mass balance results for water-extracted reaction fly ash after 48 h of milling. 88
Table 5–1 The composition and heavy metals content of the experimental materials. 91
Table 5–2 The TCLP leaching concentration of the experimental materials. 92
Table 5–3 The soundness of sintered specimen. 94
Table 5–4 The TCLP leaching concentration for different mixture composition with 1 h of milling. 95
Table 5–5 The increased rate of compression strength after milling treatment. 96
Table 5–6 Soundness results for sintered specimen with milling pretreatment. 97
Table 5–7 The mark number of identification results for sintered specimen. 101
Table 5–8 The TCLP test concentration of sintered specimen for scheme 433. 113

參考文獻 Alba, N., Gasso, S., Lacorte, T., Baldasano, J.M., Characterization of Municipal Solid Waste Incineration Residues from Facilities with Different air Pollution Control Systems, Journal of the Air & Waste Management Association, 47 (1997) 1170-1179.
Benjamin, M.M., 2001. Water Chemistry, McGraw-Hill, New York, USA.
Crannell, B.S.; Taylor, T.; Krzanowski, J.E.; Eusden, J.; Dykstra, J.; Elisabeth, L.; Francis, C.A., Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate, Waste Management, 20 (2000) 135-148.
Derie, R, A New way to stabilize fly ash from municipal incineration, Waste Management, 16 (1997) 711-716.
Eighmy, Y.T.; Crannell, B.S.; Butler, L.G.; Cartledge, F.K.; Emery, E.F.; Oblas, D.O.; Krzanowski, J.E.; Eusden, J.D.; Shae, E.L.; Francis, C.A., Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate, Environmental Science & Technology, 31 (1997) 3330-3338.
German, R.M.,“Sintering theory and practice, John Wiley & Sons”, New York, pp. 1-2, 1996.
George, T.; Hilary, T.; Samuel, A.V. 1993. Integrated Solid Waste Management (International Editions). McGraw-Hill.
Halim, C.E.; Amal, R.; Beydoun, D; Scott, J.A.; Low, G., Evaluating the applicability of a modified toxicity characteristic leaching procedure (TCLP) for the classification of cementitious wastes containing lead and cadmium, Journal of Hazardous Materials, B103 (2003) 125-140.
Heegn H.; Birkeneder F.; Kamptner A., Mechanical activation of precursors for nanocrystalline materials, Crystal Research and Technology, 38 (2003) 7-20.
Ho, Hong-Che, Ph.D. Thesis, Mobility characteristics of volatile heavy metals in municipal solid waste incinerator fly ash, Tamkang University, Tamsui, Taiwan, 2008. (in Chinese)
Hong, K.J.; Tokunaga, S.; Kajiuchi, T., Extraction of heavy metals from MSW incinerator fly ashes by chelating agent, Journal of Hazardous Materials, 75 (2000) 57-73.
Indris, S.; Bork, D.; Heitjans, P., Nanocrystalline oxide ceramics prepared by high-energy ball milling, Journal of Materials Synthesis and Processing, 8 (2000) 245-250.
Jakob, A., Stucki, S., Kuhn, P., Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash, Environmental Science and Technology, 29 (1995) 2429-2436.
Juhász, A.Z.; Opoczky, L., 1990. Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles. Akadémiai Kiadó, Budapest, Hungary.
Kaakinen, J.W.; Jorden, R.M.; Lawasani, M.H., West, R.E. Trace element behavior in coal-fired power plant, Environmental Science and Technology, 9 (1975) 862-869.
Katsuura, H.; Inoue, T.; Hiraoka M.; Sakai, S., Full-scale plant study on fly ash treatment by the acid extraction process, Waste Management, 16 (1997) 491-499.
Kida, A.; Noma, Y.; Imada, T., Chemical speciation and leaching properties of elementa in municipal incinerator ashes, Waste Management, 16 (1996) 527-536.
Kim, W.S., and Lee, D.W., Size characterization of Incinerator fly ash using sedimentation/steric field-flow fractionation. Analyitcl Chemistry, 74 (2000) 848-855.
