淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0808201311355400
中文論文名稱 史特靈引擎之模擬與設計
英文論文名稱 Simulation and design of a Stirling engine
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 陳宗成
研究生英文姓名 Zong-Cheng Chen
學號 600400674
學位類別 碩士
語文別 中文
口試日期 2013-07-22
論文頁數 114頁
口試委員 指導教授-張煖
委員-程學恆
委員-陳錫仁
中文關鍵字 史特靈引擎  節點模式  有限差分理論  再生器  曲柄滑件機構 
英文關鍵字 Stirling engine  Nodal model  Finite difference theory  Regenerator  Slider-crank mechanism 
學科別分類
中文摘要 本論文提出一個以柴油引擎為基礎的alpha型空氣史特靈引擎之基本設計,引擎之熱源來自太陽能集光碟之輻射熱,冷端則使用冷卻水移除熱量,引擎內部設計使用具鰭片之平板構成通道的加熱器、由平板構成通道的冷卻器、以及由篩網與篩網間通道構成的再生器。本研究建立了引擎之三階模式,並與滑動結構曲柄的動力模式連結。引擎內部模式針對加熱器、再生器、冷卻器與冷、熱汽缸求解各節點之動量、質量與能量守恆方程式。
基本個案之分析顯示引擎操作於0.58-1.17 MPa,最大壓差約為0.1 MPa,工作流體溫度介於290-1200 K,再生器內部金屬溫度呈線性分佈,且效能達82.6%。引擎對外輸出功率為0.6 kW,熱效率為12.5%。
本論文分析了六個變更設計方案,包括調整冷卻器與再熱器之尺寸、調整冷卻水之溫度與流量,以及調整工作流體之質量,結果顯示縮小冷卻器可產生最大改善效果,可使引擎對外作功提高為0.8 kW,熱效率可達14.29%。
英文摘要 In this study, a basic design is proposed for an alpha-type hot air Stirling engine developed from a diesel engine. The engine is designed to be heated by the solar radiation from a concentrated solar collector and cooled by cooling water. The gas flow channels in the heater and cooler are constructed by finned and non-finned parallel metal plates, respectively. The regenerator design uses parallel wire screens.
A third order model for the Stirling engine and a kinematic model for the slider- crank structure are developed and the two models are interconnected to simulate the operation of the whole Stirling engine. The Stirling engine model solves the mass, momentum and energy conservation equations for each control volume or node of the heater, cooler, regenerator and the hot and cold cylinders.

The simulation of the base design case reveals the cyclic operating conditions of the working gas and the solid temperatures. For the gas, the pressure ranged 0.58-1.17 MPa, the maximum pressure difference in the engine is about 0.1 MPa and the temperature ranged 290-1200 K. For the metal in the regenerator, the temperature distribution is linear and the effectiveness of the regenerator is 82.6%. The power output from the engine is 0.6 kW and the thermal efficiency is 12.5%.

In this study, six modified design cases are analyzed, including the adjustment of cooler size, heater size, cooling water temperature, cooling water flow rate and mass of working gas. The simulation results indicate that reducing the size of cooler provides the maximum improvement. The power output and the thermal efficiency can be raised to 0.8 kW and 14.29%., respectively.
論文目次 中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與範疇 3
1.3 論文組織與架構 4
第二章 文獻回顧 5
2.1 史特靈引擎 5
2.2 太陽能史特靈引擎 8
2.3 史特靈引擎系統模式 10
第三章 引擎基本設計 14
3.1 史特靈引擎基本類型 14
3.2 史特靈引擎設計 18
3.2.1 加熱器 19
3.2.2 再生器 21
3.2.3 冷卻器 22
3.2.4 曲柄系統 25
第四章 模式建立 28
