
¨t²ÎÃÑ§O¸¹ 
U00020808201300341300 
¤¤¤å½×¤å¦WºÙ

¦b¨ÑÀ³Ãì¤W½æ¤è¹ï²£«~¨î©w«H¥Î´Á¶¡©M¨ÑÀ³¶qªº³Ì¨Îµ¦²¤ 
^¤å½×¤å¦WºÙ

Seller's optimal credit period and lot size in a sellerbuyer supply chain 
®Õ°¦WºÙ 
²H¦¿¤j¾Ç 
¨t©Ò¦WºÙ(¤¤) 
ºÞ²z¬ì¾Ç¾Ç¨t³Õ¤h¯Z 
¨t©Ò¦WºÙ(^) 
Doctoral Program, Department of Management Sciences 
¾Ç¦~«× 
101 
¾Ç´Á 
2 
¥Xª©¦~ 
102 
¬ã¨s¥Í¤¤¤å©m¦W 
¤ý¸U´¼ 
¬ã¨s¥Í^¤å©m¦W 
WanChih Wang 
¾Ç¸¹ 
898620017 
¾Ç¦ìÃþ§O 
³Õ¤h 
»y¤å§O 
¤¤¤å 
¤f¸Õ¤é´Á 
20130724 
½×¤å¶¼Æ 
87¶ 
¤f¸Õ©eû 
«ü¾É±Ð±Â°ú°ê¤¯ ¦@¦P«ü¾É±Ð±Â¾H¶i°] ©eû³¯Z¥Í ©eû¼Ú¶§¨}¸Î ©eû²ø©¾¬W ©eû±äÅAÄÁ ©eûÀ¹©¾²W ©eû·¨§Ó¼w

¤¤¤åÃöÁä¦r 
¦s³f
«H¥Î¥æ©ö
¹H¬ù·ÀI
qÁÊ¦¨¥»°§C
°h¤Æ©Ê³f«~
¨ÑÀ³ÃìºÞ²z
³Ì¤j¹Ø©R´Á

^¤åÃöÁä¦r 
Inventory
Trade credit
Default risk
Ordering cost reduction
Deteriorating items
Supply chain management
Maximum lifetime

¾Ç¬ì§O¤ÀÃþ 

¤¤¤åºKn 
¦b²{¹ê¥Í¬¡¤¤¡A½æ¤è³q±`·¤¹³\¶R¤è©µ¿ð¥I´Ú¡C¦b¤¹³\©µ¿ð¥I´Ú®É¶¡¤§¤º¡A¶R¤è¤£»Ý¤ä¥I©¥¼¤ä¥Iªº³f´Ú©Ò²£¥Íªº§Q®§¡C¦]¦¹¡A¶R¤è¥i¥H¦b©µ¿ð¥I´Ú®É¶¡¤§¤ºÁÈ¨ú³c½æ§Q¼í´þ¥Íªº§Q®§¡A¥i¬O¬Û¹ï¦a¦b¦P®É¶¡¤U¡A½æ¤è·l¥¢¤F¥Lì¥»¥i¥H¦¬¨ì³f´Ú©Ò´þ¥Íªº§Q®§¡CµM¦Ó¡A¦b¤¹³\©µ¿ð¥I´Ú®É¶¡¨ì´Á¤§«á¡A¶R¤èÁÙ¥¼²MÀv§¹©Ò¿n¤íªº³f´Ú®É¡A½æ¤è´Nn¦V¶R¤è¦¬¨ú³f´Ú¤¤©¥¼¥I²Mªºª÷ÃBªº§Q®§¡C¤¹³\©µ¿ð¥I´Úµ¦²¤¹ï©ó½æ¤è¦³¨âÓ¦n³B¡G(1)§l¤Þ¨ì»{¬°³o¶µµ¦²¤¥i¥HÀ°§U«d´î¦s³f¦¨¥»ªº·s¶R¤è¡F(2)³o¶µµ¦²¤¨Ã¤£¬O§Q¥Î°§C»ù®æªº¤âªk¨Ó§l¤Þ¶R¤è¡A¦]¦¹¸û¤£·±È°_¦U·~ªÌ¤§¶¡ªº«d»ùÄvª§¡C¬Û¤Ïªº¡A¤¹³\«H¥Î¥æ©öªºµ¦²¤¤£¶È·¼W¥[½æ¤èÃB¥~ªº¾÷·¦¨¥»¡A¤]·¼W¥[½æ¤èªº¹H¬ù·ÀI¡C¦Ó¥»¬ã¨s©Ò³]pªº¦s³f¼Ò¦¡§¡¦b«H¥Î¥æ©ö¤§±ø¥ó¤U©Ò«Øºc¦Ó¦¨¡C
¦b¥»¬ã¨s¤¤¡A§ÚÌ«Ø¥ß¤F¤TÓ¦s³f¼Ò¦¡¡C¦b²Ä¤G³¹¤¤¡A§ÚÌº¥ý±´°Q¦b«H¥Î¥æ©ö¦P®É¼vÅT»Ý¨D»P¹H¬ù·ÀI¤U§ä¥X³Ì¨Îªº«H¥Î¥æ©ö´Á¶¡»PqÁÊ¶q¤§¦s³f¼Ò¦¡¡C»P¤§«e¤åÄm¤£¦P¤§³B¦b©ó¡A¨ì¥Ø«e¬°¤î¡A¤j³¡¤Àªº¦s³f¼Ò¦¡ªº¬ã¨s¹ï¶H³£¬O¥H¶R¤è¬°¥XµoÂI¡AµM¦Ó¦b²{¹ê¥Í¬¡¤¤«H¥Î¥æ©ö´Á¶¡ªºªøµu¬O¥Ñ½æ¤è©Ò¾Þ±±ªº¡C¦Ó¨ì¥Ø«e¬°¤î¥u¦³¤Ö¼Æ¬ã¨sªÌ¥h±´°Q¦p¦óÀ°½æ¤è¨M©w³Ì¨Îªº«H¥Î¥æ©ö®É¶¡ªøµu¡C¬G¥»³¹¬°½æ¤è³]p¥X¤@Ó¸gÀÙqÁÊ¶q¼Ò¦¡¡A¦b³]p³oÓ¼Ò¦¡¤¤§ÚÌ¿Ä¤J¤F¥H¤UªºÆ[©À¡A¨º´N¬O¡G«H¥Î¥æ©ö´Á¶¡ªºªøµu¹ï©óÅU«Èªº³fª«»Ý¨D¶q¦³¥¿±ªº¼vÅT¡F¦ý¬O¹ï©ó¹H¬ù·ÀI¦³µÛt±ªº¼vÅT¡CµM«á¦b¥²n¥B¥R¤Àªº±ø¥ó¤§¤U¥h¾É¥X½æ¤èªº³Ì¨Î«H¥Î¥æ©ö´Á¶¡»PqÁÊ¶q¡C
