淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0808201300341300
中文論文名稱 在供應鏈上賣方對產品制定信用期間和供應量的最佳策略
英文論文名稱 Seller's optimal credit period and lot size in a seller-buyer supply chain
校院名稱 淡江大學
系所名稱(中) 管理科學學系博士班
系所名稱(英) Doctoral Program, Department of Management Sciences
學年度 101
學期 2
出版年 102
研究生中文姓名 王萬智
研究生英文姓名 Wan-Chih Wang
學號 898620017
學位類別 博士
語文別 中文
口試日期 2013-07-24
論文頁數 87頁
口試委員 指導教授-婁國仁
共同指導教授-鄧進財
委員-陳茂生
委員-歐陽良裕
委員-莊忠柱
委員-曹譽鐘
委員-戴忠淵
委員-楊志德
中文關鍵字 存貨  信用交易  違約風險  訂購成本降低  退化性貨品  供應鏈管理  最大壽命期限 
英文關鍵字 Inventory  Trade credit  Default risk  Ordering cost reduction  Deteriorating items  Supply chain management  Maximum lifetime 
學科別分類
中文摘要 在現實生活中,賣方通常會允許買方延遲付款。在允許延遲付款時間之內,買方不需支付尚未支付的貨款所產生的利息。因此,買方可以在延遲付款時間之內賺取販賣利潤滋生的利息,可是相對地在同時間下,賣方損失了他原本可以收到貨款所滋生的利息。然而,在允許延遲付款時間到期之後,買方還未清償完所積欠的貨款時,賣方就要向買方收取貨款中尚未付清的金額的利息。允許延遲付款策略對於賣方有兩個好處:(1)吸引到認為這項策略可以幫助削減存貨成本的新買方;(2)這項策略並不是利用降低價格的手法來吸引買方,因此較不會掀起各業者之間的削價競爭。相反的,允許信用交易的策略不僅會增加賣方額外的機會成本,也會增加賣方的違約風險。而本研究所設計的存貨模式均在信用交易之條件下所建構而成。

在本研究中,我們建立了三個存貨模式。在第二章中,我們首先探討在信用交易同時影響需求與違約風險下找出最佳的信用交易期間與訂購量之存貨模式。與之前文獻不同之處在於,到目前為止,大部分的存貨模式的研究對象都是以買方為出發點,然而在現實生活中信用交易期間的長短是由賣方所操控的。而到目前為止只有少數研究者去探討如何幫賣方決定最佳的信用交易時間長短。故本章為賣方設計出一個經濟訂購量模式,在設計這個模式中我們融入了以下的觀念,那就是:信用交易期間的長短對於顧客的貨物需求量有正面的影響;但是對於違約風險有著負面的影響。然後在必要且充分的條件之下去導出賣方的最佳信用交易期間與訂購量。

另外,Huang(2010)提出一個整合存貨模式,在此模式中供應商決定本身生產批量的多寡;而零售商決定本身的支出。然後再將兩者的成本結合成年度整合總支出函數,並將年度整合總支出最小化。而在第三章中,我們擴展了Huang(2010)所提的整合存貨模式,以反應下列四個事實。(1) 零售商將銷售收入存入銀行的計息帳戶中,(2)零售商所賺取的利息並不總是少於或等於其所支付的利息,(3)對於供應商而言在一次批量中的貨物運送次數多寡是其成本支出函數中的一個決策變數,(4)有必要設計一個判別式來決定零售商的補貨週期是否小於其從供應商那獲得的延遲付款期限。然後我們導出必要且充分條件以獲得最佳解,同時建立一些理論結果。

最後,第四章中,我們提出了退化性貨品有其產品壽命的最大期限的概念,建立了一個退化性存貨模式,希望在有最大壽命期限的退化性貨品的供應鏈下為賣方訂定最佳信用交易期限與補貨週期。同時,我們也運用了以下的觀念來建構此模式,這些觀念如下:(1) 一個退化性產品的品質不僅會隨著時間不斷地衰退,且其有其產品壽命的最大期限。(2) 解在各種條件下存在的充分且必要的條件將被討論,然後一些有用的定理因此被建立。而我們還更進一步地討論非退化性貨品以作為特例。

