§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0808201216355700
DOI 10.6846/TKU.2012.00321
論文名稱(中文) 以流體力學方法提昇稻稈水解液中糖類的膜過濾效率
論文名稱(英文) Use of hydrodynamic methods to enhance membrane filtration efficiency of sugar produced by rice straw hydrolysis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 蔡鴻源
研究生(英文) Hung-Yuan Tsai
學號 699400403
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-16
論文頁數 91頁
口試委員 指導教授 - 黃國楨
委員 - 李篤中
委員 - 童國倫
委員 - 鄭東文
委員 - 莊清榮
關鍵字(中) 中空纖維膜
酵素
水解
葡萄糖
關鍵字(英) Hollow fiber
enzyme
hydrolysis
glucose
第三語言關鍵字
學科別分類
中文摘要
本研究是以中空纖維膜來分離水解稻稈懸浮液中的糖類。進而探討不同操作條件與流體力學方式對於分離水解液中糖類的影響。本研究使用材質為聚碸(Polysulfone),孔徑為10 kD之中空纖維膜來進行透析過濾。由單純的葡萄糖水溶液的過濾結果來看,可看出葡萄糖過濾時主要的阻力為薄膜阻力,而在高壓情況下葡萄糖穿透率率會有些下降。從水解液的透析過濾實驗與葡萄糖水溶液透析過濾比較,可以發現加入酵素後,濾速下降約85-90 %,其中過濾阻力主要為酵素在膜孔內阻塞與濾餅生成。此外,操作壓力越大葡萄糖的產率也會越高,但當操作壓力大於80 kPa後,壓力對濾液端葡萄糖產率就無明顯影響。但是水解液透析過濾之葡萄糖產率則與壓力呈現正比關係。固定操作壓力為60 kPa改變掃流速度時,當掃流速度增加5倍,其濾速可以增加3倍。接著將實驗獲得各項阻力的經驗式代入阻力串聯模式中,尋找出不同操作條件下的濾速。最後使用兩種流體力學方式增加濾速,其中間接式進料法約可以增加24.7 %之濾速;逐步增壓法則可以增加34.6 %之濾速。
英文摘要
The separations of sugars from hydrolysis suspension using hollow fiber and flat plate membranes are studied. The effects of operating conditions and hydrodynamic methods on the sugar separation performance are discussed. The hollow fibers used in the experiments are made of polysulfone, and their mean pore size is 10 kD. In the filtration of pure glucose, the main resistance source is the membrane because of trivial membrane fouling, and the sugar transmission decreases slightly under high pressures. When enzyme exists in the suspension, the filtration rate decreases about 85 - 90% compared to those in the filtration of pure glucose. The major resistances are due to the enzyme blocking in the membrane pores and the cake formation on the membrane surface. Increasing the transmembrane pressure results in higher glucose yield. However, this effect becomes trivial when the pressure exceeds 80 kPa. An increase in cross-flow velocity under fixed transmembrane pressure leads to higher filtration rate. The filtration rate increases three times when cross-flow velocity increases from 0.3 to 1.5 m/s. Some empirical equations are established to correlate the filtration resistances with operating conditions. The filtration rate can be estimated accurately by substituting the calculated resistances into modified Darcys’ law. In addition, several hydrodynamic methods are tested to increase the filtration rate. A pulse feeding way may increase the filtration rate by 24.7%, while the way of step-increasing pressure can increase the filtration rate as high as 34.6%.