¥t¥~¡AHuang(2010)´£¥X¤@Ó¾ã¦X¦s³f¼Ò¦¡¡A¦b¦¹¼Ò¦¡¤¤¨ÑÀ³°Ó¨M©w¥»¨¥Í²£§å¶qªº¦h¹è¡F¦Ó¹s°â°Ó¨M©w¥»¨ªº¤ä¥X¡CµM«á¦A±N¨âªÌªº¦¨¥»µ²¦X¦¨¦~«×¾ã¦XÁ`¤ä¥X¨ç¼Æ¡A¨Ã±N¦~«×¾ã¦XÁ`¤ä¥X³Ì¤p¤Æ¡C¦Ó¦b²Ä¤T³¹¤¤¡A§ÚÌÂX®i¤FHuang(2010)©Ò´£ªº¾ã¦X¦s³f¼Ò¦¡¡A¥H¤ÏÀ³¤U¦C¥Ó¨Æ¹ê¡C(1) ¹s°â°Ó±N¾P°â¦¬¤J¦s¤J»È¦æªºp®§±b¤á¤¤¡A(2)¹s°â°Ó©ÒÁÈ¨úªº§Q®§¨Ã¤£Á`¬O¤Ö©ó©Îµ¥©ó¨ä©Ò¤ä¥Iªº§Q®§¡A(3)¹ï©ó¨ÑÀ³°Ó¦Ó¨¥¦b¤@¦¸§å¶q¤¤ªº³fª«¹B°e¦¸¼Æ¦h¹è¬O¨ä¦¨¥»¤ä¥X¨ç¼Æ¤¤ªº¤@Ó¨Mµ¦ÅÜ¼Æ¡A(4)¦³¥²n³]p¤@Ó§P§O¦¡¨Ó¨M©w¹s°â°Óªº¸É³f¶g´Á¬O§_¤p©ó¨ä±q¨ÑÀ³°Ó¨ºÀò±oªº©µ¿ð¥I´Ú´Á¡CµM«á§ÚÌ¾É¥X¥²n¥B¥R¤À±ø¥ó¥HÀò±o³Ì¨Î¸Ñ¡A¦P®É«Ø¥ß¤@¨Ç²z½×µ²ªG¡C
³Ì«á¡A²Ä¥³¹¤¤¡A§ÚÌ´£¥X¤F°h¤Æ©Ê³f«~¦³¨ä²£«~¹Ø©Rªº³Ì¤j´Áªº·§©À¡A«Ø¥ß¤F¤@Ó°h¤Æ©Ê¦s³f¼Ò¦¡¡A§Æ±æ¦b¦³³Ì¤j¹Ø©R´Áªº°h¤Æ©Ê³f«~ªº¨ÑÀ³Ãì¤U¬°½æ¤èq©w³Ì¨Î«H¥Î¥æ©ö´Á»P¸É³f¶g´Á¡C¦P®É¡A§ÚÌ¤]¹B¥Î¤F¥H¤UªºÆ[©À¨Ó«Øºc¦¹¼Ò¦¡¡A³o¨ÇÆ[©À¦p¤U¡G(1) ¤@Ó°h¤Æ©Ê²£«~ªº«~½è¤£¶È·ÀHµÛ®É¶¡¤£Â_¦a°I°h¡A¥B¨ä¦³¨ä²£«~¹Ø©Rªº³Ì¤j´Á¡C(2) ¸Ñ¦b¦UºØ±ø¥ó¤U¦s¦bªº¥R¤À¥B¥²nªº±ø¥ó±N³Q°Q½×¡AµM«á¤@¨Ç¦³¥Îªº©w²z¦]¦¹³Q«Ø¥ß¡C¦Ó§ÚÌÁÙ§ó¶i¤@¨B¦a°Q½×«D°h¤Æ©Ê³f«~¥H§@¬°¯S¨Ò¡C
¦¹¥~¡A¹ï©ó¥H¤W¦U³¹¤§¦s³f¼Ò¦¡ªº¨D¸Ñ¹Lµ{»P²z½×µ²ªG¡A§ÚÌ§¡¦³¥H¼ÆÈ½d¨Ò¨Ó»¡©ú¡A¨Ã´£¨Ñ¤@¨ÇºÞ²z¤Wªº¨£¸Ñ¡C

^¤åºKn 
In practice, vendors usually offer their buyers a permissible delay in payments. During the permissible delay period, there is no interest charge. Hence, buyers can earn the interest from sales revenue meanwhile vendors lose the interest earned during the same period. However, if the payment is not paid in full by the end of the permissible delay period, then vendors charge buyers an interest on the unpaid amount of the purchasing cost. The permissible delay in payments produces two benefits to the vendor: (1) it attracts new buyers who consider it to be a type of inventory cost reduction, and (2) it is an alternative to price competition because it does not provoke competitors to reduce their prices and thus introduce lasting price reductions. On the other hand, the policy of granting trade credit financing adds not only an additional opportunity cost but also an additional dimension of default risk to the vendor.