4.1 引擎節點模式 28
4.1.1 膨脹空間 31
4.1.2 加熱器 32
4.1.3 再生器 35
4.1.4 冷卻器 37
4.1.5 壓縮空間 40
4.2 曲柄動力模式 42
4.3 物理與輸送性質 48
4.3.1 黏度 48
4.3.2 比熱 48
4.3.3 熱傳導係數 49
4.3.4 熱對流係數 49
4.3.5 摩擦因子 50
4.4 模式求解 50
第五章 基本個案分析 52
5.1 史特靈引擎與曲柄結合系統說明 52
5.2 工作流體狀態特性 56
5.3 金屬狀態特性 66
5.4 系統能量分析 70
第六章 最佳化設計分析 79
6.1 變更設計方案 79
6.2 替代設計方案性能分析 89
第七章 結論與建議 103
符號說明 105
參考文獻 110
圖目錄
圖1.1集光型太陽能史特靈引擎電力系統 3
圖2.1史特靈引擎之PV與TS圖 11
圖3.1α型史特靈引擎之結構 15
圖3.2α型史特靈引擎之作動 16
圖3.3β型史特靈引擎之結構 17
圖3.4β型史特靈引擎之作動 17
圖3.5γ型史特靈引擎之結構 18
圖3.6加熱器內部結構 20
圖3.7 再生器內部結構 22
圖3.8冷卻器 24
圖3.9曲柄結構 27
圖4.1 史特靈引擎系統節點 30
圖4.2 膨脹空間節點示意圖 31
圖4.3 加熱器單一節點示意圖 33
圖4.4 再生器單一節點示意圖 36
圖4.5 冷卻器通道側面圖 38
圖4.6 冷卻器單一節點示意圖 38
圖4.7 壓縮空間單一節點示意圖 41
圖4.8 曲柄系統 42
圖4.9 活塞受力 45
圖4.10 連接桿受力 46
圖4.11 曲柄軸受力 47
圖5.1史特靈引擎與曲柄結合系統 53
圖5.2工作流體體積之循環變化 57
圖5.3工作流體壓力之循環變化 57
圖5.4膨脹空間與壓縮空間壓力之循環變化 58
圖5.5工作流體壓力差之循環變化 58
圖5.6工作流體質量之循環變化 59
圖5.7工作流體質量流率之循環變化 60
圖5.8工作流體雷諾數之循環變化 60
圖5.9系統內氣體粒子運動軌跡 61
圖5.10工作流體溫度之循環變化 62
圖5.11冷側工作流體與冷卻流體出口溫度之循環變化 63
圖5.12再生器工作流體溫度之循環變化 64
圖5.13熱側工作流體溫度之循環變化 64
圖5.14工作流體溫度差分佈 65
圖5.15系統內部金屬溫度之循環變化 67
圖5.16系統內部金屬溫度差分佈 67
圖5.17加熱器金屬溫度分佈 68
圖5.18再生器金屬溫度分佈 68
圖5.19冷卻器金屬溫度分佈 69
圖5.20工作流體熱通量與活塞作功之循環變化 71
圖5.21系統週期累積能量 72
圖5.22曲柄力矩之循環變化 73
圖5.23曲柄與飛輪之週期累積功 73
圖5.24模擬過程引擎轉速變化 74
圖5.25穩定運轉之曲柄轉速變化 75
圖5.26膨脹空間與壓縮空間壓力與體積關係 75
圖5.27整體系統壓力與體積關係 76
圖5.28系統能量平衡 77
圖6.1冷卻器設計變更 81
圖6.2加熱器變更設計 85
圖6.3個案1系統能量平衡 91
圖6.4個案2系統能量平衡 93
圖6.5個案3系統能量平衡 95
圖6.6個案4系統能量平衡 97
圖6.7個案5系統能量平衡 99
圖6.8個案6系統能量平衡 101
表目錄
表1.1 太陽產能排行 1
表2.1 不同氣體之相對熱傳特性 7
表5.1 史特靈引擎與曲柄結合系統之裝置尺寸資料 54
表5.2 史特靈引擎與曲柄結合系統之裝置尺寸資料(續) 55
表5.3 基本個案系統性能結果 78
表6.1變更設計列表 79
表6.2個案1變更設計單元尺寸 80
表6.3個案2變更設計單元尺寸 83
表6.4個案3變更設計單元尺寸 87
表6.5個案1系統性能 90
表6.6個案2系統性能 92
表6.7個案3系統性能 94
表6.8個案4系統性能 96
表6.9個案5系統性能 98
表6.10個案6系統性能 100
表6.11設計個案性能比較 102
參考文獻 參考文獻
Abbas, M., Said, N., Boumeddane, B., “Thermal analysis of Stirling engine solar driven,” Revue des Energies Renouvelables, 11, 503-1114, 2008.
Ahmed, A., Al-Agami, M., Al-Garni, M., “Solar powered Stirling engine with a single membrane dish concentrator,” Proceedings of the First World Renewable Energy Congress, Energy and the Environment, Reading, UK, 2, 1202-7, 1990.
Altfeld, K., Leiner, W., Feebig, M., “Second law optimization of flat-plate air heater, Part I: the concept of net exergy flow and the modeling of solar air heater,” Solar Energy, 41, 127-32, 1988a.
Altfeld, K., Leiner, W., Feebig, M., “Second law optimization of flat-plate air heater, Part II: results of optimization and analysis of sensibility to variations of operating conditions,” Solar Energy, 41, 127-32, 1988b.
Aranda, D., LaMott, K., Wood, S., Solar Stirling engine for remote power and disaster relief, Florida International University, 2010.
Beale, W., Holmes, W., Lewis, S., Cheng, E., “Free-Piston Stirling engine-A progress report,” SAE Technical, 730647, 1973.
Becht, S., Franke, R., Geiselmann, A., Hahn, H., “Micro process technology as a means of process intensification,” Chemical Engineering Technology, 30, 295-299, 2007.
Chen, N.C.J., Griffin, F.P., West, C.D., Linear harmonic analysis of Stirling engine thermodynamics, Oak Ridge National Laboratory Report, ORNL/CON-155, 1984.
Chen, N.C.J., Griffin, F.P., A review of Stirling engine mathematical models, Oak Ridge National Laboratory Report, ORNL/CON-135, 1983.
Cheng, C.H., Yu, Y.J., “Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models,” Renewable Energy, 36, 714-725, 2011.
Costea, M., Feidt, M., “The effect of the overall heat transfer coefficient variation on the optmal distribution of the heat transfer surface conductance or area in a Stirling engine,” Energy Conversion and Management, 39, 1753-63, 1998.
Costea, M., Petrescu, S., Harman, C., “The effect of irreversibilities on solar Stirling engine cycle performance,” Energy Conversion and Management, 40, 1723-31, 1999.
Daniels, F., Direct use of the sun’s energy, New Haven: Yale University Press, 1964.
Dyson, R.W., Wilson, S.D., Tew, R.C., “ Review of computational Stirling analysis methods, ” NASA/TM-2004-213300, 2004.
Dyson, R.W., Wilson, S.D., Tew, R.C., On the need for multidimensional Stirling simulations, NASA/TM-2005-213975, 2005.
Eldighidy, SM., “Optimum outlet temperature of solar collector for maximizing work output for an Otto air-standard cycle with ideal regeneration,” Solar Energy, 51, 175-82, 1993.
Gear, G.W., Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
Gedeon, D., Wood, J. G., Oscillating-flow regenerator test rig: hardware and theory with derived correlations for screens and felts, NASA, 1996.
Granados, F. J. G., Perez, M.A.S., Ruiz-Hernandez, V., “Thermal model of the Eruodish solar Stirling engine,” Journal of Solar Energy Engineering, 130, 011014-1, 2008.
Gray, D.E., American Institute of Physics Handbook, McGraw Hill, USA, 1957.
Gary, W.J., Chagnot, B.J., Penswick, L.B., “Design of a low pressure air engine for third world use,” Seventeenth intersociety energy conversion engineering conference, 829289, 1744-1748, 1982.
Hirata, K., Kagawa, N., Takeuchi, M., Yamashita, I., Isshiki, N., Hamaguchi, K., “Test results of applicative 100 W Stirling engine,” Proceedings of the Intersociety Energy Conversion Engineering Conference, 2, 1259-1264, 1996.
Howell, J.R., Bannerot, R.B., “Optimum soalr collector operation for maximizing cycle work output,” Solar Energy, 19, 149-53, 1977.
Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., Fundamentals of Heat and Mass Transfer, 6th Ed., John Wiley & Sons, 2007.
Infinia web site, http://www.infiniacorp.com/en/solutions/powerdish, Accessed (10/7/2013).
Iwamoto, S., Hirata, K., Toda, F., “Performance of Stirling engine,” JSME International Journal, 44, 140-7, 2001.
Karabulut, H., Yucesu, H.S., Koca, A., “Manufacturing and testing of a V-Type Stirling engine,” Turkish Journal of Engineering and Environmental Science, 24, 71-80, 2000.
Kongtragool, B., Wongwises, S., “A review of solar-powered Stirling engines and low temperature differential Stirling engines,” Renewable and Sustainable Energy Reviews, 7, 131-154, 2003.
Lee, S., Mason, J.G., A historical review of Brayton and Stirling power conversion technologies for space applications, NASA Glem Research Center Rechmical Memorandum, TM-2007-214976, 2007.
Markman, MA., Shmatok, YI., Krasovkii, VG., “Experimental investigation of a low power Stirling engine,” Geliotekhnika, 19, 19-24, 1983.
Martini, W.R., Stirling snigine design manual, Martini Engineering Publication, 1983.
Martini, W.R., Stirling Engine Design Manual, 2nd Ed., NASA/CR-168088, 1983.
McCabe, W., Smith, J., Harriott, P., Unit Operations of Chemical Engineering, 7th Ed., McGraw Hill, New York, USA, 2004.
Meijer, R.J., The Philips Stirling thermal engine, Thesis, Technische Hogeschool Delft, 1960.
Nepveu, F., Ferriere, A., Bataille, F., “Thermal model of a dish/Stirling systems,” Solar Energy, 83, 81-89, 2009.
Oriti, S.M., Schifer, N.A., “Recent Stirling conversion technology developments and operational measurements at NASA Glenn Research Center,” 7th International Energy Conversion Engineering Conference, 2009.
Orunov, B., Trukhov, V.S., Tursunbaev, I.A., “Calculation of the parameters of a symmetrical rhombic drive for a single-cylinder Stirling engine,” Geliotekhnika, 19, 29-33, 1983.
Parlak, N., Wagner, A., Elsner, M., Soyhan, H.S., “Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions,” Renewable Energy, 34, 266-273, 2009.
Potenza, R., Dunne, J.F., Vulli, S., Richardson, D., “A model for simulating the instantaneous crank kinematics and total mechanical losses in a multicylinder in-line engine,” International Journal of Engine Research, 8, 379-397, 2007.
Powell, R.W., Ho, C.Y., Liley, P.E., Thermal conductivity of selected materials, Washington, U.S. Dept. of Commerce, National Bureau of Standards, 1966.
Ranjbarkohan, M., Rasekh, M., Hoseini, A.H., Kheiralipour, K., Asadi, M.R., “Kinematics and kinetic analysis of the slider-crank mechanism in otto linear four cylinder Z24 engine,” Journal of Mechanical Engineering Research, 3, 85-95, 2011.
Reinalter, W., Ulmer, S., Heller, P., Rauch, T., Gineste, J.M., Ferriere, A., Nepveu, F., “Detailed performance analysis of the 10 kW CNRS-PROMES dish/stirling system” Proceedings of the 13th Solar PACES International Symposium, Seville, Spain, 2006.
Rizzo, J.G., The Stirling engine manual, Somerset: Camden miniature steam services, 1997.
Ross, A., Making Stirling Engine, 3rd Ed., Ross Experimental, 1997.
Roy, C., Tew, J., “Progress of Stirling cycle analysis and loss mechanism characterization,” U.S., Department of Energy, DOE/NASA/50112-67, 1986.
Schock, A., “Stirling Engine Nodal Analysis Program,” Journal of Energy, 2,354-362, 1978.
Senft, J.,“Extended mechanical efficiency theorem for engines and heat pump,” Journal of energy, 679-693, 2000.
SES web site, http://graphique-us.com/clients/ses/technology.htm, Accessed (10/7/2013)
Shendage, D.J., Kedare, S.B., Bapat, S.L., “An analysis of beta type Stirling engine with rhombic drive mechanism,” Renewable Energy, 36, 289-297, 2011.
Shoureshi, R., “General method for optimization of Stirling engine,” Seventeenth intersociety energy conversion engineering conference, 829279, 1688-1693, 1982.
Stephan, K., Laesecke, A., “The thermal conductivity of fluid air,” Journal of Physical and Chemical Reference Data, 14, 227-234, 1985.
Stine, W.B., Dive,r R.P., A compendium of solar dish/Stirling technology, Sandia National Laboratories, Albuquerque, Report SAND93-7026 UC-236, 1994.
Stine, W.B., “Stirling Engines,” In: Kreith F. Editor. The CRC Handbook of Mechanical Engineers, Boca Raton, CRC Press, 8-7-8-6, 1998.
Tarfaoui, M., Akesbi, S., “A finite element model of mechanical properties of plain weave,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188, 439-448, 2001.
Tew, R., Jefferies, K., Miao, D., A Stirling Engine Computer Model for Performance Calculations, Department of Energy, Office of Conservation and Solar Applications, Division of Transportation Energy Conservation, 1978.
Thombare, D.G., Verma, S.K., “Technological development in the Stirling cycle engines,” Renewable and Sustainable Energy Reviews, 12, 1-38, 2008.
Timoumi, Y., Tlili, I., Nasrallah, S. B., “Design and performance optimization of GPU-3 Stirling engines,” Energy, 33, 1100-1114, 2008.
Tlili, I., Timoumi, Y., Ben Nasrallah, S., “Analysis and design consideration of mean temperature differential Stirling engine for solar application,” Renewable Energy, 33, 1911-1921, 2008.
Urieli, I, Rallis, C., Stirling cycle engine Development-A review, Energy Utilization Unit Paper, University of Cape Town, 7-5,1975.
Vinogradov, O., “Fundamentals of kinematics and dynamic of machines and mechanisms,” CRC Press LLC, Florida, USA, 2000.
West, C.D., Principles and applications of Stirling engines, New York: Van Nostrand Reinhold, 1986.
Walker, G., Stirling engines, Oxford, Clarendon Press, 1981.
West, C.D., A fluidyne Stirling engine, Harwell University, AERE-R 6776, 1981.
Wu, F., Chen, L., Wu, C., Sun, F., “Optimum performance of irreversible Stirling engine with imperfect regeneration,” Energy Conversion and Management, 39, 727-32, 1998.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-08-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-08-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信