此外,對於以上各章之存貨模式的求解過程與理論結果,我們均有以數值範例來說明,並提供一些管理上的見解。
英文摘要 In practice, vendors usually offer their buyers a permissible delay in payments. During the permissible delay period, there is no interest charge. Hence, buyers can earn the interest from sales revenue meanwhile vendors lose the interest earned during the same period. However, if the payment is not paid in full by the end of the permissible delay period, then vendors charge buyers an interest on the unpaid amount of the purchasing cost. The permissible delay in payments produces two benefits to the vendor: (1) it attracts new buyers who consider it to be a type of inventory cost reduction, and (2) it is an alternative to price competition because it does not provoke competitors to reduce their prices and thus introduce lasting price reductions. On the other hand, the policy of granting trade credit financing adds not only an additional opportunity cost but also an additional dimension of default risk to the vendor.

In this study, three inventory models have been formulated. In chapter 2, we first presented the model for the seller to find the optimal trade credit period and order quantity when trade credit impacts on both demand and default risks. Most inventory models are studied only from the perspective of the buyer whereas in practice the length of the credit period is set by the seller. So far, how to determine the optimal length of the credit period for the seller has received a very little attention by the researchers. In this chapter, we propose an economic order quantity (EOQ) model for a seller by incorporating the relevant fact that trade credit has a positive impact on demand but a negative impact on default risks. Then the necessary and sufficient conditions to obtain the seller’s optimal trade credit period and order quantity are derived.

Next, Huang (2010) proposed an integrated inventory model with trade credit financing in which the vendor decides its production lot size while the buyer determines its expenditure to minimize the annual integrated total cost for both the vendor and the buyer. In chapter 2, we extend his integrated supply chain model to reflect the following four facts: (1) generated sales revenue is deposited in an interest-bearingaccount for the buyer, (2) the buyer’s interest earned is not always less than or equal to its interest charged, (3) the total number of shipments in one lot size is the vendor’s decision variable to minimize the cost, and (4) it is vital to have a discrimination term which can determine whether the buyer’s replenishment cycle time is less than the permissible delay period or not. We then derive the necessary and sufficient conditions to obtain the optimal solution, and establish some theoretical results to characterize the optimal solution.

Finally, in chapter 4, we propose a deteriorating inventory model for a seller by incorporating the relevant fact that deteriorating items with maximum lifetime to find the optimal credit period and cycle time in a supply chain. Meanwhile, we also incorporate the following relevant facts: (1) deteriorating products not only deteriorate continuously but also have their maximum lifetime, and (2) credit period increases not only demand but also default risk. We then characterize the seller’s optimal credit period and cycle time. Furthermore, we discuss a special case for non-deteriorating items.Additionally, in all above three models, we run several numerical examples to illustrate the problem and provide some managerial insights.
論文目次 目錄 I
表目錄 III
圖目錄 IV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻探討 5
1.3 本文結構 8
第二章 在違約風險下之最佳訂購及信用交易策略 10
2.1 前言 10
2.2 符號說明與基本假設 12
2.3 模式建立 14
2.4 數值範例 20
2.5 小結 23
第三章 運用訂購成本降低與延遲付款的策略對整合存貨模式之推廣 24
3.1 前言 24
3.2 符號說明與基本假設 26
3.3 模式建立 28
3.4 數值範例 39
3.5 小結 41
第四章 具最大壽命期限退化性存貨之最佳訂購及信用交易策略 43
4.1 前言 43
4.2 符號說明與基本假設 45
4.3 模式建立 47
4.4 理論結果與最佳解 50
4.5 特例:非退化性貨品 54
4.6 數值範例 56
4.7 小結 58
第五章 結論 59
5.1 主要研究成果 59
5.2 未來研究方向 63
參考文獻 66
附錄 A 79
附錄 B 80
附錄 C 83
附錄 D 84
附錄 E 86