In this study, three inventory models have been formulated. In chapter 2, we first presented the model for the seller to find the optimal trade credit period and order quantity when trade credit impacts on both demand and default risks. Most inventory models are studied only from the perspective of the buyer whereas in practice the length of the credit period is set by the seller. So far, how to determine the optimal length of the credit period for the seller has received a very little attention by the researchers. In this chapter, we propose an economic order quantity (EOQ) model for a seller by incorporating the relevant fact that trade credit has a positive impact on demand but a negative impact on default risks. Then the necessary and sufficient conditions to obtain the seller¡¦s optimal trade credit period and order quantity are derived.
Next, Huang (2010) proposed an integrated inventory model with trade credit financing in which the vendor decides its production lot size while the buyer determines its expenditure to minimize the annual integrated total cost for both the vendor and the buyer. In chapter 2, we extend his integrated supply chain model to reflect the following four facts: (1) generated sales revenue is deposited in an interestbearingaccount for the buyer, (2) the buyer¡¦s interest earned is not always less than or equal to its interest charged, (3) the total number of shipments in one lot size is the vendor¡¦s decision variable to minimize the cost, and (4) it is vital to have a discrimination term which can determine whether the buyer¡¦s replenishment cycle time is less than the permissible delay period or not. We then derive the necessary and sufficient conditions to obtain the optimal solution, and establish some theoretical results to characterize the optimal solution.
