系統識別號 | U0002-0809200817595600 |
---|---|
DOI | 10.6846/TKU.2008.00185 |
論文名稱(中文) | 高屏溪斜張橋受風之實場量測與理論分析的比較研究 |
論文名稱(英文) | Comparative Study of Aerodynamic Responses of Kao-Ping-Hsi Cable-Stayed Bridge between field measurements and buffeting analysis |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 土木工程學系碩士班 |
系所名稱(英文) | Department of Civil Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 96 |
學期 | 2 |
出版年 | 97 |
研究生(中文) | 鄭詩穎 |
研究生(英文) | Shih-Ying Cheng |
學號 | 695380039 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2008-07-07 |
論文頁數 | 103頁 |
口試委員 |
指導教授
-
林堉溢
委員 - 陳振華 委員 - 鄭啟明 委員 - 林堉溢 |
關鍵字(中) |
斜張橋 實場量測 頻率域分解法 隨機遞減法 抖振效應 |
關鍵字(英) |
cable-stayed bridge field measurements frequency decomposition random decrement buffeting analysis |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
高屏溪橋為國內最長之斜張橋,由於其跨徑長,因而受風影響甚大,因此橋梁受風之實場量測與理論分析的研究是一門重要的課題。因此本文以國內高屏溪斜張橋為標的,於其主跨二分之一處裝置三維風速計與速度計,主跨三分之二處裝設速度計,用以量測颱風經過時橋體周遭之風場特性,以及橋體受風之振動反應,來研究橋梁受風之效應。 本文利用2007年所紀錄到之柯羅莎颱風經過時所紀錄到的資料進行研究。柯羅莎颱風垂直橋軸10分鐘平均風速最大可達16m/s,因此本文以柯羅莎颱風為主軸來探討其風場特性分析以及結構分析,結構反應分別使用FDD法與多自由度RD法分析其結構動力相關特性。最後將分析得之風場特性與結構動力特性代入數值方法中,配合抖振理論模擬橋梁反應,並與實場量測及風洞實驗的結果作比較。 為與實場量測數值作比較,因此以實場量測之風速頻譜、紊流強度、以及實場量測之振動反應所識別之自然頻率與阻尼比配合抖振理論做數值分析。分析結果與實場量測反應比較顯示,垂直向相當吻合,而扭轉向約有30%的誤差,而水平向的誤差較大,再分析數值約為實場量測之1/4。顯示修改數值模型的各相關條件,使之更加接近現地的風場狀況對於橋體受風的反應可以更加接近真實性。斷面風洞模型試驗雖和實場的風場條件有些許的不同,但仍和數值再分析相似,與實場量測反應曲線有一樣的趨勢也很接近實場數值。而全橋風洞試驗由於是為了求得顫振臨界風速所設定的試驗,因而使用的是無因次化風速,實場量測風速與之相比過小,因而在低風速下受雜訊影響,與實場相比顯得較不準確。 |
英文摘要 |
Since Kao-Ping-Hsi Cable-Stayed Bridge has the longest span length in Taiwan, it is more sensitive to wind The study to monitor this bridge and compare the field measurements with buffeting theoretical results becomes an important task. Therefore, this bridge was chosen as the target for monitoring. Two 3D anemometers were installed at the middle point of the longer span to measure wind characteristics. Two sets of velocity censors, respectively installed at the middle point and on third point of the longer span, were used to measure the dynamic responses of the bridge. The aerodynamic behavior of the Kao-Ping-Hsi Cable-Stayed Bridge was analyzed based on the measured data obtained from the field measurements. The data were collected as several typhoons were attacking Taiwan during 2006-2007. Among these typhoons, Typhoon Krosa was the strongest and its maximum 10 min. mean wind speed was as high as 16 m/s. The effects of this typhoon on the bridge are the main concern in this study. The modal frequencies and damping ratios of the bridge were identified by the methods of FDD and MRD, respectively. These identified parameters along with the fitted wind spectrum were substituted into a numerical model to evaluate the buffeting responses of the targeted bridge. The results obtained from the re-analysis, the field measurements, the section model test and the full model test were compared. The comparative study indicates that the differences between the results obtained from the re-analysis and the results measured from the field measurements are 10% in the vertical direction and 30% in the torsional direction. The drag response obtained from re-analysis is only 25% of that measured from the field measurements. The possible reason for this large discrepancy results from high noise in the field measurements. Since turbulent intensities and damping ratios used in the section model tests and the full model tests were different from those identified from the field measurements. The results obtained from the section model tests are still consistent with those from on-site measurements. However, the results obtained from the full model test are much larger than the other results. This is because the reduced wind velocity in the tests is low and the high noise affected the results.. |
第三語言摘要 | |
論文目次 |
目錄…………………………………………………………………...I 表目錄………………………………………………………………III 圖目錄……………………………………………………………. ..IV 第一章 緒論………………………………………………………….1 1.1 前言…………………………………………………………………….1 1.2 研就動機與目的…………………………………………………….....1 1.3 研究內容…………………………....……………………………….....2 1.4 論文架構………………………....……………………………….........3 第二章 文獻回顧………………………....………………………………....5 2.1 前言………………………....……………………………….................5 2.2 FDD識別法………………………....………………………………....5 2.3 隨機遞減法………………………....……………………………….....6 2.4 實場量測………………………....……………………………….........7 第三章 理論背景………………………....………………………………....8 3.1 前言………………………....……………………………….................8 3.2 風場分析………………………....……………………………….........8 3.2.1 平均風速………………………....……………………………...8 3.2.2 平均風向………………………....……………………………...8 3.2.3 紊流強度………………………....……………………………...8 3.2.4 紊流長度尺度…………………....……………………………...9 3.2.5 風速擾動頻譜…………………....……………………………...9 3.2.6 風速擾動交頻譜…………………....…………………………..11 3.3 FDD識別理論…………………....……………………………............12 3.3.1 FDD識別之理論背景……....……………………………..........12 3.3.2 FDD識別流程……....……………………………......................14 3.3.3 FDD數值驗證………………………...............................15 3.3.4 實場之FDD識別流程……....……………………………........17 3.4 隨機遞減法識別理論……....……………………………...................18 3.4.1 隨機遞減法…………...……....……………………………......18 3.4.2 單自由度系統………………………………………………….19 3.4.3 多自由度系統………………………………………………….21 3.4.4 實場之隨機遞減法流程……………………………………….21 3.5 橋梁受風之氣動力效應…………………………………………...