淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0808202123085400
中文論文名稱 機械化學磨削加工單晶碳化矽之研究
英文論文名稱 Study on Mechanical Chemical Grinding of Single Crystal Silicon Carbide
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 109
學期 2
出版年 110
研究生中文姓名 戴敬耘
研究生英文姓名 Ching-Yun Tai
學號 608370341
學位類別 碩士
語文別 中文
口試日期 2021-07-19
論文頁數 110頁
口試委員 指導教授-趙崇禮
委員-謝榮哲
委員-周文成
中文關鍵字 4H單晶碳化矽  機械化學磨削  表面粗糙度  氧化石墨烯 
英文關鍵字 4H-Single Crystal Silicon Carbide  Mechanical Chemical Grinding  Surface- Roughness  Graphene Oxide 
學科別分類 學科別應用科學機械工程
中文摘要 單晶碳化矽晶圓(Silicon Carbide,SiC)擁有寬能隙、高崩潰電壓及高熱傳導率之材料特性,且具有極高的硬度與抗化學之材料性質,隨著近年市場對於高功率元件之需求大幅提升,對能經濟有效量產高精度SiC晶圓的期望也日益殷切。但因SiC為超硬材料,必須克服加工後表面殘留之表面與次表面破壞,加工難度高,所花費之時間冗長導致成本增加。故本研究使用機械化學磨削(MCG)對其進行平面磨削,以添加氧化鈰、氧化石墨烯與不同粒徑鑽石之自製砂輪用不同加工參數分別對4H-單晶碳化矽之矽面與碳面進行加工,並探討其對材料移除率、磨削比、表面微結構及粗糙度(Ra)之影響。研究結果顯示在一般精密平磨機床上使用鑽石粒徑3-6μm以及0-1μm砂輪便可將4H單晶碳化矽的矽面加工到2nm和1nm之Ra;而碳面最則為3nm和2nm之Ra。
英文摘要 Single crystal silicon carbide (SiC) has the material characteristics of wide energy gap, high breakdown voltage, high thermal conductivity, high hardness and good chemical resistance. As the market demands for high power devices continuously picking up, the expectation for cost-effective way of mass production precision SiC wafers is also growing sharply. However, SiC is normally categorized as difficult to machine material for its extreme hardness and brittleness. Scattered surface micro-cracks/micro-chipping together with deep-penetrated sub-surface cracks are often the consequence if the machining process of SiC is not properly handled. As a result, the precision machining of SiC is typically lengthy and costly. A mechanical chemical grinding (MCG) process was used in this study to suppress the mechanical damage might be introduced during grinding operation. Grinding wheels with various additives such as cerium oxide, graphene oxide and diamond powder of different grit sizes were designed and produced to grind 4H-SiC under different machining conditions. The machined surface was examined by optical microscope, scanning electron microscope and confocal microscope and the obtained surface microstructure and surface roughness (Ra) were correlated to the wheel composition, machining parameters, material removal rate and grinding ratio. The results show that surface roughness (Ra) of 1 nm on Si-face and 2 nm on C-face of 4H-SiC can be achieved using the MCG wheel developed in this research on a typical precision surface grinding machine.