Koch, C.C., Cavin, O.B., McKamey, C.G., Scarbrough, J.O., Preparation of amorphous Ni60Nb40 by mechanical alloying, Applied Physics Letters, 43 (1983) 1017-1019.
Laperche, V.; Traina, S.J.; Gaddam, P.; Logan, T. J., Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite, Environmental Science and Technology, 30 (1996) 3321-3326.
Lin D.F.;Weng C.H., Use of sewage sludge ash as brick material, Environmental Science and Technology, 127 (2001) 922-927.
Lu, L.; Lai, M.O.; Zhang, S., Diffusion in mechanical alloying, Journal of Materials Processing Technology, 67 (1997) 100-104.
Lu, L., and Lai, M.O., Formation of new material in solid state by mechanical alloying, Materials & Design, 16 (1995) 33-39.
Mangialardi, T., Disposal of MSWI Fly Ash Through a Combined Washing Immobilisation Process, Journal of Hazardous Materials, 98 (2003) 225-240.
Martin K. Beyer and Hauke Claussen-Schaumann, Mechanochemistry: The Mechanical Activation, Chemical review, 105 (2005) 2921-2948.
Matsunaga, T., Kim, J.K., Hardcastle, S., Rohatgi, P.K., Crystallinity and Selected Properties of Fly ash Particles, Materials Science and Engineering, A325 (2002) 333-343.
Mizutani, S.; Yoshida T.; Sakai S., Takasuki H. Release of metals from MSWI fly ash and availability in alkali condition, Waste Management, 16 (1996) 537-544.
Montinaro, S.; Concas, A., Remediation of heavy metals contaminated soils by ball milling, Chemosphere, 67 (2007) 631-639.
Nomura, Y.; Okada, T., Inhibition of heavy metal elution from fly ashes by mechanochemical treatment and cementation, Kagaku Kogaku Ronbunshu, 32 (2006) 196-199.
Nomura, Y.; Fujiwara, K.; Takada, M.; Nakai, S.; Hosomi, M., lead immobilization in mechanochemical fly ash recycling, Journal of Material Cycles and Waste Management, 10 (2008), 14-18.
Nomura, Y.; Fujiwara, K.; Terada, A.; Nakai, S.; Hosomi, M., Prevention of lead leaching from fly ashes by mechanochemical treatment, Waste Management (2009) in press.
Okuno N.;Takahashi S., Full scale application of manufacturing bricks from sewage, Water Science and Technology, 36 (1997) 243-250.
Ontiveros, J.T.; Clapp, T.L.; Kosson, D.S., Physical Properties and Chemical Species Distributions within Municipal Waste Combuster Ashes, Environmental Progress, 8 (1989) 200-206.
Osawaru A. Orumwense and Eric Forssberg., Surface and structural changes in wet ground minerals, Powder Technology, 68 (1991) 23-29.
Palaniandy, S.; Azizli, K.A.M.; Hussin, H.; Hashim, S.F.S., Study on mechanochemical effect of silica for short grinding period, International Journal of Mineral Process, 82 (2007) 195-202.
Rose, H.E.; Sullivan, R.M.E., A Treatise on the Internal Mechanics of Ball, Tube and Rod Mills, Constable, London, 1957, pp. 35-68.
Sukrut S. T.; Mirko, S.; Edward L. D., Morphology and composition of the fly ash partical produced in incineration of municipal solid waste, Fuel Processing Technology, 75 (2002) 179-184.
Suryanarayana, C., Mechanical alloying and milling, Progress in Materials Science, 46 (2001) 1-184.
Tan, L.C.; Choa, V.; Tay, J.H., The influence of pH on mobility of heavy metals from municipal solid waste incinerator fly ash, Environmental Monitoring and Assessment, 44 (1997) 275-284.
Uchida, T.; Itoh, I.; Harada, K., Immobilization of heavy metals contained in incinerator fly ash by application of soluble phosphate, Waste Management, 16 (1996) 475-481.
Wey, M.Y.; Liu, K.Y.; Tsai, T.H.; Wei, M.C., Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln, Journal of Hazardous Materials, 137 (2006) 981-989.