表1.1 民國100年底全體民營企業資產負債統計表 1
表2.1 敏感度分析表 22
表3.1 參數t之敏感度分析 39
表3.2 參數Sv 之敏感度分析 40
表3.3 參數F之敏感度分析 41
表4.1 各參數之敏感度分析 56

圖3.1 賣方的存貨情形 30
圖3.2 允許的延遲付款時間(t) 補貨週期(T) 31
圖3.3 允許的延遲付款時間(t) >補貨週期(T) 33
圖4.1 存貨系統圖形示意圖 48
參考文獻 一、中文部分

[1] 中央銀行經濟研究處, (2013). 全體民營企業資產負債統計表。
[2] 今日新聞網。史上首見! 華碩單季虧損30億 聯想全球裁員2500
人,2009年1月9日,詳情參考http://www.nownews.com/2009/01/09
/11490-2392674.htm
[3] 整合新聞網。宏焐2大虧67.9億 創立以來最大虧損,2011年8
月25日,詳情參考:http://mag.udn.com/mag/digital/storypage.jsp?
f_ART_ID=338583
[4] 吳明章(2004)。物料供應模式演進之研究-以半導體製造業(台積
電)為個案研究,國立清華大學科技管理研究所碩士論文。
[5] 電子商務時報。3C產品特性與通路業經營關鍵,2004年12月13
日,詳情參考:http://www.ectimes.org.tw/shownews.aspx?id=
6585。








二、英文部分:

[1] Abad, P. L. and Jaggi, C. K. ( 2003). A joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive. International Journal of Production Economics, 83, 115-122.
[2] Affisco, J. F., Paknejad, M. J. and Nasri, F. (1993). A comparison of alternative joint vendor–purchaser lot-sizing models. International Journal of Production Research, 31, 2661–2676.
[3] Aggarwal, S. P. and Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46, 658–662.
[4] Arcelus, F. J. , Shah, N. H. and Srinivasan, G. (2003). Retailer’s pricing, credit and inventory policies for deteriorating items in response to temporary price/credit incentives. International Journal of Production Economics, 81,153–162.
[5] Banerjee, A. (1986). A joint economic-lot-size model for purchaser and vendor. Decision Sciences, 17, 292–311.
[6] Blackburn, J. and Scudder, G. (2009). Supply chain strategies for perishable products: the case of fresh produce. Production and Operations Management, 18, 129-137.
[7] Chang, C. T., Ouyang, L.Y., and Teng, J. T. (2003). An EOQ model for deteriorating items under supplier credits linked to ordering quantity. Applied Mathematical Modelling, 27, 983–996.
[8] Chang, C. T. and Teng, J. T. (2004). Retailer’s optimal ordering policy under supplier credits. Mathematical Methods of Operations Research, 60, 471–483.
[9] Chang, C. T., Teng, J. T. and Chern, M. S. (2010). Optimal manufacturer’s replenishment policies for deteriorating items in a supply chain with up-stream and down-stream trade credits. International Journal of Production Economics, 127, 197-202.
[10] Chang, C. T., Teng, J. T. and Goyal, S. K. (2008). Inventory lot-size models under trade credits: a review. Asia Pacific Journal of Operational Research, 25, 89-112.
[11] Chang, H. J., Lin, W. F. and Ho, J. F. (2011). Closed-form solutions for Wee’s and Martin’s EOQ models with a temporary price discount. International Journal of Production Economics, 131, 528-534.
[12] Chang, H. J., Ouyang, L. Y., Wu, K. S. and Ho, C. H. (2006). Integrated vendor–buyer cooperative inventory models with controllable lead time and ordering cost reduction. European Journal of Operational Research, 170, 481-495.
[13] Chen, S. C. and Teng, J. T. (2012). Retailer’s optimal ordering policy for deteriorating items with maximum lifetime under supplier’s trade credit financing. Working paper, William Paterson University.
[14] Chung, K. J. (1998). A theorem on the determination of economic order quantity under conditions of permissible delay in payments. Computers and Operations Research, 25, 49-52.