Finally, in chapter 4, we propose a deteriorating inventory model for a seller by incorporating the relevant fact that deteriorating items with maximum lifetime to find the optimal credit period and cycle time in a supply chain. Meanwhile, we also incorporate the following relevant facts: (1) deteriorating products not only deteriorate continuously but also have their maximum lifetime, and (2) credit period increases not only demand but also default risk. We then characterize the seller¡¦s optimal credit period and cycle time. Furthermore, we discuss a special case for nondeteriorating items.Additionally, in all above three models, we run several numerical examples to illustrate the problem and provide some managerial insights.

½×¤å¥Ø¦¸ 
¥Ø¿ý I
ªí¥Ø¿ý III
¹Ï¥Ø¿ý IV
²Ä¤@³¹ ºü½× 1
1.1 ¬ã¨s°Ê¾÷»P¥Øªº 1
1.2 ¤åÄm±´°Q 5
1.3 ¥»¤åµ²ºc 8
²Ä¤G³¹ ¦b¹H¬ù·ÀI¤U¤§³Ì¨ÎqÁÊ¤Î«H¥Î¥æ©öµ¦²¤ 10
2.1 «e¨¥ 10
2.2 ²Å¸¹»¡©ú»P°ò¥»°²³] 12
2.3 ¼Ò¦¡«Ø¥ß 14
2.4 ¼ÆÈ½d¨Ò 20
2.5 ¤pµ² 23
²Ä¤T³¹ ¹B¥ÎqÁÊ¦¨¥»°§C»P©µ¿ð¥I´Úªºµ¦²¤¹ï¾ã¦X¦s³f¼Ò¦¡¤§±À¼s 24
3.1 «e¨¥ 24
3.2 ²Å¸¹»¡©ú»P°ò¥»°²³] 26
3.3 ¼Ò¦¡«Ø¥ß 28
3.4 ¼ÆÈ½d¨Ò 39
3.5 ¤pµ² 41
²Ä¥³¹ ¨ã³Ì¤j¹Ø©R´Á°h¤Æ©Ê¦s³f¤§³Ì¨ÎqÁÊ¤Î«H¥Î¥æ©öµ¦²¤ 43
4.1 «e¨¥ 43
4.2 ²Å¸¹»¡©ú»P°ò¥»°²³] 45
4.3 ¼Ò¦¡«Ø¥ß 47
4.4 ²z½×µ²ªG»P³Ì¨Î¸Ñ 50
4.5 ¯S¨Ò¡G«D°h¤Æ©Ê³f«~ 54
4.6 ¼ÆÈ½d¨Ò 56
4.7 ¤pµ² 58
²Ä¤³¹ µ²½× 59
5.1 ¥Dn¬ã¨s¦¨ªG 59
5.2 ¥¼¨Ó¬ã¨s¤è¦V 63
°Ñ¦Ò¤åÄm 66
ªþ¿ý A 79
ªþ¿ý B 80
ªþ¿ý C 83
ªþ¿ý D 84
ªþ¿ý E 86
ªí1.1 ¥Á°ê100¦~©³¥þÅé¥ÁÀç¥ø·~¸ê²£t¶Å²Îpªí 1
ªí2.1 ±Ó·P«×¤ÀªRªí 22
ªí3.1 °Ñ¼Æt¤§±Ó·P«×¤ÀªR 39
ªí3.2 °Ñ¼ÆSv ¤§±Ó·P«×¤ÀªR 40
ªí3.3 °Ñ¼ÆF¤§±Ó·P«×¤ÀªR 41
ªí4.1 ¦U°Ñ¼Æ¤§±Ó·P«×¤ÀªR 56
¹Ï3.1 ½æ¤èªº¦s³f±¡§Î 30
¹Ï3.2 ¤¹³\ªº©µ¿ð¥I´Ú®É¶¡(t) ¸É³f¶g´Á(T) 31
¹Ï3.3 ¤¹³\ªº©µ¿ð¥I´Ú®É¶¡(t) >¸É³f¶g´Á(T) 33
¹Ï4.1 ¦s³f¨t²Î¹Ï§Î¥Ü·N¹Ï 48

°Ñ¦Ò¤åÄm 
¤@¡B¤¤¤å³¡¤À
[1] ¤¤¥¡»È¦æ¸gÀÙ¬ã¨s³B¡A (2013). ¥þÅé¥ÁÀç¥ø·~¸ê²£t¶Å²Îpªí¡C
[2] ¤µ¤é·s»Dºô¡C¥v¤Wº¨£! µØºÓ³æ©uÁ«·l30»õ Áp·Q¥þ²yµôû2500
¤H¡A2009¦~1¤ë9¤é¡A¸Ô±¡°Ñ¦Òhttp://www.nownews.com/2009/01/09
/114902392674.htm
[3] ¾ã¦X·s»Dºô¡C§»ùÖQ2¤jÁ«67.9»õ ³Ð¥ß¥H¨Ó³Ì¤jÁ«·l¡A2011¦~8
¤ë25¤é¡A¸Ô±¡°Ñ¦Ò¡Ghttp://mag.udn.com/mag/digital/storypage.jsp?