論文目次 致謝 II
目錄 VII
表目錄 XII
第一章、 緒論 14
1-1前言 14
1-2研究動機 15
1-3研究目的 16
第二章、 文獻回顧及理論基礎 18
2-1單晶碳化矽基本材料特性介紹 18
2-2精密磨削加工材料移除機制 23
2-2-1碳化矽磨削 25
2-2-2機械化學拋光 26
2-2-3化學機械拋光 27
2-2-4 GO(Graphene Oxide)化學機械拋光 28
2-2-5 GO(Graphene Oxide)基本特性及製作方式 30
2-2-6 MCG(Mechanical Chemical Grinding)化學機械磨削 32
2-2-7 MCG(Mechanical Chemical Grinding)化學機械磨削專利 33
2-3磨削加工參數之討論與基本磨削機制補充 34
2-3-1砂輪之組成 35
2-3-2砂輪磨耗 35
2-3-3砂輪之修整 36
2-3-4砂輪磨料種類 37
2-3-5結合劑種類 38
2-3-6 氧化鈰磨料反應機制 39
2-3-7硬脆材料加工機制 41
第三章、 實驗方法及設備 44
3-1研究流程圖 44
3-2 研究設計 45
3-3 實驗設備 45
3-3-1砂輪製作所需之材料及設備 45
3-3-2實驗加工設備與材料 51
3-3-3量測分析儀器 56
3-4實驗步驟 61
3-4-1砂輪製作 61
3-4-2磨削實驗 64
第四章、 結果與討論 73
4-1立式磨床平面磨削單晶碳化矽之初步結果與討論 73
4-1-1單晶碳化矽試片表面觀察結果 75
4-1-2 MCG G-type、C-type砂輪表面觀察結果 86
4-1-3實際磨削深度比較、G-type砂輪G-ratio 91
4-2 MCG磨削單晶碳化矽結果比較 94
4-2-1不同轉速磨削實驗比較 95
4-2-2切深與表面粗糙度比較 96
4-2-3碳、矽面磨削實驗比較 98
4-2-4不同粒徑之機械磨料最佳表面粗糙度 99
4-2-5 G-type、C-type砂輪磨削實驗比較 100
第五章、 結論 102
第六章、 未來展望 104
參考文獻 105

圖目錄
圖2- 1晶體排列圖(3C 2H 4H 6H)【6】 19
圖2- 2單晶碳化矽結構 【6】 19
圖2- 3 4H-SiC堆疊圖ABCB 【7】 20
圖2- 4 6H-SiC堆疊圖ABCACB 【7】 21
圖2- 5 4H-SiC與6H-SiC晶體結構【9】 21
圖2- 6 4H-SiC晶體結晶面【9】 22
圖2- 7摩擦、犁切及切削三階段【11】 25
圖2- 8 (左)為同時吸附在PU上之SiO2與GO、(右)GO層狀結構導致CMP期間的潤滑效果【22】 29
圖2- 9氧化石墨烯結構示意圖【26】 31
圖2- 10三種不同碳化矽材料的相對豐度(Relative abundance)變化量比較【30】 34
圖2- 11鑽石磨粒磨耗情形【33】 36
圖2- 12砂輪修銳前後之表面形貌【34】 37
圖2- 13 SAGW磨削矽晶圓之移除機制【38】 41
圖2- 14延、脆性模式與表面粗糙度(Rz)比較【39】 43

圖3- 1研究流程圖 44
圖3- 2氧化鈰粉末 46
圖3- 3 939P酚醛樹脂 47
圖3- 4 551DU40發泡劑 48
圖3- 5氧化石墨烯 49
圖3- 6練太郎脫泡攪拌機 49
圖3- 7 60目孔徑250之篩網 50
圖3- 8大金Daifree GA-7500脫模劑 50
圖3- 9 SKD11基材之模具 51
圖3- 10真空熱壓成型機 51
圖3- 11 EQUIP TOP1224CNC精密加工機 52
圖3- 12 EQUIP TOP1224CNC精密加工機內部 52
圖3- 13 KGB-2010動平衡校正儀 54
圖3- 14動平衡校正過程 54
圖3- 15動平衡校正值 54
圖3- 16 4H-SiC試片 55
圖3- 17雷射共軛焦顯微鏡 57
圖3- 18 OLYMPUS-BX51M光學金相顯微鏡 59
圖3- 19 FlexSEM 1000可變真空掃描式電子顯微鏡 60
圖3- 20砂輪製作流程圖 62
圖3- 21磨削實驗流程圖 65
圖3- 22安裝砂條於台金上 65
圖3- 23組裝上機圖 66
圖3- 24砂輪動平衡校正值 67
圖3- 25千分表量測試片表面 68