[15] Chung, K. J. (2008). An improvement of an integrated single-vendor single-buyer inventory model with shortage. Production planning and control, 19, 275-277.
[16] Chung, K. J. and Huang, Y. F. (2003). The optimal cycle time for EPQ inventory model under permissible delay in payments. International Journal of Production Economics, 84, 307-318.
[17] Chung, K. J. and Liao, J. J. (2004). Lot-sizing decisions under trade credit depending on the ordering quantity. Computers and Operations Research, 31, 909-928.
[18] Dave, U. (1985). Letters and viewpoints on” Economic order quantity under conditions of permissible delay in payments”.
Journal of the Operational Research Society, 46, 1069-1070.
[19] Dave, U. and Patel, L. K. (1981). (T,Si) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 32, 137-142.
[20] Dye, C. Y. and Hsieh, T. P. (2012). An optimal replenishment policy for deteriorating items with effective investment in preservation technology. European Journal of Operational Research, 218, 106-112.
[21] Dye, C. Y., Hsieh, T. P. and Ouyang, L.Y. (2007). Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging. European Journal of Operational Research, 181, 668-678.
[22] Ghare, P. M. and Schrader, G. P. (1963). A model for an exponentially decaying inventory. Journal of Industrial Engineering, 14, 238-243.
[23] Goyal, S. K. (1976). An integrated inventory model for a single supplier-single customer problem. International Journal of Production Research, 14, 107–111.
[24] Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36, 335-338.
[25] Goyal, S. K. (1988). A joint economic-lot-size model for purchaser and vendor : a comment. Decision Sciences, 19, 236–241.
[26] Goyal, S. K. and Giri, B. C.(2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134, 1-16.
[27] Goyal, S. K. and Giri, B. C. (2003). The production-inventory problem of a product with time varying demand, production and deterioration rates. European Journal of Operational Research, 147, 549-557.
[28] Goyal, S. K., Teng, J. T. and Chang, C. T. (2007). Optimal ordering policies when the supplier provides a progressive interest-payable scheme. European Journal of Operational Research,179, 404-413.
[29] Harris, F. H. (1913). How many parts to make at once. Factory. The Magazine of Management, 10, 135-136.
[30] Hsu, P. H. , Wee, H. M. and Teng, H. M. (2010). Preservation technology investment for deteriorating inventory. International Journal of Production Economics, 124, 388–394.
[31] Huang, C. K. (2010). An integrated inventory model under conditions of order processing cost reduction and permissible delay in payments. Applied Mathematical Modelling, 34, 1352-1359.
[32] Huang, Y. F. (2003). Optimal retailer’s ordering policies in the EOQ model under trade credit financing. Journal of the Operational Research Society, 54, 1011-1015.
[33] Huang, Y. F. (2004). Optimal retailer’s replenishment policy for the EPQ model under the supplier’s trade credit policy. Production Planning and Control, 15, 27–33.
[34] Huang, Y. F. (2007). Economic order quantity under conditionally permissible delay in payments. Journal of the Operational Research Society, 176, 911–924.
[35] Huang, Y. F. and Hsu, K. H. (2008). An EOQ model under retailer partial trade credit policy in supply chain. International Journal of Production Economics, 112, 655–664.
[36] Hwang, H. and Shinn, S. W. (1997). Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers and Operations Research, 24, 539–47.
[37] Jaber, M. Y. and Goyal, S. K. (2008). Coordinating a three-level supply chain with multiple suppliers, a vendor and multiple buyers. International Journal of Production Economics, 116, 95–103.
[38] Jaggi, C. K., Goyal, S. K. and Goel, S. K. (2008). Retailer’s optimal replenishment decisions with credit-linked demand under permissible delay in payments. European Journal of Operational Research, 190, 130-135.
[39] Jamal, A. M. M., Sarker, B. R. and Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48, 826-833.
[40] Jaruphongsa, W. and Lee , C.Y. (2008). Dynamic lot-sizing problem with demand time windows and container-based transportation cost. Optimization Letters , 2, 39-51.