f_ART_ID=338583
[4] §d©ú³¹(2004)¡Cª«®Æ¨ÑÀ³¼Ò¦¡ºt¶i¤§¬ã¨s¥H¥b¾ÉÅé»s³y·~(¥x¿n
¹q)¬°Ó®×¬ã¨s¡A°ê¥ß²MµØ¤j¾Ç¬ì§ÞºÞ²z¬ã¨s©ÒºÓ¤h½×¤å¡C
[5] ¹q¤l°Ó°È®É³ø¡C3C²£«~¯S©Ê»P³q¸ô·~¸gÀçÃöÁä¡A2004¦~12¤ë13
¤é¡A¸Ô±¡°Ñ¦Ò¡Ghttp://www.ectimes.org.tw/shownews.aspx?id=
6585¡C
¤G¡B^¤å³¡¤À¡G
[1] Abad, P. L. and Jaggi, C. K. ( 2003). A joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive. International Journal of Production Economics, 83, 115122.
[2] Afﬁsco, J. F., Paknejad, M. J. and Nasri, F. (1993). A comparison of alternative joint vendor¡Vpurchaser lotsizing models. International Journal of Production Research, 31, 2661¡V2676.
[3] Aggarwal, S. P. and Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46, 658¡V662.
[4] Arcelus, F. J. , Shah, N. H. and Srinivasan, G. (2003). Retailer¡¦s pricing, credit and inventory policies for deteriorating items in response to temporary price/credit incentives. International Journal of Production Economics, 81,153¡V162.
[5] Banerjee, A. (1986). A joint economiclotsize model for purchaser and vendor. Decision Sciences, 17, 292¡V311.
[6] Blackburn, J. and Scudder, G. (2009). Supply chain strategies for perishable products: the case of fresh produce. Production and Operations Management, 18, 129137.
[7] Chang, C. T., Ouyang, L.Y., and Teng, J. T. (2003). An EOQ model for deteriorating items under supplier credits linked to ordering quantity. Applied Mathematical Modelling, 27, 983¡V996.
[8] Chang, C. T. and Teng, J. T. (2004). Retailer¡¦s optimal ordering policy under supplier credits. Mathematical Methods of Operations Research, 60, 471¡V483.
[9] Chang, C. T., Teng, J. T. and Chern, M. S. (2010). Optimal manufacturer¡¦s replenishment policies for deteriorating items in a supply chain with upstream and downstream trade credits. International Journal of Production Economics, 127, 197202.
[10] Chang, C. T., Teng, J. T. and Goyal, S. K. (2008). Inventory lotsize models under trade credits: a review. Asia Pacific Journal of Operational Research, 25, 89112.
[11] Chang, H. J., Lin, W. F. and Ho, J. F. (2011). Closedform solutions for Wee¡¦s and Martin¡¦s EOQ models with a temporary price discount. International Journal of Production Economics, 131, 528534.
[12] Chang, H. J., Ouyang, L. Y., Wu, K. S. and Ho, C. H. (2006). Integrated vendor¡Vbuyer cooperative inventory models with controllable lead time and ordering cost reduction. European Journal of Operational Research, 170, 481495.
[13] Chen, S. C. and Teng, J. T. (2012). Retailer¡¦s optimal ordering policy for deteriorating items with maximum lifetime under supplier¡¦s trade credit financing. Working paper, William Paterson University.
[14] Chung, K. J. (1998). A theorem on the determination of economic order quantity under conditions of permissible delay in payments. Computers and Operations Research, 25, 4952.