第三語言摘要
論文目次
摘要      I
英文摘要	II
目錄	III
圖目錄	VI
第一章 緒論	1
1-1前言	1
1-2研究目的	3
第二章 文獻回顧	4
2-1酵素水解	4
2-2 薄膜過濾操作方式	6
2-3 掃流速度與透膜壓差對掃流過濾的影響	7
2-4 薄膜結構對掃流過濾的影響	9
2-5 酵素水解液之膜分離	11
2-6 透析過濾	14
第三章 理論	15
3-1 阻力串聯模式	15
3-2 穿透率	17
3-3 產率(Yield)	18
3-4 濃度極化模式	19
3-5 巨分子(酵素分子)之阻擋機構	21
3-6 粒子堆積於膜面上之受力分析	23
第四章 實驗裝置與步驟	26
4-1 掃流過濾裝置	26
4-2 實驗物料	28
4-2-1 實驗藥品	28
4-2-2 實驗濾膜	30
4-3 實驗設備與分析儀器	31
4-4 實驗步驟	32
4-4-1 稻稈前處理	32
4-4-2 稻稈水解反應	32
4-4-3 過濾前處理	32
4-4-4 中空纖維膜管之透析過濾	32
4-4-5 平板膜組之透析過濾	34
4-4-6 DNS法	36
4-4-7 DNS配置方法	36
4-4-8 糖類濃度之測量	36
4-4-9 水解酵素濃度之測量方法	38
第五章 結果與討論	39
5-1 葡萄糖單成分之透析過濾	39
5-2 水解液之透析過濾	45
5-2-1 平板模組之透析過濾	45
5-2-2 中空纖維膜之透析過濾	51
5-3 以流體力學的方式提升過濾效率	71
5-3-1 間接式進料法	71
5-3-2 逐步增壓法	73
第六章 結論	80
符號說明	82
參考文獻	85
附錄	88

 
表目錄
Table 4-1 The operating conditions used in cross-flow system.  35
Table 5-1 Comparison of properties under different hydrodynamic methods and conditions. 	79
圖目錄
Fig.3-1 A schematic diagram around the cake membrane surface in a cross-flow filtration. 	22
Fig. 4-1 A schematic diagram of cross flow filtration system. 	27
Fig.4-2 The absorbance vs. concentration of glucose. 	37
Fig.4-3 The absorbance vs. concentration of enzyme. 	38
Fig.5-1 Time courses of filtrate flux under various operating pressures. 	40
Fig.5-2 Filtration resistances in cross-flow diafiltration of glucose under various operating pressures. 	41
Fig.5-3 Time courses of glucose yield under different pressures. 	43
Fig.5-4 Effect of filtration pressures on the transmission of glucose suspension. 	44
Fig.5-5 Cross-flow velocities courses of pseudo steady state filtration rates in cross-flow diafiltration. 	46
Fig.5-6 Effect of shear stress on the weight of enzyme. 	48
Fig.5-7 Effect of filtrate flux on the weight of enzyme. 	49
Fig.5-8 Effect of Ft/Fn on the weight of enzyme. 	50
Fig.5-9 The relationships between αav and P of enzyme. 	51
Fig.5-10 Time courses of filtrate flux under various operating pressures. 	53
Fig.5-11 Filtration resistances in cross-flow diafiltration of hydrolysis suspension under difference pressures. 	54
Fig.5-12 Time courses of glucose yield under different pressures. 	56
Fig.5-13 Time courses of filtrate flux under various cross-flow rate. 	58
Fig.5-14 Filtration resistances in cross-flow diafiltration of hydrolysis suspension under different cross-flow rate. 	59
Fig.5-15 Time courses of glucose yield under different cross-flow rate. 	60
Fig.5-16 Effect of cross-flow rate on the rejection of enzyme. 	61
Fig.5-17 Effect of filtration pressure on the rejection of enzyme. 	62
Fig.5-18 Cross-flow velocities courses of pseudo steady state filtration rates in cross-flow diafiltration. 	63
Fig.5-19 Filtration pressure courses of pseudo steady state filtration rates in cross-flow diafiltration under various cross-flow velocities. 	64
Fig.5-20 Cross-flow velocities courses of pseudo steady state yield in cross-flow diafiltration under various pressure. 	65
Fig.5-21 Filtration pressure courses of pseudo steady state yield in cross-flow diafiltration under various cross-flow velocities. 	66
Fig.5-22 A plot of Rif versus ΔP under various cross-flow velocities for polysulfone membrane. 	67
Fig.5-23 Comparisons of cake resistance between calculated results and experimental data. 	68
Fig.5-24 Comparisons of filtration flux between calculated results and experimental data. 	69
Fig.5-25 Pressure and cross-flow velocity course of pseudo steady state filtration rate.	.70
Fig.5-26 Time courses of filtrate flux under normal feeding and pulse feeding. 	72
Fig.5-27 Time courses of filtrate flux under constant pressure and step     increasing pressure. 	74
Fig.5-28 Filtration resistances in cross-flow diafiltration of hydrolysis suspension under different operating condition. 	75
Fig.5-29 Time courses of filtrate flux of step increasing pressure under different pressures. 	76
Fig.5-30 Filtration resistances of step increasing pressure under different pressures. 	78
參考文獻
Beier, Soren Prip and Gunnar Jonsson “Separation of enzymes and yeast cells with a vibrating hollow fiber membrane module” Separation and Purification Technology 53, 111–118 (2007)
Bowen, W.R. and A.W. Mohammad, “Diafiltration by nanofiltration: Prediction and optimization”, AIChE Journal , 44, 1799-1812 (1998)
Belafi-Bako K., A. Koutinas, N. Nemest’othy , L. Gubicza , C. Webb, “Continuous enzymatic cellulose hydrolysis in a tubular membrane bioreactor”, Enzyme and Microbial Technology, 38, 155-161 (2005)
Chang, K-L, J.Thitikron-amorn, J-F Hsieh, B-M Chen, Khanok Ratanakhanokchai, P-J Huang and S-T Chen ”Enhanced enzymatic conversion with freeze pretreatment of rice straw ”Biomass and Bioenergy, 35, 90-95 (2011).