[41] Kouki, C., Sahin, E., Jemaї, Z. and Dallery, Y. (2013). Assessing the impact of perishability and the use of time temperature technologies on inventory management. International Journal of Production Economics, 143, 72-85.
[42] Kreng, V. B. and Tan, S. J. (2010). The optimal replenishment decisions under two levels of trade credit policy depending on the order quantity. Expert Systems with Applications, 37, 5514-5522.
[43] Kreng, V. B. and Tan, S. J. (2011). Optimal replenishment decision in an EPQ model with defective items under supply chain trade credit policy. Expert Systems with Applications, 38, 9888-9899.
[44] Liao, H. C., Tsai, C. H. and Su, C. T. (2000). An inventory model with deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics, 63, 207–214.
[45] Liao, J. J. (2008). An EOQ model with noninstantaneous receipt and exponentially deteriorating items under two-level trade credit. International Journal of Production Economics, 113, 852-861.
[46] Lo, S. T., Wee, H. and Huang, W. C. (2007). An integrated production-inventory model with imperfect production processes and Weibull distribution deterioration under inflation. International Journal of Production Economics, 106, 248–260.
[47] Lou, K. R. and Wang, W. C. (2012). Optimal trade credit and order quantity when trade credit impacts on both demand rate and default risk. Journal of the Operational Research Society, doi: 10.1057/jors.2012.134.
[48] Migdalas, A., Baourakis, G. and Pardalos, P. M. (2004). Supply Chain and Finance. World scientific.
[49] Min, J., Zhou, Y. W. and Zhao, J. (2010). An inventory model for deteriorating items under stock-dependent demand and two-level trade credit. Applied Mathematical Modelling, 34, 3273-3285.
[50] Misra, R. B. (1975). Optimum production lot size model for a system with deteriorating inventory. International Journal of Production Research, 13, 495-505.
[51] Musa, A. and Sani, B. (2012). Inventory ordering policies of delayed deteriorating itemsunder permissible delay in payments. International Journal of Production Economics, 136, 75-83.
[52] Ouyang, L. Y., Chang, C. T. and Teng, J. T. (2005). An EOQ model for deteriorating items under trade credits. Journal of the Operational Research Society, 56, 719–726.
[53] Ouyang, L. Y., Teng, J. T. and Chen, L. H. (2006). Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments. Journal of Global Optimization, 34, 245–271.
[54] Ouyang, L.Y., Wu, K. S. and Ho, C. H. (2004). Integrated vendor–buyer cooperative models with stochastic demand in controllable lead time. International Journal of Production Economics, 92, 255–266.
[55] Ouyang, L. Y., Wu, K. S. and Ho, C. H. (2006). Analysis of optimal vendor-buyer integrated inventory policy involving defective items. International Journal of Advanced Manufacturing Technology, 29, 1232–1245.
[56] Ouyang, L. Y., Wu, K. S. and Ho, C. H. (2007). An integrated vendor–buyer inventory model with quality improvement and lead time reduction. European Journal of Operational Research, 108, 349–358.
[57] Pan, J. C. H. and Yang, J. S. (2002). A study of an integrated inventory with controllable lead time. International Journal of Production Research, 40, 1263–1273.
[58] Pardalos, P. M. and Tsitsiringos, V. (2002). Financial Engineering, Supply Chain and E-commerce, Kluwer Academic Publishers.
[59] Rau, H., Wu, M. Y. and Wee, H. M. (2003). Integrated inventory model for deteriorating items under a multi-echelon supply chain environment. International Journal of Production Economics, 86, 155–168.
[60] Sachan, R. S. (1984). On (T,Si) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 35, 1013-1019.
[61] Sarkar, B. (2012). An EOQ model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling, 55, 367-377.
[62] Sarker, B. R. and Diponegoro, A. (2009). Optimal production plans and shipmen schedules in a supply-chain system with multiple suppliers and multiple buyers. European Journal of Operational Research, 194, 753–773.
[63] Shah, N. H. (1993). Probabilistic time-scheduling model for an exponentially decaying inventory when delay in payment is permissible. International Journal of Production Economics, 32, 77–82.
[64] Shah, N.H. (2011). Single supplier–buyer integrated inventory model under multiple JIT delivery and stock-dependent demand. Journal of Mathematical Modelling and Algorithms ,10, 293-305.