[15] Chung, K. J. (2008). An improvement of an integrated singlevendor singlebuyer inventory model with shortage. Production planning and control, 19, 275277.
[16] Chung, K. J. and Huang, Y. F. (2003). The optimal cycle time for EPQ inventory model under permissible delay in payments. International Journal of Production Economics, 84, 307318.
[17] Chung, K. J. and Liao, J. J. (2004). Lotsizing decisions under trade credit depending on the ordering quantity. Computers and Operations Research, 31, 909928.
[18] Dave, U. (1985). Letters and viewpoints on¡¨ Economic order quantity under conditions of permissible delay in payments¡¨.
Journal of the Operational Research Society, 46, 10691070.
[19] Dave, U. and Patel, L. K. (1981). (T,Si) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 32, 137142.
[20] Dye, C. Y. and Hsieh, T. P. (2012). An optimal replenishment policy for deteriorating items with effective investment in preservation technology. European Journal of Operational Research, 218, 106112.
[21] Dye, C. Y., Hsieh, T. P. and Ouyang, L.Y. (2007). Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging. European Journal of Operational Research, 181, 668678.
[22] Ghare, P. M. and Schrader, G. P. (1963). A model for an exponentially decaying inventory. Journal of Industrial Engineering, 14, 238243.
[23] Goyal, S. K. (1976). An integrated inventory model for a single suppliersingle customer problem. International Journal of Production Research, 14, 107¡V111.
[24] Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36, 335338.
[25] Goyal, S. K. (1988). A joint economiclotsize model for purchaser and vendor : a comment. Decision Sciences, 19, 236¡V241.
[26] Goyal, S. K. and Giri, B. C.(2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134, 116.
[27] Goyal, S. K. and Giri, B. C. (2003). The productioninventory problem of a product with time varying demand, production and deterioration rates. European Journal of Operational Research, 147, 549557.
[28] Goyal, S. K., Teng, J. T. and Chang, C. T. (2007). Optimal ordering policies when the supplier provides a progressive interestpayable scheme. European Journal of Operational Research,179, 404413.
[29] Harris, F. H. (1913). How many parts to make at once. Factory. The Magazine of Management, 10, 135136.
[30] Hsu, P. H. , Wee, H. M. and Teng, H. M. (2010). Preservation technology investment for deteriorating inventory. International Journal of Production Economics, 124, 388¡V394.
[31] Huang, C. K. (2010). An integrated inventory model under conditions of order processing cost reduction and permissible delay in payments. Applied Mathematical Modelling, 34, 13521359.
[32] Huang, Y. F. (2003). Optimal retailer¡¦s ordering policies in the EOQ model under trade credit financing. Journal of the Operational Research Society, 54, 10111015.
[33] Huang, Y. F. (2004). Optimal retailer¡¦s replenishment policy for the EPQ model under the supplier¡¦s trade credit policy. Production Planning and Control, 15, 27¡V33.
[34] Huang, Y. F. (2007). Economic order quantity under conditionally permissible delay in payments. Journal of the Operational Research Society, 176, 911¡V924.
[35] Huang, Y. F. and Hsu, K. H. (2008). An EOQ model under retailer partial trade credit policy in supply chain. International Journal of Production Economics, 112, 655¡V664.
[36] Hwang, H. and Shinn, S. W. (1997). Retailer¡¦s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers and Operations Research, 24, 539¡V47.
[37] Jaber, M. Y. and Goyal, S. K. (2008). Coordinating a threelevel supply chain with multiple suppliers, a vendor and multiple buyers. International Journal of Production Economics, 116, 95¡V103.
[38] Jaggi, C. K., Goyal, S. K. and Goel, S. K. (2008). Retailer¡¦s optimal replenishment decisions with creditlinked demand under permissible delay in payments. European Journal of Operational Research, 190, 130135.
[39] Jamal, A. M. M., Sarker, B. R. and Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48, 826833.
[40] Jaruphongsa, W. and Lee , C.Y. (2008). Dynamic lotsizing problem with demand time windows and containerbased transportation cost. Optimization Letters , 2, 3951.
[41] Kouki, C., Sahin, E., Jemaї, Z. and Dallery, Y. (2013). Assessing the impact of perishability and the use of time temperature technologies on inventory management. International Journal of Production Economics, 143, 7285.