圖3- 26千分表量測試片表面細節圖 68
圖3- 27立式磨床示意圖 71
圖3- 28砂輪磨削乾測與濕側示意圖 71
圖3- 29磨削實驗加工示意圖 72
圖3- 30實驗加工示意(試片)圖 72

圖4- 1量測表面粗糙度(Ra)之示意圖 75
圖4- 2試片裂紋圖(5μm/pass、500mm/min、2000rpm) 76
圖4- 3試片破裂圖 77
圖4- 4乾式磨削試片量測共軛焦3D示意圖(磨削碳面) 78
圖4- 5 濕式磨削試片量測共軛焦3D示意圖(磨削碳面) 79
圖4- 6 2500RPM乾、濕實際磨削深度變化圖 81
圖4- 7 3000RPM乾、濕實際磨削深度變化圖 84
圖4- 8 10000倍之SEM圖 85
圖4- 9添加氧化石墨烯之粒徑大小 89
圖4- 10 SEM之EDS元素分析圖 89
圖4- 11 SEM之EDS元素分析比例圖 90
圖4- 12 鑽石粉末粒徑大小 90
圖4- 13添加氧化石墨烯之3-6μmMCG砂輪磨耗3D圖 91
圖4- 14砂輪磨耗量與磨削深度之比較 92
圖4- 15 Si-Surface乾、濕磨轉速與Ra之比較圖 96
圖4- 16 C-Surface乾濕磨轉速與Ra之比較圖 96
圖4- 17 以相同切深觀察乾、濕式磨削對表面粗糙度之影響(矽面) 97
圖4- 18 以相同切深觀察乾、濕式磨削對表面粗糙度之影響(碳面) 98
圖4- 19 Si-Surface之有無添加氧化石墨烯與Ra之比較 100
圖4- 20 有添加氧化石墨烯之砂輪表面3D圖 101
圖4- 21 C-Surface之有無添加氧化石墨烯與Ra之比較 101

表目錄
表2- 1半導體材料之特性比較表【5】 18
表2- 2單晶矽與單晶碳化矽材料機械性質 23

表3- 1氧化鈰粉末之材料性質 46
表3- 2鑽石粉末粒徑大小 46
表3- 3 939P酚醛樹脂材料性質 47
表3- 4 551DU40材料性質 48
表3- 5氧化石墨烯粒徑大小 48
表3- 6 EQUIP TOP1224CNC精密加工機規格表 53
表3- 7 4H-SiC單晶碳化矽之材料性質 55
表3- 8 OLYMPUS OLS4100規格 58
表3- 9 FlexSEM 1000規格表 61
表3- 10加工參數設計表 70

表4- 1砂輪配方表(有添加氧化石墨烯)G-Type 73
表4- 2砂輪配方表(無添加氧化石墨烯)C-Type 74
表4- 3表面粗糙度粗量測 75
表4- 4磨削後試片殘留之沾黏物與表面裂紋(5μm/pass、500mm/min、2000rpm) 77
表4- 5乾式磨削2500RPM(第二刀)實際深度 80
表4- 6濕式磨削2500RPM(第二刀)實際深度 80
表4- 7 乾式磨削3000RPM(第三刀)實際深度 82
表4- 8 濕式磨削3000RPM(第三刀)實際深度 83
表4- 9 3000RPM磨削矽晶圓之式片磨削深度 85
表4- 10本次研究使用之砂輪 86
表4- 11砂輪齒片表面情形 87
表4- 12砂輪表面(a) 3-6μm G-type砂輪表面(b) 3-6μm C-type砂輪表面 88
表4- 13 2500RPM、3000RPM砂輪磨耗之平均高度 92
表4- 14 2500RPM與3000RPM之砂輪磨耗與試片磨削截面積 93
表4- 15 2500RPM與3000RPM之MCG砂輪磨削比 94
表4- 16 磨削結果表面線粗糙度與面粗糙度總表 95
表4- 17兩種不同粒徑之G-type、C-type砂輪磨削後之最佳Ra 99
表4- 18 0-1μm C-type分別於(a)矽面、(b)碳面之最佳表面粗糙度 99



參考文獻 【1】 L.S. Ramsdell, "Studies on Silicon Carbide" ,America.Mineralogist,. Vol.32, p.64-82, 1945
【2】 F.W. Huo, D.M. Guo, R.K. Kang, G. Feng, “Nanogrinding of SiCwafers with high flatness and low subsurface damage” ,Trans.Nonferrous Met. Soc. China, Vol.22, pp.3027−3033, 2012.
