§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0808201610342600
DOI 10.6846/TKU.2016.00247
論文名稱(中文) 架構於無線人體感測網路下心跳同步方法之時間誤差改良機制
論文名稱(英文) A Novel Time Synchronization Scheme to Improve the Heart-Beat Driven MAC in Wireless Body Sensor Network
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士在職專班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 王瑋
研究生(英文) WEI WANG
學號 799440051
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-11
論文頁數 66頁
口試委員 指導教授 - 吳庭育(tyw@niu.edu.tw)
委員 - 朱國志(kcchu@mail.lhu.edu.tw)
委員 - 衛信文(hwwei@mail.tku.edu.tw)
關鍵字(中) 分時多重存取協定
氾濫式時間同步協定
Heartbeat-Driven MAC
關鍵字(英) TDMA
Heartbeat-Driven MAC
FTSP
第三語言關鍵字
學科別分類
中文摘要
本研究是針對人體無線區域網路的通訊協定中,基於分時多重存取(TDMA)協定架構下,利用心跳來作為時間同步的Heartbeat-Driven MAC(H-MAC)來進行改良。H-MAC的設計應用於星狀拓樸的人體無線感測網路,利用人體本身固有的心跳脈搏之頻率用以取代原本使用外部無線電定期接收時間同步訊號來實現時間同步,如此可以節省放置在人體身上感測器的能源消耗,並降低感測器發送封包所產生電磁輻射對人體造成傷害。雖然利用心跳頻率的信息嵌入在不同的生物信號,透過檢測波形峰值感知數據可以實現人體感測網路(Body Sensor Networks, BSN)時間同步,不過由於脈搏都是利用心臟收縮與舒張擠壓血液所產生的跳動,雖然身體各處所測得脈搏跳動次數皆相同,但因為血管擴於身體各處,心臟收縮傳送到身體各處血管的距離也會不同,因此也會造成身體各處所接收到同一次心臟收縮的時間有些微的時間差,而造成同步的問題。
在分析完H-MAC,我們對於利用心跳同步可能產生的問題,加入了無線感測網路時間同步協定中,發展最為成熟的氾濫式時間同步協定(Flooding Time Synchronization Protocol, FTSP)用以修正時間同步造成誤差的問題,藉由將時間郵戳的記錄提早到MAC層來減低計算誤差,並且利用線性迴歸(Linear Regression)作為預測補償時間,用以降低感測器之間的同步誤差,計算出感測器與資料收集器之間的時間差用以估計感測器放置人體身上的距離位置,透過我們的改良H-MAC+,可以使得人體各部位間的感測器在開始進行時間同步時,可以先透過FTSP協定來讓感測器準確的達到時間同步,接著再交給藉由心跳及脈搏進行時間同步,用以減低感測器在同步時的能源消耗,當感測器之間因為心跳同步發生問題而造成誤差過大時,此研究會透過本研究所提出的平均誤差判斷機制自動進行時間誤差修正,減少資料傳輸時所發生封包遺失的問題,由於大部分工作時間還是藉由心跳及脈搏進行時間同步,所以我們提出的研究方法更可以降低電磁波對人體的傷害。
英文摘要
The purpose of this paper is to improve the TDMA-based Heartbeat-Driven MAC (H-MAC) protocol for WBAN. Designed for the star topology in WBAN, H-MAC uses heartbeat rhythm information, instead of periodic synchronization beacons, to attain time synchronization. In this way, H-MAC can reduce the power consumption of WBAN sensor nodes as well as the electromagnetic radiation that could be harmful to human health when sensors send packages. By embedding heartbeat rhythm information into different biosignals, BSN synchronization can be achieved according to the peak values of wave forms. Pulse means the number of times one's heart beat per minute because of systole and diastole. Although the number of pulses measured at different body parts will be the same, blood vessels run over the whole body and their distances away from the heart could greatly vary during the same systole, resulting in a slight time difference and the problem of synchronization. 

According to our analysis of H-MAC, our proposed approach therefore includes the Flooding Time Synchronization Protocol (FTSP), currently the most mature method for time synchronization, to handle time differences. Our proposed approach advances the timestamp to the MAC layer for error reduction, uses the linear regression to predict the time compensation for synchronization error reduction among sensors, and computes the time differences between each sensor and the coordinator to estimate the sensor placement on human body. With our improved H-MAC+, sensors on different body parts can be synchronized first via FTSP and next accurately synchronized with heartbeat and pulse to reduce the power consumption duringsynchronization among sensors. Our proposed approach automatically performs time error adjustment to reduce data loss during transmission when the error among sensors greatly increases because of heartbeat. Since most of the time we use heartbeat rhythm for time synchronization, so it can be reduce the SAR for body parts to decrease the negative effects of electromagnetic radiation on human body.