[42] Kreng, V. B. and Tan, S. J. (2010). The optimal replenishment decisions under two levels of trade credit policy depending on the order quantity. Expert Systems with Applications, 37, 55145522.
[43] Kreng, V. B. and Tan, S. J. (2011). Optimal replenishment decision in an EPQ model with defective items under supply chain trade credit policy. Expert Systems with Applications, 38, 98889899.
[44] Liao, H. C., Tsai, C. H. and Su, C. T. (2000). An inventory model with deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics, 63, 207¡V214.
[45] Liao, J. J. (2008). An EOQ model with noninstantaneous receipt and exponentially deteriorating items under twolevel trade credit. International Journal of Production Economics, 113, 852861.
[46] Lo, S. T., Wee, H. and Huang, W. C. (2007). An integrated productioninventory model with imperfect production processes and Weibull distribution deterioration under inﬂation. International Journal of Production Economics, 106, 248¡V260.
[47] Lou, K. R. and Wang, W. C. (2012). Optimal trade credit and order quantity when trade credit impacts on both demand rate and default risk. Journal of the Operational Research Society, doi: 10.1057/jors.2012.134.
[48] Migdalas, A., Baourakis, G. and Pardalos, P. M. (2004). Supply Chain and Finance. World scientific.
[49] Min, J., Zhou, Y. W. and Zhao, J. (2010). An inventory model for deteriorating items under stockdependent demand and twolevel trade credit. Applied Mathematical Modelling, 34, 32733285.
[50] Misra, R. B. (1975). Optimum production lot size model for a system with deteriorating inventory. International Journal of Production Research, 13, 495505.
[51] Musa, A. and Sani, B. (2012). Inventory ordering policies of delayed deteriorating itemsunder permissible delay in payments. International Journal of Production Economics, 136, 7583.
[52] Ouyang, L. Y., Chang, C. T. and Teng, J. T. (2005). An EOQ model for deteriorating items under trade credits. Journal of the Operational Research Society, 56, 719¡V726.
[53] Ouyang, L. Y., Teng, J. T. and Chen, L. H. (2006). Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments. Journal of Global Optimization, 34, 245¡V271.
[54] Ouyang, L.Y., Wu, K. S. and Ho, C. H. (2004). Integrated vendor¡Vbuyer cooperative models with stochastic demand in controllable lead time. International Journal of Production Economics, 92, 255¡V266.
[55] Ouyang, L. Y., Wu, K. S. and Ho, C. H. (2006). Analysis of optimal vendorbuyer integrated inventory policy involving defective items. International Journal of Advanced Manufacturing Technology, 29, 1232¡V1245.
[56] Ouyang, L. Y., Wu, K. S. and Ho, C. H. (2007). An integrated vendor¡Vbuyer inventory model with quality improvement and lead time reduction. European Journal of Operational Research, 108, 349¡V358.
[57] Pan, J. C. H. and Yang, J. S. (2002). A study of an integrated inventory with controllable lead time. International Journal of Production Research, 40, 1263¡V1273.
[58] Pardalos, P. M. and Tsitsiringos, V. (2002). Financial Engineering, Supply Chain and Ecommerce, Kluwer Academic Publishers.
[59] Rau, H., Wu, M. Y. and Wee, H. M. (2003). Integrated inventory model for deteriorating items under a multiechelon supply chain environment. International Journal of Production Economics, 86, 155¡V168.
[60] Sachan, R. S. (1984). On (T,Si) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 35, 10131019.
[61] Sarkar, B. (2012). An EOQ model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling, 55, 367377.
[62] Sarker, B. R. and Diponegoro, A. (2009). Optimal production plans and shipmen schedules in a supplychain system with multiple suppliers and multiple buyers. European Journal of Operational Research, 194, 753¡V773.
[63] Shah, N. H. (1993). Probabilistic timescheduling model for an exponentially decaying inventory when delay in payment is permissible. International Journal of Production Economics, 32, 77¡V82.
[64] Shah, N.H. (2011). Single supplier¡Vbuyer integrated inventory model under multiple JIT delivery and stockdependent demand. Journal of Mathematical Modelling and Algorithms ,10, 293305.
[65] Sharafali, M. and Co, H. C. (2000). Some models for understanding the cooperation between the supplier and the buyer. International Journal of Production Research, 38, 3425¡V3449.
[66] Sharma, S. (2009). A composite model in the context of a productioninventory system. Optimization Letters, 3, 239251.