Wiebusch , B.;Seyfried C. F., Utilization of sewage sludge ashes in the brick and tile industry, Water Science and Technology, 36 (1997) 251-258.
Yang, G.C.; Tsai, C.M., A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incinerator fly ash, Journal of Hazardous Materials, 58 (1998) 103-120.
Yang, J.; Mosby, D.E.; Casteel, S.W.; Blanchar, R.W., Lead Immobilization Using Phosphoric Acid in a Smelter-Contaminated Urban Soil, Environmental Science and Technology, 35 (2001) 3553-3559.
Zdujic, M.V.; Milosevic, O.B.; Karanovic, Lj. C., Mechanochemical treatment of ZnO and Al2O3 powders by ball milling, Materials Letters, 13 (1992) 125-129.
Zhang, P. and Ryan, J.A., Formation of pyromorphite in anglesite- hydroxyapatite suspensions under varying pH conditions, Environmental Science and Technology, 32 (1998) 3318-3324.
吳靜薇,水庫淤泥添加改善都市垃圾焚化灰渣燒製輕質骨材之研究,碩士論文,淡江大學水資源及環境工程研究所,2007。
李文鍾,選礦學,台北市,世界書局,民國59年。
李玄閔,不同粒徑分佈與凝聚狀態之α氧化鋁粉末的成型及燒結行為,碩士論文,成功大學資源工程研究所,2004。
宋曉嵐、邱冠周、楊華明,機械化學及其應用研究發展,金屬礦山,2004(11): 34-38
周錦東、蕭溫華、何鴻哲,「水洗與磷酸前處理對垃圾焚化飛灰之穩定作用」,第十九屆廢棄物處理技術研討會論文集,2004。
孫國鼎,水庫污泥及淨水污泥在利用製磚之研究,碩士論文,國立交通大學環境工程研究所,2001。
孫常榮,都市垃圾焚化飛灰水溶性與矽質成分在燒結熱處理過程對重金屬行為之影響,博士論文,國立中央大學環境工程研究所,2001。
陳振華、陳鼎,機械合金化與固液反應球磨,北京,化學工業出版社,2006。
陳克紹譯,粉末冶金概論,台北市,金華科技圖書股份有限公司出版,民國74年。
陳宜晶,利用添加劑提昇淨水污泥燒結之材料品質研究,碩士論文,逢甲大學環境工程與科學學系,2004。
黃雲峰、王文潛、錢鑫,機械化學及其在礦物加工中的應用,金屬礦山,5,1999,17-20。
黃彥為,高能球磨飛灰內重金屬在高溫環境下穩定之研究,碩士論文,淡江大學水資源及環境工程研究所,2007。
莊家榮,濕式研磨對MSWI飛灰特性影響之研究,碩士論文,淡江大學水資源及環境工程研究所,2006。
「陶瓷製造技術」陶瓷面磚,陶業叢書,第四種,中華民國陶瓷研究學會,民國81年。
楊金鐘、周順裕,「利用磷酸鹽穩定化處理都市焚化飛灰之效果頻估」,第十二屆廢棄物處理技術研討會論文集,1997。
楊南如,機械力化學過程及效應(Ⅰ)-機械力化學效應,建築材料學報,3(1),2000,19-27。
楊南如,機械力化學過程及效應(Ⅱ)-機械力化學過程及應用,建築材料學報,3(2),2000,93-97。
劉國雄,機械材料學,台北市,全華科技圖書公司,2002。
劉瓊玲,都市垃圾焚化飛灰穩定燒結再利用技術之研發,碩士論文,淡江大學水資源及環境工程學研究所,2005。
鄭水林,超細粉碎,北京,中國建材工業出版社,1999。
應德標、張育才,超細粉體技術,北京,化學工業出版社,2006。
謝寅雲,淨水污泥/工業廢水污泥之燒結資源化研究,碩士論文,國立台灣大學環境工程研究所,2001
蘇英源、郭金國,粉末冶金學,台北市,金華科技圖書股份有限公司出版,民國93年。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-09-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-09-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信