第三語言摘要
論文目次
目錄
圖目錄	VII
表目錄	IX
第一章 緒論……………………………………………………………..	- 1 -
1.1 前言	- 1 -
1.2 動機與目的	- 2 -
1.3 論文架構	- 4 -
第二章 背景知識與相關研究	- 5-
2.1 關於無線人體區域網路(Wireless Body Area Networks)	- 5 -
2.1.1  MIMIC資料庫應用於無線智慧醫療的重要性	- 7 -
2.1.2 人體通訊傳輸(Human Body communication)….……….- 9 -
2.1.3 心電圖(Electrocardiography)	- 11 -
2.2 媒體存取控制(Medium Access Control)協定介紹	- 13 -
2.2.1載波多重存取/碰撞避免機制(CSMA/CA) MAC	- 14 -
2.2.2 分時多重存取(Time Division Multiple Access) MAC	- 15 -
2.3 時間同步機制介紹	- 17 -
2.3.1 氾濫式時間同步協定(FTSP)	- 19 -
2.4 Heartbeat-Driven MAC (H-MAC)	- 23 -
2.4.1 生物訊號節奏資訊(Biosignal Rhythm Information)	- 24 -
2.4.2 生物訊號節奏表示(Rhythm Representation)	- 26 -
2.4.3 時間排程設計方法(Time Schedule design)	- 27 –
2.5 特定吸收率(Specific Absorption Rate, SAR)	- 28 -
2.6 相關研究	- 30 –
2.6.1 BodyMAC	- 30 -
2.6.2 TDMA MAC for in-vivo communications in mobile BSNs30
第三章 心跳同步方法之時間誤差改善機制 (H-MAC+)	- 32 -
3.1 問題描述	- 32 -
3.2 機制架構	- 33 -
3.3 氾濫式時間同步(FTSP)流程設計方法	- 36 -
3.4 分時多重存取媒體控制(TDMA MAC)流程設計方法	- 37 -
3.4.1 廣播階段	- 40 -
3.4.2 資料交換/上傳階段	- 41 -
3.4.3 行程安排階段	- 43 -
3.5 新增平均誤差判斷機制	- 43 -
第四章 模擬環境與模擬分析	- 46 -
4.1 模擬場景	- 46 -
4.2 模擬分析	- 49 -
第五章 結論與未來展望	- 62 -
參考文獻	- 64 -














圖目錄
圖2.1應用於醫療監控的無線人體區域網路	- 6 -
圖2.2 ECG波形,分為PWave、QRS Complex、TWave及R-R interval-12圖2.3 Linear Regression求取Local time與Global time關係式	- 22 -
圖2.4各種不同的生理訊號同時紀錄於MIMIC 資料庫	- 25 -
圖2.5 MIMIC資料庫表示的心電圖波形	- 27 -
圖2.6 H-MAC詳細時槽分配的示意圖	- 28 -
圖3.1 H-MAC+資料傳輸流程圖	- 35 -
圖3.2 TDMA 封包格式架構	- 38 -
圖3.3 集中裝置和感測器之間資料交換的動作流程	- 39 -
圖3.4 集中裝置廣播封包用來進行資料同步	- 40 -
圖3.5 感測器收到的封包內容會有全域時間和本身的本地時間	- 41 -
圖3.6 集中裝置的封包內容會有全域時間和本身的本地時間	- 42 -
圖3.7 感測器回傳自己本身在進行資料傳輸需要的時槽數量	- 42 -
圖3.8 集中裝置進行時槽調度分配並回傳結果給感測器	- 43 -
圖3.9 MIMIC病患真實的心跳頻率計算出平均誤差和標準差	- 45 -
圖3.10 MIMIC病患真實的心跳頻率計算出峰值間隔時間的差異..	- 45 -
圖4.1 感測器位置分布圖	- 47 -
圖4.2 FTSP & MIMIC ECG傳輸延遲時間放大比較(感測器1)	- 50 -
圖4.3 FTSP & MIMIC ECG傳輸延遲時間比較(感測器1)	- 51 -
圖4.4 FTSP & MIMIC ECG傳輸延遲時間比較(感測器2)	- 51 -
圖4.5 FTSP & MIMIC ECG傳輸延遲時間比較(感測器3)	- 52 -
圖4.6 FTSP & MIMIC ECG傳輸延遲時間比較(感測器4)	- 52 -
圖4.7 FTSP & MIMIC ECG傳輸延遲時間比較(感測器5)	- 53 -
圖4.8 FTSP & MIMIC ECG傳輸延遲時間比較(感測器6)	- 53 -
圖4.9 HMAC&HMAC+&MIMIC ECG傳輸延遲時間(感測器1)	- 55 -
圖4.10 HMAC&HMAC+&MIMIC ECG傳輸延遲時間(感測器2)	- 55 -
圖4.11 HMAC&HMAC+&MIMIC ECG傳輸延遲時間(感測器3)	- 56 -
圖4.12 HMAC&HMAC+&MIMIC ECG傳輸延遲時間(感測器4)	- 56 -
