§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0809201012484800
DOI 10.6846/TKU.2010.00261
論文名稱(中文) FENTON程序氧化與混凝去除有機物機制之研究
論文名稱(英文) Mechanisms of oxidation and coagulation for the removal of organics by Fenton process
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 蔡秉儒
研究生(英文) Bin-Ru Tsai
學號 697480696
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-26
論文頁數 78頁
口試委員 指導教授 - 康世芳
委員 - 徐錠基
委員 - 陳孝行
關鍵字(中) FENTON
鐵鹽混凝
家庭一級出流水
木質素
關鍵字(英) coagulation
Fenton oxidation
lignin
domestic primary effluent
第三語言關鍵字
學科別分類
中文摘要
本研究以木質素試劑與家庭一級出流水為對象有機物,研究目的為(1)探討三價鐵混凝、Fenton及Fenton-like程序去除色度與溶解性有機物(DOC)之效果,(2)檢討Fenton及Fenton-like程序氧化與混凝去除DOC之機制。實驗用木質素廢水水樣DOC與色度分別為107.4 mg/L 與365單位;家庭一級出流水DOC為12.6 mg/L。所有實驗採瓶杯試驗,以pH、鐵鹽種類(亞鐵及三價鐵)與加藥量、過氧化氫加藥量為操作變數。以超過濾膜(UF)分離DOC分子量檢討各程序DOC分子量分佈變化,高中低分子量劃分分別為大於10k、1~10 k、1k Da。
    木質素處理實驗結果顯示,三價鐵混凝處理木質素之最佳pH範圍為pH 3~5,於最適三價鐵加藥量50 mg/L,色度與DOC去除率皆可分達90 %以上。木質素為高分子有機物,高分子量(10 K Da以上)DOC佔75%,混凝去除以高分子量為主,殘留DOC以低分子量為主(1 K Da以下),佔75%。Fenton/Fenton-like程序於pH 4,色度與DOC去除率皆可分達80 %以上,且殘留DOC之90%以上以低分子量為主。但由溶出實驗結果顯示DOC去除機制以混凝為主約佔96%,氧化則約佔4%,顯示氫氣自由基無法礦化去除DOC。
    家庭一級出流水處理實驗結果顯示,三價鐵混凝處理家庭一級出流水的最佳pH範圍亦為3~5, DOC去除率可達約75%。Fenton/Fenton-like程序DOC去除率約80%。家庭一級出流水DOC以中、低分子量為主(10 K Da以下),約佔67.5%,高分子量(10 K Da以下)佔28.6%,由溶出實驗結果顯示兩者DOC去除機制皆以氧化為主約佔90%,與前述木質素以混凝為主之結果相異,推測其原因乃家庭一級出流水DOC以以中、低分子量為主,可被氫氣自由基礦化以去除DOC所致。
英文摘要
This research evaluates the efficiency of three individual processes (coagulation, Fenton and Fenton-like) to remove organics from wastewater.  The objectives to this research are 1).evaluating the removal efficiency of color and dissolved organic carbon (DOC) by ferric coagulation, Fenton and Fenton-like processes and 2).discussing the effects of oxidation and coagulation mechanisms on DOC removal by either Fenton or Fenton-like process.  The tested organic wastewater is either prepared from lignin (DOC = 107.4 mg/L, 365 ADMI color unit) or domestic primary effluent (DOC = 12.6 mg/L) and all the experiments were conducted by the Jar test.  The experimental variables include pH, dosage of iron salt (ferric and ferrous) and hydrogen peroxide (H2O2).  The size of organics in wastewater is determined by the methods of ultra-filtration (UF) and classified from large to small on > 10k, 1~10k and < 1k Dalton (Da).    
  The results show that the optimal pH and the dosage of ferric salts on color and DOC removal (> 90 %) are 3~5 and 50 mg/L respectively for the artificial lignin solution tests.   The lignin is a high molecular weight DOC with 75 % of large size molecular (> 10 kDa) while reduced to 75% of small size molecular (<1 kDa) in the solution after coagulation process.  The color and DOC removal efficiency are up to 80 % (at pH 4) on Fenton and Fenton-like processes with greater than 90% of small size molecular (<1 kDa) in the residual solution.  The further test shows that 96% of the DOC is removed by coagulation mechanism and only 4 % is by oxidation.  In other words, the hydroxyl radical (OH‧) did not play the major role in DOC removal on Fenton and Fenton-like processes.  
  As of the domestic primary effluent, the optimum pH is 3 to 5 in ferric coagulation test and the DOC removal efficiency is 75 %.  The DOC removal efficiency is around 80 % in either Fenton or Fenton-like processes.  The smaller molecular weight (< 10 kDa) of organics composed in domestic wastewater is 67.5 % while larger molecular weight (>10 kDa) organics is 28.6 %.  Furthermore, 90% of the removed DOC of domestic wastewater is by oxidation mechanism in both Fenton and Fenton-like processes which is different from lignin samples primary on coagulation mechanism.  The results may arise from the mechanism which the hydroxyl radical is easier to breakdown smaller size of the organic molecular which dominates in domestic wastewater comparing to larger size in lignin samples.
第三語言摘要
論文目次
目錄	1
圖目錄	4
第一章	前言	6
1-1	研究緣起	6
1-2	研究目的	8
第二章 文獻回顧	9
2-1 木質素與家庭汙水的特性	9
2-2 化學混凝程序理論與影響因素	10
2-2-1 化學混凝程序理論	10
2-2-2 化學混凝程序影響因素	12
2-3  Fenton程序理論與影響因素	14
2-3-1 Fenton程序理論	14
2-3-2 Fenton程序影響因素	15
2-4  混凝與Fenton處理程序的應用	18
第三章 實驗材料與方法	22
3-1 實驗材料	22
3-1-1 人工紙漿廢水	22
3-1-2 家庭汙水	24
3-1-3 實驗藥品	24
3-2-1 三價鐵與Fenton程序混凝瓶杯試驗	27
3-2-2 水質分析	29
第四章 結果與討論	32
4-1 鐵鹽混凝去除木質素色度與DOC	32
4-1-1 pH對鐵鹽混凝去除木質素色度與DOC之影響	32
4-1-2 鐵鹽加藥量對鐵鹽混凝去除木質素色度與DOC的影響	34
4-1-3 鐵鹽混凝前後木質素分子量分佈之比較	36
4-2 Fenton及Fenton-like程序去除木質素色度與DOC	38
4-2-1 pH對有機物去除之影響	38
4-2-2 鐵鹽加藥量對去除有機物之影響	42
4-2-3 H2O2加藥量對去除有機物之影響	45
4-2-4 Fenton及Fenton-like程序去除有機物機制	49
4-2-5 Fenton及Fenton-like程序對有機物分子量分布之影響	52
4-3 鐵鹽混凝處理家庭一級出流水之性能	55
4-3-1 pH對鐵鹽混凝去除有機物之影響	55
4-3-2鐵鹽加藥量對鐵鹽混凝去除有機物之影響	57
4-3-3 鐵鹽混凝對有機物分子量分布之影響	59
4-4 Fenton及Fenton-like程序處理家庭一級出流水之之性能	61
4-4-1 pH對Fenton及Fenton-like程序有機物去除之影響	61
4-4-2 鐵鹽加藥量對去除有機物之影響	64
4-4-3 H2O2加藥量對去除有機物之影響	67
4-4-4 Fenton及Fenton-like程序去除有機物機制	69
4-4-5 Fenton及Fenton-like程序對有機物分子量分布影響...	72
第五章  結論	74
參考文獻	76
 
圖目錄
圖3-1 木質素濃度與DOC之檢量線	23
圖3-2 木質素與色度之檢量線	23
圖3-4 鐵鹽化學混凝之實驗流程	31
圖3-5 Fenton / Fenton-like之實驗流程	31
圖4-1 pH對鐵鹽混凝去除色度及DOC之影響	33
圖4-2 鐵鹽加藥量對鐵鹽混凝去除色度與DOC之影響	35
圖4-3 鐵鹽混凝前後木質素之分子量分佈	37
圖4-4 pH對Fenton程序去除有機物之影響	40
圖4-5 pH對Fenton-like程序去除有機物之影響	40
圖4-6 pH對Fenton的混凝去除木質素色度與DOC之影響	41
圖4-7 pH對Fenton-like混凝去除木質素色度與DOC之影響	41
圖4-8 鐵鹽加藥量對Fenton/Fenton-like程序去除有機物之影響	44
圖4-9 低鐵鹽加藥量下H2O2加藥量對去除有機物之影響	48
圖4-10 高鐵鹽加藥量下H2O2加藥量對去除有機物之影響	48
圖4-11 Fenton溶出前後殘留率之比較	51
圖4-12 Fenton-like 溶出前後殘留率之比較	51
圖4-13 Fenton程序對有機物分子量分布之影響	54
圖4-14 Fenton-like程序對有機物分子量分布之影響	54
圖4-15 pH對鐵鹽混凝去除有機物之影響	56
圖4-16 鐵鹽加藥量對鐵鹽混凝去除有機物之影響	58
圖4-17 鐵鹽混凝對有機物分子量分布之影響	60
圖4-18 pH對Fenton程序去除有機物之影響	63
圖4-19 pH對Fenton-like程序去除有機物之影響	63
圖4-20 Fe2+對Fenton程序去除有機物之影響	66
圖4-21 Fe3+對Fenton-like程序去除有機物之影響	66
圖4-22 H2O2加藥量對Fenton程序處理有機物之影響	68
圖4-23 H2O2加藥量對Fenton-like程序處理有機物之影響	68
圖4-24 Fenton及Fenton-like程序於不同鐵鹽DOC之殘留變化	71
圖4-25 Fenton及Fenton-like程序於不同H2O2 DOC之殘留變化	71
圖4-26 Fenton及Fenton-like程序對有機物分子量分布	73
參考文獻
1.	Aldershof, B.K., Dennis, R.M., and Kunitsky, C.J., 1997. Study of the decomposition of four commercially available hydrogen peroxide solutions by Fenton's reagent. Water Environment Research, 69, 1052-1056.