[65] Sharafali, M. and Co, H. C. (2000). Some models for understanding the cooperation between the supplier and the buyer. International Journal of Production Research, 38, 3425–3449.
[66] Sharma, S. (2009). A composite model in the context of a production-inventory system. Optimization Letters, 3, 239-251.
[67] Shinn, S.W. and Hwang, H. (2003). Optimal pricing and ordering policies for retailers under order-size dependent delay in payments. Computers and Operations Research, 30, 35–50.
[68] Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E. (2000). Designing and Managing the Supply Chain, McGraw-Hill Companies, Singapore.
[69] Skouri, K., Konstantaras, I., Papachristos, S. and Teng, J. T. (2012). Supply chain models for deteriorating products with ramp type demand rate under permissible delay in payments. Expert Systems with Applications, 38, 14861-14869.
[70] Soni, H. and Shah, N. H. (2008). Optimal ordering policy for stock-dependent demand under progressive payment scheme. European Journal of Operational Research, 184, 91–100.
[71] Teng, J. T. (2002). On the economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 53, 915-918.
[72] Teng, J. T. (2009). Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad credit customers. International Journal of Production Economics, 119, 415-423.
[73] Teng, J. T. and Chang, C. T. (2009). Optimal manufacturer’s replenishment policies in the EPQ model under two levels of trade credit policy. European Journal of Operational Research, 195, 358–363.
[74] Teng, J. T., Chang, C. T., Chern, M. S. and Chan, Y. L. (2007). Retailer’s optimal ordering policies in the EOQ models with trade credit financing. International Journal of System Sciences, 38, 269–278.
[75] Teng, J. T., Chang, C. T., and Chern, M. S. (2012). Vendor–buyer inventory models with trade credit financing under both non-cooperative and integrated environments. International Journal of System Sciences, 43, 2050-2061.
[76] Teng, J. T., Chang, C. T. and Goyal, S. K. (2005). Optimal pricing and ordering policy under permissible delay in payments. International Journal of Production Economics, 97, 121–129.
[77] Teng, J. T., Chang, H. J., Dye, C. Y. and Hung, C. H. (2002).
An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging. Operations Research Letters, 30, 387-393.
[78] Teng, J. T. and Goyal, S. K. (2007). Optimal ordering policies for a
retailer in a supply chain with up-stream and down-stream trade
credits. Journal of the Operational Research Society, 58,
1252-1255.
[79] Teng, J. T., Krommyda, I. P., Skouri, K. and Lou, K. R. (2011).
A comprehensive extension of optimal ordering policy for
stock-dependent demand under progressive payment scheme.
European Journal of Operational Research, 215, 97-104.
[80] Teng, J. T. and Lou, K. R. (2012). Seller’s optimal credit period and replenishment time in a supply chain with up-stream and down-stream trade credits. Journal of Global Optimization, 53, 417-430.
[81] Teng, J. T., Min, J. and Pan, Q. (2012). Economic order quantity model with trade credit financing for non-decreasing demand. Omega, 40, 328-335.
[82] Teng, J. T., Ouyang, L. Y. and Chen, L. H. (2006). Optimal manufacturer’s pricing and lot-sizing policies under trade credit financing. International Transactions in Operational Research, 13, 515–528.
[83] Yang, H. L., Teng, J. T. and Chern, M. S. (2010). An inventory
model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. International
Journal of Production Economics, 123, 8-19.
[84] Yang, P. C. and Wee, H. M. (2003). An integrated multi-lot-size production inventory model for deteriorating items. Computers and Operations Research, 30, 671-682.
[85] Yang, P. C., Wee, H. M., Chung, S. L. and Ho, P. C. (2010). Sequential and global optimization for a closed-loop deteriorating inventory supply chain. Mathematical and Computer Modelling, 52, 161–176.
[86] Zhou, Y. W., Zhong, Y. and Li, J. (2012). An uncooperative order model for items with trade credit, inventory-dependent demand and limited displayed-shelf space. European Journal of Operational Research, 223, 76–85.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信