圖4.13 HMAC&HMAC+&MIMIC ECG傳輸延遲時間(感測器5)	- 57 -
圖4.14 HMAC&HMAC+&MIMIC ECG傳輸延遲時間(感測器6)	- 57 -




 
表目錄
表2.1 不同病患真實的資料紀錄於MIMIC資料庫 …………………- 9 -
表2.2 生理感測器傳輸的資料型態及與協調者的距離統整表	- 11 -
表2.3 TDMA與CSMA/CA兩種通訊協定的比較表	- 17 -
表2.4 應用於無線感測網路的時間同步協定比較表	- 19 -
表4.1 感測器放置在人體身上的距離位置以及程式模擬座標	- 47 -
表4.2 其餘相關的模擬參數	- 48 -
表4.3 模擬程式中需考量感測器距離長短造成的傳輸延遲	- 48 –
表4.4 使用1566kHz廣播天線對100公尺外人體特定吸收率	- 58 -
表4.5 HMAC&HMAC+&FTSP傳輸延遲時間直條圖	- 60 -
表4.6 HMAC&HMAC+&FTSP能源消耗比較圖	- 60 –
表4.7 HMAC&HMAC+&FTSP傳輸時的特定吸收率	- 61–
表4.8傳輸延遲時間與擺放距離的比較表	- 61 -
表4.9 HMAC&HMAC+&FTSP優缺點比較表	- 61 -
參考文獻
參考文獻
[1]	Chris A. Otto, Emil Jovanov and Aleksandar Milenkovic, “A WBAN-based System for Health Monitoring at Home,” in 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, pp. 20-23, Sept. 2006.
[2]	A. O. Isikman, L. Cazalon, F. Chen, and P. Li, “Body Area Networks,” Chalmers Univ. Technology, Gothenburg, Sweden, Tech. Rep., Group 6 of the course SSY145 Wireless Networks.
[3]	P. Honeine, F. Mourad, M. Kallas, H. Snoussi, H. Amoud and C. Francis, “Wireless Sensor Networks in Biomedical: Body Area Networks,” 2011 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA), pp. 388-391, May 2011. 
[4]	H. Li, J. Tan, ”Heartbeat-Driven Medium-Access Control for Body Sensor Networks,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, pp. 44-51, Setp. 2009.
[5]	M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, ”The Flooding Time Synchronization Protocol,” Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 39-49, Nov. 2004.
[6]	K. S. Kwak, S. Ullah and N. Ullah, “An Overview of IEEE 802.15.6 Standard,” 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010.
[7]	E. Jovanov, A. Milenkovic, C. Otto and P. Groen, “A Wireless Body Area Network of Intelligent Motion Sensors for Computer Assisted Physical Rehabilitation,” Journal of Neuro Engineering and Rehabilitation, Mar. 2005. 
[8]	R. Kohno, K. Hamaguchi, H.B. Li and K. Takizawa, “R&D and Standardization of Body Area Network (BAN) for Medical Healthcare,” IEEE International Conference on Ultra-Wideband, vol. 3, pp. 5-8, Sept. 2008.
[9]	A. Boulis, D. Smith, D. Miniutti,L. Libman and Y. Tselishchev, “Challenges in Body Area Networks for Healthcare:The MAC,” IEEE Communications Magazine, vol. 50, pp. 100-106, May 2012.
[10]	B. Gyselinckx, C. Van Hoof, J. Ryckaert, R. Yazicioglu, P. Fiorini, and V. Leonov, “Human++:autonomous wireless sensors for body area networks,” Proceedings of IEEE Custom Integrated Circuits Conference, pp. 13-19, Sept. 2005.
[11]	G. B. Moody and R. G. Mark, “A Database to Support Development and Evaluation of Intelligent Intensive Care Monitoring,” Computers in Cardiology, pp. 657-660, Sept. 1996.
[12]	N. Katayama, K. Takizawa, T. Aoyagi, J. Takada, H. Li, and R. Kohno,
“Channel Model on Various Frequency Bands for Wearable Body Area Network,” First International Symposium on Applied Sciences on Biomedical and Communication Technologies, pp 1-5, Oct. 2008.
[13]	H.T. Kwon, and S.K. Lee, “Energy-efficient Multi-hop Transmission in
Body Area Networks,” IEEE 20th International Symposium on Personal, 
Indoor and Mobile Radio Communications, pp. 2142-2146, Sept. 2009.
[14]	W. Ye, J. Heidemann and D. Estrin, “An Energy-efficientmac Protocol for Wireless Sensor Networks,” Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1567-1576. 2002.   
[15]	Carrier sense multiple access with collision avoidance https://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_avoidance
[16]	V. Cionca, T. Newe and V. Dadarlat, “TDMA Protocol Requirements for Wireless Sensor Networks,” 2nd International Conference on Sensor Technologies and Applications, pp 25-31, Aug. 2008.
[17]	B. Andersson, N. Pereira, and E. Tovar, “Analyzing TDMA with Slot Skipping,” 26th IEEE International Real-Time Systems Symposium (RTSS'05), pp. 10-24, Dec. 2005. 
[18]	S. J. Marinkovic, E. M. Popovici, C. Spagnol, S. Faul, W. P. Marnane, 
“Energy-Efficient Low Duty Cycle Mac Protocol for Wireless Body 
Area Networks,” IEEE Transactions on Information Technology in
Biomedicine, vol.13, pp. 915-925, Oct. 2009..
[19]	J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Synchronization Using Reference Broadcasts,” Proceedings of the 5th Symposium on Operating Systems Design and Implementation, vol.36. pp. 147-163, Dec. 2002.
[20]	S. Ganeriwal, R. Kumar and M. B. Srivastava, “Timing-Sync Protocol for Sensor Networks,” Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Nov. 2003.
[21]	Linear Regression https://en.wikipedia.org/wiki/Linear_regression
[22]	H. Li and J. Tan, “Body Sensor Network Based Context Aware QRS Detection,” Pervasive Health Conference and Workshops, pp. 1-8, Nov. 2006. 
[23]	R. P. Findlay and P. J. Dimbylow, “SAR in Children from Exposure
to Wireless Local Area Networks(WLAN),” Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 733-736, May 2012.
[24]	A. Kumar, V. Kumar and P. P. Pathak, “Harmful Effects on Human Body Tissues Due to Electromagnetic Waves of Radio Broadcasting at Frequency 1566 kHz,” Journal of Chemical, Biological and Physical Science, vol. 4, Nov. 2013.
[25]	G. Fang and E. Dutkiewicz, “BodyMAC: Energy Efficient TDMA-based MAC Protocol for Wireless Body Area Networks,” 9th International Symposium on Communications and Information Technology (ISCIT), pp. 1455-1459, Sept. 2009. 
[26]	L. Lin, K. J. Wong, A. Kumar, S. L.Tan and S. J. Phee, “ An Energy Efficient MAC Protocol for Mobile in-vivo Body Sensor Networks,” 3rd International Conference on Ubiquitous and Future Networks (ICUFN), pp. 95-100, Jun. 2011.
[27]	L. L, C. Yang, K. J. Wong, H. Yan, J. Shen and S. J. Phee, “An Energy Efficient MAC Protocol for Multi-Hop Swallowable Body Sensor Networks,” Sensors (ISSN 1424-8220; CODEN: SENSC9), vol. 14, pp. 19457-19476, 2014.
[28]	Standard Deviation https://en.wikipedia.org/wiki/Standard_deviation
[29]	呂嘉陞編著,“心電圖學必備〞第三版,合記圖書出版社,” 2001.
[30]	吳昱緯, “基於無線人體區域網路低特定吸收率之省電傳輸路徑機制"國立宜蘭大學資訊工程學系碩士論文,” Jul. 2015.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信