Chang, K-L, J. Thitikron-amorn, S-H Chen, J-F Hsieh, K. Ratanakhanokchai, P-J Huang, T-C Lin, S-T Chen “Improving the remaining activity of lignocellulolytic enzymes by membrane entrapment” Bioresource Technology, 102, 519-523 (2011).
Choo, K-H, Dae-Ic Chang, Kyong-Won Park , Moon-Hyeon Kim “Use of an integrated photocatalysis/hollow fiber microfiltration system for the removal of trichloroethylene in water” , Journal of Hazardous Materials 152, 183–190 (2008).
Echavarria, A.P., A. Ibarz, J. Conde and J. Pagan “Enzyme recovery and effluents generated in the enzymatic elimination of clogging of pectin cake in filtration process” Journal of Food Engineering, 111, 52–56 (2012).
Goulas, A.K., P. G. Kapasakalidis, H. R. Sinclair, R. A. Rastall and A. S. Crandison, “Purification of oligosaccharides by nanofiltration”, Journal of Membrane Science, 209, 321-335 (2002).
Gan, Q., S.J. Allen and G. Taylor “Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis”, Biochemical Engineering Journal , 12, 223-229 (2002)
Huisman I. H., P. Pradanos and A. Hernandez, “The effect of protein-protein and protein-membrane interactionon membrane fouling in ultrafiltration”, Journal of Membrane Science, 179, 79-90 (2000).
Hwang, K-J and T-T Lin, "Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration", Journal of Membrane Science, 199, 41–52 (2002)
Hwang, K-J and Y-S Wang, “Cross-flow Micorfiltration of Soft Porous Submicon Particles”, J. Chin. Inst. Chem. Engrs 34,161-169 (2003).
Hwang, K-J and P-Y Sz " Filtration characteristics and membrane fouling in cross-flow microfiltration of BSA/dextran binary suspension ", Journal of Membrane Science , 347 , 75–82 (2010)
Hwang, K-J, K-C Chen, S-T Chen and K-L Chang ” Sugar purification from enzymatic rice straw hydrolysis products using cross-flow diafiltration”, Separation Science and Technology, 47, 52-61 (2012)
Jaffrin, M.Y. and J.Ph. Charrier, “Optimization of ultrafiltration and diafiltration processes for albumin production”, Journal of Membrane Science, 97, 71-81 (1994)
Koseoglu-Imer, Derya, Y. Nadir Dizge, Ismail Koyuncu “Enzymatic activation of cellulose acetate membrane for reducing of protein Fouling”, Colloids and Surfaces B: Biointerfaces, 92 334-339 (2012)
Mameri N., F. Hamdache, N. Abdi, D. Belhocine, H. Grib, H. Lounici, D.L. Piron “Enzymatic saccharification of olive mill solid residue in a membrane reactor”  Journal of Membrane Science, 178, 121-130 (2000)
Mazzeia, R., L. Giornoa, E. Piacentinia, S. Mazzuca, E. Drioli “Kinetic study of a biocatalytic membrane reactor containing immobilized β-glucosidase for the hydrolysis of oleuropein” Journal of Membrane Science, 339, 215–223 (2009)
Shibutani,T., T. Kitaura, Y. Ohmukai, T. Maruyama, S. Nakatsuka, T. Watabe, H. Matsuyama “Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives” Journal of Membrane Science, 376, 102-109 (2011).
Zhao, Y-H, Daniel F. Shantz “Modified AnoporeTM hybrid membranes for the microfiltration of cellulose acid hydrolysis mixtures”, Journal of Membrane Science, 377, 99-109 (2011)
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信