2.	Arslan-Alaton, I., Betul H.G., and Jens-Ejbye, 2008. Advanced oxidation of acid and reactive dyes: Effect of Fenton treatment on aerobic, anoxic and anaerobic processes. Dyes and Pigments 78, 117-130.
3.	Arslan Alaton, I., and Teksoy, S., 2007. Acid dyebath effluent pretreatment using Fenton’s reagent: Process optimization, reaction kinetics and effects on acute toxicity. Dyes and Pigments 73, 31-39
4.	Ciotti, C., Baciocchi, R., and Tuhkanen, T., 2009. Influence of the operating conditions on highly oxidative radicals generation in Fenton's systems. Journal of Hazardous Materials 161, 402-408.
5.	Duesterberg, C.K., Mylon, S.E., and Waite, T.D., 2008. pH effects on iron-catalyzed oxidation using Fenton's reagent. Environmental Science and Technology, 42, 8522-8527.
6.	Gulkaya I., Surucu G.A. and Dilek F.B., 2006. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, B136, 763-769.
7.	Gutowska A., Ka1uzna-Czaplinska J., and Jozwiak W.K., 2007. Degradation mechanism of Reactive Orange 113 dye by H2O2/Fe2+  and ozone in aqueous solution. Dyes and Pigments 74, 41-46.
8.	Hsueh C.L., Huang Y.H., Wang C.C., and Chen C.Y., 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58, 1409-1414
9.	Kang, S.F., Liao, C.H., and Chen, M.C., 2002. Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere , 46, 923-928.
10.	Kim T.H., Park C., Yang J., and Kim S., 2004. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal Hazardous Materials, B112, 95-103.
11.	Kositzi, M., Poulios, I., Malato, S., Caceres, J. and Campos, A., 2004. Solar photocatalytic treatment of synthetic municipal wastewater. Water research 38(5), 1147-1154.
12.	Kuo, W.G., 1992. Decolorizing dye wastewater with Fenton's reagent. Water  Research, 26, 881-886.
13.	Liao, C.H., Kang, S.F., and Wu, F.A., 2001. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere, 44, 1193-1200.
14.	Lucas M.S., Dias A.A., Sampiao A., Amaral C. and Peres J.A., 2007. Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Research, 41, 1103-1109.
15.	Ma X.J., and Xia H.L., 2009, Treatment of water-based printing ink wastewater by Fenton process combined with coagulation. Journal Hazardous Materials, 162, 386-390.
16.	Meric S., Kaptan D., and Olmez T., 2004, Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere 54, 435-441.
17.	Orozco S.L., Bandala E.R., Arancibia-Bulnes C.A., Serrano B., Raul S.P. and Hernandez-Perez I.. 2008. Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)/H2O2 and Fe(III)/H2O2 systems. Journal of Photochemistry and Photobiology A: Chemistry,  198, 144-149.
18.	Ramirez, J.H., Duarte, F.M., Martins, F.G., Costa, C.A., and Madeira, L.M., 2009. Modelling of the synthetic dye Orange II degradation using Fenton's reagent: From batch to continuous reactor operation. Chemical Engineering Journal 148, 394-404.
19.	Rizzo L., Lofrano G., Grassi M. and Belgiorno V., 2008. Pre-treatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Separation and Purification Technology, 63, 648-653.
20.	Savant D.V., Abdul-Rahman R.amd Ranade D.R., 2006. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresource Technology 97, 1092-1104.
21.	Wang S., 2008. A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments, 76, 714-720.
22.	Wang X., Chen S., Gu X. and Wang K., 2009. Pilot study on the advanced treatment of landfill leachate using a combinedcoagulation, fenton oxidation and biological aerated filter process. Waste Management, 29, 1354-1358.
23.	Wang X., Zeng G. and Zhu J., 2008. Treatment of jean-wash wastewater by combined coagulation, hydrolysis/acidification and Fenton oxidation. Journal Hazardous Materials, 153, 810-816.
24.	Yonar T., Kestioglu K. and Azbar N., 2006. Treatability studies on domestic wastewater using UV/H2O2 process. Applied Catalysis B: Environ. 67, 223–228.
25.	楊萬發, 1987. 水及廢水處理化學. 茂昌圖書, 第207-254 頁.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信