[67] Shinn, S.W. and Hwang, H. (2003). Optimal pricing and ordering policies for retailers under ordersize dependent delay in payments. Computers and Operations Research, 30, 35¡V50.
[68] SimchiLevi, D., Kaminsky, P. and SimchiLevi, E. (2000). Designing and Managing the Supply Chain, McGrawHill Companies, Singapore.
[69] Skouri, K., Konstantaras, I., Papachristos, S. and Teng, J. T. (2012). Supply chain models for deteriorating products with ramp type demand rate under permissible delay in payments. Expert Systems with Applications, 38, 1486114869.
[70] Soni, H. and Shah, N. H. (2008). Optimal ordering policy for stockdependent demand under progressive payment scheme. European Journal of Operational Research, 184, 91¡V100.
[71] Teng, J. T. (2002). On the economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 53, 915918.
[72] Teng, J. T. (2009). Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad credit customers. International Journal of Production Economics, 119, 415423.
[73] Teng, J. T. and Chang, C. T. (2009). Optimal manufacturer¡¦s replenishment policies in the EPQ model under two levels of trade credit policy. European Journal of Operational Research, 195, 358¡V363.
[74] Teng, J. T., Chang, C. T., Chern, M. S. and Chan, Y. L. (2007). Retailer¡¦s optimal ordering policies in the EOQ models with trade credit financing. International Journal of System Sciences, 38, 269¡V278.
[75] Teng, J. T., Chang, C. T., and Chern, M. S. (2012). Vendor¡Vbuyer inventory models with trade credit financing under both noncooperative and integrated environments. International Journal of System Sciences, 43, 20502061.
[76] Teng, J. T., Chang, C. T. and Goyal, S. K. (2005). Optimal pricing and ordering policy under permissible delay in payments. International Journal of Production Economics, 97, 121¡V129.
[77] Teng, J. T., Chang, H. J., Dye, C. Y. and Hung, C. H. (2002).
An optimal replenishment policy for deteriorating items with timevarying demand and partial backlogging. Operations Research Letters, 30, 387393.
[78] Teng, J. T. and Goyal, S. K. (2007). Optimal ordering policies for a
retailer in a supply chain with upstream and downstream trade
credits. Journal of the Operational Research Society, 58,
12521255.
[79] Teng, J. T., Krommyda, I. P., Skouri, K. and Lou, K. R. (2011).
A comprehensive extension of optimal ordering policy for
stockdependent demand under progressive payment scheme.
European Journal of Operational Research, 215, 97104.
[80] Teng, J. T. and Lou, K. R. (2012). Seller¡¦s optimal credit period and replenishment time in a supply chain with upstream and downstream trade credits. Journal of Global Optimization, 53, 417430.
[81] Teng, J. T., Min, J. and Pan, Q. (2012). Economic order quantity model with trade credit financing for nondecreasing demand. Omega, 40, 328335.
[82] Teng, J. T., Ouyang, L. Y. and Chen, L. H. (2006). Optimal manufacturer¡¦s pricing and lotsizing policies under trade credit financing. International Transactions in Operational Research, 13, 515¡V528.
[83] Yang, H. L., Teng, J. T. and Chern, M. S. (2010). An inventory
model under inflation for deteriorating items with stockdependent consumption rate and partial backlogging shortages. International
Journal of Production Economics, 123, 819.
[84] Yang, P. C. and Wee, H. M. (2003). An integrated multilotsize production inventory model for deteriorating items. Computers and Operations Research, 30, 671682.
[85] Yang, P. C., Wee, H. M., Chung, S. L. and Ho, P. C. (2010). Sequential and global optimization for a closedloop deteriorating inventory supply chain. Mathematical and Computer Modelling, 52, 161¡V176.
[86] Zhou, Y. W., Zhong, Y. and Li, J. (2012). An uncooperative order model for items with trade credit¡A inventorydependent demand and limited displayedshelf space. European Journal of Operational Research, 223, 76¡V85.

½×¤å¨Ï¥ÎÅv 
¦P·N¯È¥»µLÀv±ÂÅvµ¹À]¤ºÅªªÌ¬°¾Ç³N¤§¥Øªº«»s¨Ï¥Î¡A©ó20130820¤½¶}¡C¦P·N±ÂÅvÂsÄý/¦C¦L¹q¤l¥þ¤åªA°È¡A©ó20130820°_¤½¶}¡C 