…23 3.5.1 顫振效應……………………………………………………….23 3.5.2抖振效應………………………………………………………...24 3.5.3 扭轉不穩定…………………………………………………….24 3.5.4 渦流振動……………………………………………………….24 3.5.5 風馳效應……………………………………………………….25 3.6 橋梁受風反應之分析模式…………………………………………...26 3.6.1 自身擾動力…………………………………………………….26 3.6.2抖振力…………………………………………………………..27 3.7 橋體運動方程式之建立……………………………………………...28 3.8 橋梁受風載重之位移反應…………………………………………...29 第四章 實場量測與風洞試驗之配置……………………………...33 4.1 前言…………………………………………………………………...33 4.2 高屏溪橋地理位置與幾何形狀……………………………………...33 4.3 現地儀器配置………………………………………………………...33 4.4 風場分析……………………………………………………………...34 4.5 風洞試驗……………………………………………………………...35 4.5.1 全橋模型風洞試驗…………………………………………….35 4.5.1 斷面模型風洞試驗…………………………………………….35 第五章 實場量測結果與數值計算………………………………...37 5.1 前言…………………………………………………………………...37 5.2 實場量測結果………………………………………………………...37 5.2.1 風場分析結果………………………………………………….37 5.2.2 結構參數分析結果…………………………………………….39 5.2.2.1 以FDD法識別結構參數……………………………….39 5.2.2.2 以多自由度隨機遞減法識別結構參數…..…………….40 5.2.3 FDD與RD識別之結構動力參數分析結果………………….40 5.3 數值計算與分析……………………………………………………..41 5.3.1 前言……………………………………………………………41 5.3.2 建立數值模型…………………………………………………42 5.3.3 抖振反應分析…………………………………………………42 5.3.4 結果討論與比較………………………………………………45 第六章 結論與建議………………………………………………..49 6.1 結論…………………………………………………………………..49 6.2 建議…………………………………………………………………..50 第七章 參考文獻………………..…………………………………………51 表目錄 表3-1 FDD法識別之自然頻率與阻尼比………………………....…………..55 表3-2 FDD識別之前五個模態自然頻率……………………………………..55 表3-3 FDD識別之前五個模態阻尼比…………………………..…………...55 表3-4 氣動力參數代表的意義……………………………………...………..56 表4-1風速計量測範圍………………………………………………….……..56 表4-2 2007年有紀錄到之侵台颱風…………………………………………..56 表4-3風速計率定公式…………………………………….………………….57 表5-1 柯羅莎颱風風向299°~344°之各分量紊流強度與紊流強度………..57 表5-2 柯羅莎颱風風向299.67~344.67之頻譜參數…………………………57 表5-3 FDD與RD之前六個模態識別結果…………………………………58 表5-4 高屏溪橋橋面斷面性質……………………………………………….58 表5-5高屏溪橋橋塔斷面性質……………………………..………………….59 表5-6高屏溪橋鋼纜材料性質………………………………………………...59 表5-7 高屏溪橋數值模型前十個振態……………………………………….60 表5-8 數值計算之說明………………………………………….……………60 表5-9 風速7m/s數值計算、風洞試驗與實場量測之RMS反應值…………61 表5-10風速13m/s數值計算、風洞試驗與實場量測之RMS反應值………61 圖目錄 圖1-1 Tacoma Narrow Bridge 發生顫振(flutter)的情形…………….….….62 圖3-1 FDD法分析流程圖…………………………………………...………63 圖3-2 反應歷時圖…………………………………………………...………..63 圖3-3 RD訊號曲線……………………………………………………………64 圖3-4 多自由度RD法分析流程圖…………………………………………..64 圖3-5橋面版節點與單位長度受風力之示意圖……………………………...65 圖4-1高屏溪橋之幾何形狀與鋼纜編號……………………………………...66 圖4-2高屏溪橋長期監測系統架設位置圖……………………………..……67 圖4-3高屏溪橋長期監測系統架設剖面圖…………………………………..67 圖4-4高屏溪橋長期風力監測系統架構圖…………………………………..68 圖4-5風向與橋軸方向示意圖………………………………………………..68 圖4-6高屏溪橋長期振動監測系統架構圖………………….………..............69 圖4-7振動量測的自由度設定圖……………………………………………..69 圖5-1 柯羅莎颱風10月6日~10月7日之風速歷時……………………….70 圖5-2 柯羅莎颱風10月6日~10月7日之風向圓餅圖……………………70 圖5-3 柯羅莎颱風風向299.67~344.67之各風速下紊流強度………………71 圖5-4 柯羅莎颱風風向299.67~344.67之各風速下紊流長度尺度…………71 圖5-5 柯羅莎颱風10月6日20:24 ~20:34的順風向紊流頻譜………..72 圖5-6 柯羅莎颱風10月6日20:24 ~20:34的垂直向紊流頻譜…………72 圖5-7 1/2跨及2/3跨各方向頻譜…………………………………………….73 圖5-8 有風狀態下之奇異值圖……………………………………………….73 圖5-9 無風狀態下之奇異值圖…………………………………………….....74 圖5-10 有風狀態下之自相關函數圖………………………………………...74 圖5-11 垂直向第一振態風速與自然頻率關係…………………………….75 圖5-12 拖曳向第一振態風速與自然頻率關係…………………………….75 圖5-13 扭轉向第一振態風速與自然頻率關係…………………………….76 圖5-14 垂直向第一振態風速與阻尼比關係……………………………….76 圖5-15 拖曳向第一振態風速與阻尼比關係……………………………….77 圖5-16 扭轉向第一振態風速與阻尼比關係……………………………….77 圖5-17 高屏溪橋有限元素數值模型………………………………………...78 圖5-18 有限元素分析之mode Shape………………………………………..79 圖5-19各風速下橋面板1/2跨處垂直向反應rms值……………………….80 圖5-20各風速下橋面板2/3跨處垂直向反應rms值……………………….80 圖5-21各風速下橋面板1/2跨處水平向反應rms值……………………….81 圖5-22各風速下橋面板2/3跨處水平向反應rms值……………………….81 圖5-23各風速下橋面板1/2跨處扭轉向反應………………………………..82 圖5-24各風速下橋面板2/3跨處扭轉向反應………………………..............82 圖5-25各風速下橋面板1/2跨處垂直向反應rms值……………………….83 圖5-26各風速下橋面板2/3跨處垂直向反應rms值……….……………….83 圖5-27各風速下橋面板1/2跨處水平向反應rms值……….………………84 圖5-28各風速下橋面板2/3跨處水平向反應rms值……….……………….84 圖5-29 各風速下橋面板1/2跨處扭轉向反應rms值………………………85 圖5-30各風速下橋面板2/3跨處扭轉向反應rms值……………………….85 圖5-31帕布各風速下橋面板1/2跨處垂直向反應rms值………………….86 圖5-32帕布各風速下橋面板2/3跨處垂直向反應rms值……………………86 圖5-33帕布各風速下橋面板1/2跨處水平向反應rms值……………………87 圖5-34帕布各風速下橋面板2/3跨處水平向反應rms值……………………87 圖5-35帕布各風速下橋面板1/2跨處扭轉向反應…………….……………..88 圖5-36帕布各風速下橋面板2/3跨處扭轉向反應……………………….......88 圖5-37帕布各風速下橋面板1/2跨處垂直向反應rms值……………………89 圖5-38帕布各風速下橋面板2/3跨處垂直向反應rms值……….…………89 圖5-39帕布各風速下橋面板1/2跨處水平向反應rms值……….…………90 圖5-40帕布各風速下橋面板2/3跨處水平向反應rms值……….………….90 圖5-41帕布 各風速下橋面板1/2跨處扭轉向反應rms值…………………91 圖5-42帕布各風速下橋面板2/3跨處扭轉向反應rms值……………………91 圖5-43梧提各風速下橋面板1/2跨處垂直向反應rms值………………….92 圖5-44梧提各風速下橋面板2/3跨處垂直向反應rms值……………………92 圖5-45梧提各風速下橋面板1/2跨處水平向反應rms值……………………93 圖5-46梧提各風速下橋面板2/3跨處水平向反應rms值……………………93 圖5-47梧提各風速下橋面板1/2跨處扭轉向反應…………….……………..94 圖5-48梧提各風速下橋面板2/3跨處扭轉向反應……………………….......94 圖5-49梧提各風速下橋面板1/2跨處垂直向反應rms值……………………95 圖5-50梧提各風速下橋面板2/3跨處垂直向反應rms值……….……….…95 圖5-51梧提各風速下橋面板1/2跨處水平向反應rms值……….……….…96 圖5-52梧提各風速下橋面板2/3跨處水平向反應rms值……….……….….96 圖5-53梧提各風速下橋面板1/2跨處扭轉向反應rms值………………..…97 圖5-54梧提各風速下橋面板2/3跨處扭轉向反應rms值……………………97 圖5-55韋帕各風速下橋面板1/2跨處垂直向反應rms值………………….98 圖5-56韋帕各風速下橋面板2/3跨處垂直向反應rms值……………………98 圖5-57韋帕各風速下橋面板1/2跨處水平向反應rms值……………………99 圖5-58韋帕各風速下橋面板2/3跨處水平向反應rms值……………………99 圖5-59韋帕各風速下橋面板1/2跨處扭轉向反應…………….……………100 圖5-60韋帕各風速下橋面板2/3跨處扭轉向反應……………………….....100 圖5-61韋帕各風速下橋面板1/2跨處垂直向反應rms值…………………101 圖5-62韋帕各風速下橋面板2/3跨處垂直向反應rms值……….…………101 圖5-63韋帕各風速下橋面板1/2跨處水平向反應rms值……….…………102 圖5-64韋帕各風速下橋面板2/3跨處水平向反應rms值……….………….102 圖5-65韋帕各風速下橋面板1/2跨處扭轉向反應rms值…………………103 圖5-66韋帕各風速下橋面板2/3跨處扭轉向反應rms值…………………103 |
參考文獻 |
1. Bendat, J. S. and Piersol, A. G. “Engineering Applications of Correl-eration and Spectral Analysis,” (1993). 2. Brincker, R., Zhang, L., and Andersen P., ”Output-Only Modal Analysis by Frequency Domain Decomposition,” in Proceeding Of the ISMA25 Conference in Leuven(2000). 3. Brincker, R., and Andersen P., ‘‘Ambient response analysis of the Heritage Court Tower building structure” Proc 18th Int. Modal Analysis Conf.(San Antonio,TX,7-10 February,2000). 4. Brian, M. and Mehdi, B.,” OMA test by SLDV with FEM Pre and POST-test Analysis.”, (2002). 5. Brincker, R.,Frandsen J .and Andersen P. “Ambient response analysis of the Great Belt Bridge”Proc 18th Int. Modal Analysis Conf. (San Antonio,TX,7-10 February,2000). 6. Brincker, R., Carlos E., Ventura and Palle Andersen, “Damping Esti-mation by Frequency Domain Decomposition”,(2002). 7. Cole, H. A., “Methods and Apparatus for Measuring the Damping Characteristics of a Structure,” United States Patent No.3-620-069(1979) 8. Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., and Cook, M.F., “A Mathematical Basis for the Random Decrement Vibration Signat-ure Analysis Technique,” Journal of Mechanical Design, Vol 104, pp.307-313(1982). 9. Bedewi, N. E.,“ The Mathematical foundation of the Auto and Cross-Random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration,”Ph. D Thesis, University of Maryland College Park,(1986) 10. 黃炯憲、葉錦勳、林憲忠、葉公贊,「隨機遞減法在微震量測之應用-比例阻尼系統」,國家地震工程研究中心研究報告NCREE-96-013,台北(1996)。 11. Delaunay,D., Grillaud,G.,”Field measurements of the wind-induced re-sponse of a cable stayed bridge: Validation of previsional studies ” Journal of Wind Engineering and Industrial Aerodynamics,Vol74-76,pp883-890,(1998). 12. J.B. Frandsen, ”Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge ”, Journal of Wind Engineering and Industrial Aerodynamics,Vol89 (2001) 95-129 13. Tamura, Y., Zhang, L., Yoshida, A., Nakata, S., and Itoh, T., ‘‘Ambient vibration test and modal identification of structures by FDD and 2DOF-RD sechnique,” SEWC, Yokohama, Japan(2002). 14. Gurung,H.,Yamaguchi,T. Yukino, “ Identification and characterization of galloping of Tsuruga test line based on multi-channel modal anal-ysis of field data”, Journal of Wind Engineerring and Industrial Aer-odynamics, Vol 91,pp.903-942(2003). 15. John H.G. Macdonald, “Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements”, Journal of Wind Engineering and Industrial Aerodynamics Vol91 (2003) 1465–1483 16. Xu,Y. L.,Guo,W. W,”Dynamic Response of Suspension Bridge to Ty-phoon and Trains.I:Field Measurement Results” Journal of Structural Engineering,Vol. 133,pp733-9445(2007)................................ 17. Kaimal et al., “Spectral Characteristics of Surface-Layer Turbulence” J. Royal Meteorol. Soc.,98,pp563-589, (1972) 18. Davenport, A G. ,“ The Spectrum of Horizontal Gustiness Near the Ground in High Winds,” J. Royal Meteorol. Soc.87,pp194-211,(1961). 19. Simiu, E. and Scanlan, R. H.,“Wind Effects on Structures, ”John Wiley & Sons. (1986). 20. Davenport, A. G., “ The Dependence of Wind Load upon Metrorolo-gical Parameters, ” Proceedings of the International Research Seminar on Wind Effects on Buildings and Structure, University of Toronto, pp.19-82 (1968). 21. Vickery, B. J., “On the Reliability of Gust Loading Factors”,Proceed-ings of the Technical Meeting Concerning Wind Loads on Buildings and Structures, National Bureau of Standards, Building Science Series 30, Washington, D.C., pp. 93-104 (1970). 22. Shiotani, M., "Structure of Gusts in High Winds, Part 1-4", The Ph-ysical Sciences Laboratory, Nikon University, Furabashi, Chiba, Japan (1967-1971). 23. Kristensen , L. and Jensen, N. O., “Lateral Coherance in Isotropic Turbulence and in the Natural Wind ”, Bound. Layer Meterol., 17, pp.353-373(1979). 24. Blackadar,A.K., Panofsky H.A. and Fiedler,F., “ Investigation of the Turbulent Wind Field Below 500 Feet Altitude at the Eastern Test Range”, Florida, NASA CR-2438, National Aeronautics and Space Administration, Washington, D.C. (1974). 25. Bendat J S and Piersol A G, “ Random Data, Analysis and Measur-ement Procedures”(New York:Wiley), (1986). 26. Ku, C. J., Cermak, J. E., and Chou, L. S.,“Random Decrement Based Method for Modal Parameter Identification of a Dynamic System Using Acceleration Responses,’’ Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95, pp.389-410(2007). 27. Jones, A. J., Nicholas, P. and Scanlan, R. H., "Coupled Flutter and Buffeting Analysis of Long-Span Bridges", Journal of Structural Eng-ineering, ASCE, Vol. 122, No. 7, pp.716-725,(1996). 28. Laneville, A., “ Effect of turbulence on wind-induced vibration of bluff cylinders”, Ph.D. Thesis, University of Britain Columbia. 29. Scanlan, R. H., “ Interpreting Aeroelastic Models of Cable-Stayed Bridges, ” Journal of Engineering Mechanics,ASCE, Vol. 113(4), pp. 555-576 (1987). 30. Hikami, Y. and Shiraishi, N., “ Rain-Wind Induced Vibrations of Cable Stayed Bridges,” Journal of Wind Engineering and Industrial Aero-dynamics, Vol. 29, pp.409-418(1988). 31. Yoshimura, T., Savage, M. G., Tanaka, H. and Wakasa, T.,“A device for suppressing wake galloping of stayed-cables for cable-stayed bridges,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, pp.497-506(1993). 32. 何明錦,葉祥海,鄭啟明,「風洞實驗技術於土木建築構造物之應用與驗證計畫-橋梁風洞實驗」,內政部建築研究所,(2005) 33. Shiau,B-S.,“Velocity Spectra and Turbulence Statistics at the Northe-astern Coast of Taiwan under High-wind condition”,Journal of Wind Engineering and Industrial Aerodynamics, 88:139-151.(2000). 34. Liepmann, R. W., “On the application of statistical concept to the buffeting problem, ” J. Aero. Sci., Vol.19,No. 12.,(1952) 35. Vickery, B. J., "On the flow of behind a coarse grid and its use a modal of atmospheric turbulence in studies related to wind load on building," N. P. L. Aero. Report 1143,(1965). 36. 蕭紋欣, ‘‘以實場量測方法探討斜張橋氣動力行為’’, 私立淡江大學土木工程研究所碩士論文(2007). 37. 謝孟融, ‘‘以FDD之方法識別橋樑斷面之顫振導數’’, 私立淡江大學土木工程研究所碩士論文(2006). 38. 吳國鼎, ‘‘紊流場對長跨徑橋梁顫振與抖振之影響’’, 私立淡江大學土木工程研究所碩士論文(2001). |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信