【3】 Shih-Hsin hu, “Study on Precision Grinding of Single Crystal Silicon Carbide”,2019.
【4】 Po-Han Kuo, “Development of Grinding Wheel for Mechanical Chemical Grinding of Single Crystal Silicon Carbide”,2020.
【5】 T. Hamagucherohm, “The Next Generation of Power Conversion
Systems Enabled by SiC Power Devices,” ROHM Semiconductor,
2014.
【6】 Sang-Kwon Lee, Processing and Characterization of Silicon Carbide(6H- SiC and 4H- SiC) Contacts for High Power and High Temperature Device Applications, 2002.
【7】 H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, "Large-band-gap SiC,III-V nitride and II-VIZnSe- based semiconductor devicetechnologies" ,Journal of Applied Physics, 1994.
【8】 L.S. Ramsdell, "Studies on Silicon Carbide" ,America. Mineralogist,. Vol.32, p.64-82, 1945
【9】 H. Kasuga, H. Ohmori, T Mishima, Y.Watanabe and W.M. Lin, “Investigation on mirror surface grinding characteristics of SiC materials” ,Journal of Ceramic Processing Research, Vol.10, No.3, pp.351-354, 2009.
【10】 安永暢男,“精密機械加工原理”,全華科技圖書有限公司,2004。CH.3~CH.5
【11】 W. Lortz, “A Model of the Cutting Mechanism in Grinding”, Wear, Vol. 53, pp. 115-128, 1979
【12】 M. Kikuchi, Y. Takahashi, T. Suga, S. Suzuki and Y. Bando,“Mechanochemical Polishing of Silicon Carbide Single Crystal with Chromium(III) Oxide Abrasive,” Journal of the American Ceramic Society, Vol.75, 1992, pp.189-194.
【13】 A. Kubota, K. Yagi, J. Murata, H. Yasui, S. Miyamoto, H. Hara, Y. Sano and K. Yamauchi, “A Study on a Surface Preparation Method or Single-crystal SiC Using an Fe Catalyst,” Journal of Electronic Materials, Vol.38, 2009, pp.156-163.
【14】 S. Agarwal, P.V. Rao // Grinding characteristics, material removal and damage formation mechanisms in high removal rate grinding of silicon carbide. 2010
【15】 Z. Zhu, V. Muratov, E. Fischer, Tribochemical Polishing of Silicon Carbide in Oxidant Solution, Wear, 225-229,pp.848-856, 1999.
【16】 Y. C. Lin and C. H. Kao, “A Study on Surface Polishing of SiC with a Tribochemical reaction mechanism,” International Journal of Advanced Manufacturing Technology, Vol.25, 2005, pp.33-40.
【17】 N. W. Jepps and T, F. Page ” POLYTYPIC TRANSFORMATIONS IN SILICON CARBIDE” The Ceramics Group, Department of Metallurgy and Materials Science, University of Cambridge, Pembroke Street, Cambridge, U.K. Submitted 9 December 1982
【18】 N. Yasunaga and Y. Yamato, “High Temperature MCP Process Suitable for Extremely Hard High Functional SiC Wafers,” International Journal of Manufacturing Technology and Management, Vol.9, 2006, pp.172-182.
【19】 J.Su,J. Du, H. Liu, X. Liu, Research on Material Removal Rate of CMP 6H-SiC Crystal Substrate (0001)Si Surface based on Abrasive Alumina (Al2O3), Procedia Engineering, 24, pp.441-446, 2011.
【20】 A. Kubota, M. Yoshimura, S. Fukuyama, C. Iwamoto, M. Touge, Planarization of C-face 4H-SiC Substrate using Fe Particles and Hydrogen Peroxide Solution, Precision Engineering, pp.137-140,2012.
【21】 Yu-Jing Lin,” Analysis on Compound Slurry with Graphene Oxide for Chemical Mechanical Polishing of Single Crystalline Silicon Carbide Wafer”,2019.
【22】 Hsien-Kuang Liu , Chao-Chang A. Chen and Chun-Jen Chen ,Department of Mechanical and Computer Aided Engineering Feng Chia University, Taichung, 40744, Taiwan,” Effect of graphene additions on polishing of silicon carbide wafer with functional PU/silica particles in CMP slurry”,2019.
【23】 Hsien-Kuang Liu,Chao-Chang A. Chen,Wei-Chung Chen,” Effects of compound diamond slurry with graphene for lapping of sapphire wafers”,2020.
【24】 Y.H. Tsai,C.C. A.Chen , K. Suzuki, P. Khajornrungruang, S.F. Chiu,and C.T. Hua“Developed an advanced chemical mechanical planarization for 4H-SiC substrate by water-soluble inclusion complexes of fullerene”,Japanese Journal of Applied Physics,2020.
【25】 蘇清源,”石墨烯氧化物之特性與應用前景”,物理雙月刊,33,163-167, 2011.
【26】 氧化石墨烯基本特性
https://kknews.cc/science/98vnorj.html
【27】 蘇建國, “一種SiC 單晶圓研磨工序用固結磨料化學機械研磨盤”,2013。
【28】 吉田雄二, “合成磨石” ,中華人民共和國專利,2010。
【29】 貴堂高德、加藤智久。單晶SiC基板的表面加工方法、其製造方法和單晶SiC基板的表面加工用磨削板。中華人民共和國專利CN104984324A。2015。
【30】 Jiaming Ni , BeizhiLi , ” Phase transformation in high-speed cylindrical grinding of SiC and its effects on residualstresses ”, Materials Letters,89 (2012),150–152
【31】 任敬心 康仁科 王西彬 “ 難加工材料磨削技術 ” 電子工業出版社,2011年1月,ISBN 978-7-121-12489-1
【32】 M. Alfares, A. Elsharkawy,“Effect of grinding force on the vibration of grinding machine spindle system”, International Journal of Machine Tools and Manufacture, Vol. 40, pp. 2003-2030, 2000.
【33】 S.Y. Luo, Y.C. Liu, “Effect of copper filler of resin-bonded diamond composites on the wear behaviors under a dry condition”, Journal of Materials Processing Technology, Vol. 96, pp. 215-224, 1999.
【34】 杉田忠彰,上田完次,“機械加工”,機械研究,1984 年 10 月號,pp.1-4。
【35】 台灣砂輪工業股份有限公司 http://www.grindingwheel.com.tw/product.php?action=detail&m=2&s=21&id=22
【36】 王先逵,“精密機械加工原理”,高立圖書有限公司,2007。pp.84~127 pp.216~261
【37】 Y. Luo, Y.C. Liu, C.C. Chou, T.C. Chen, “Performance of powderfilled resin-bonded diamond wheels in the vertical dry grinding oftungsten carbide” , Journal of Materials Processing Technology,Vol. 118, pp. 329-336, 2001.
【38】 Y. B. Tian,. L. Zhou,. J. Shimizu,. Y. Tashiro, R. K. Kang, “Elimination of surface scratch/texture on the surface of single crystal.Si..substrate..inchemo-mechanical..grinding(CMG)process” , ApplSurfSci, Vol.255, pp.4205-4211, 2009.
【39】 Dahu Zhu, Sijie Yan, Beizhi Li “Single-grit modeling and simulation of crack initiation and propagation in SiC grinding using maximum undeformed chip thickness” Computationaln Materials Science 92 (2014)
【40】 眾程出處(加工機圖)跟其規格http://www.equiptop.com.tw/tw_products_detail6631.html?Fkindno=F002357&Skindno=S003931&Pidno=201408260005
【41】 共軛焦(圖跟其規格)https://www.olympus-ims.com/en/metrology/ols4100/#!cms[tab]=%2Fmetrology%2Fols4100%2Fspecifications
【42】 FlexSEM 1000(圖跟其規格) https://leftcoastinstruments.com/project/flex-sem/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2026-08-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2026-08-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw