淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0808201213342600
中文論文名稱 酵母菌在藻酸鈣晶球上之固定化及其恆壓過濾特性
英文論文名稱 Immobilization of yeast on calcium alginate beads and its dead-end filtration characteristics
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 蘇炳元
研究生英文姓名 Ping-Yuan Su
學號 699400031
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2012-07-16
論文頁數 100頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-莊清榮
委員-童國倫
委員-鄭東文
中文關鍵字 恆壓過濾  薄膜結垢  酵母菌  藻酸鈣晶球 
英文關鍵字 dead-end filtration  membrane fouling  Ca-alginate beads 
學科別分類
中文摘要 本論文旨在探討酵母菌在藻酸鈣晶球上之固定化的恆壓過濾特性。分別使用孔徑為0.025μm之醋酸纖維(MCE)膜、0.1μm之醋酸纖維(MCE)膜以及Whatman #2濾紙作為濾材,對單成份藻酸鈉(Sodium alginate)、酵母菌(Yeast)、藻酸鈣晶球(Calcium beads)及酵母菌固定化晶球(immobilized beads)進行恆壓過濾,探討不同成分物料、過濾壓差、以及鈣離子濃度對濾速、過濾阻力、薄膜結垢、濾餅及粒子之壓縮性質的影響。
研究結果發現,當過濾單成份藻酸鈉時,藻酸鈉分子在薄膜表面上的結垢具有高壓縮性與高阻力,會導致濾速急速下降,而提高過濾壓差可以增加過濾速度。當過濾添加培養基之酵母菌,發現過濾初期濾速下降的速度較過濾藻酸鈉分子時不明顯,這是由於過濾阻力的主要來源是酵母菌細胞在膜面上堆積所形成的濾餅;但隨著過濾的進行,形成的濾餅開始受到壓縮,導致阻力增加,酵母菌形成的濾餅具有高壓縮性,增加過濾壓差會形成較緻密的結構,使得過濾比阻增加。在過濾藻酸鈣晶球時,發現在低壓操作下所得到的濾速反而較高,表示高壓下濾餅受到嚴重壓縮,導致的高阻力使濾速變得較慢。而過濾壓差越高,越容易將晶球內部的水分擠出,使濾餅重量反而下降。以較高濃度鈣離子所製備的晶球較為堅硬,其壓縮性也會較小,平均濾餅過濾比阻較低。當過濾酵母菌固定化晶球時,過濾初始時,濾餅與粒子尚未受到壓縮,過濾行為與堅固的粒子類似,dt/dv vs. v的過濾曲線接近直線;隨著過濾進行,粒子開始受到壓縮變形,使得濾餅孔隙度減小、阻力急遽增加,大部份的壓降損失於此時形成的濾餅,而在過濾後期,剩餘的壓降無法對濾餅上層新堆積的粒子產生壓縮,故濾餅阻力增加的趨勢減緩。濾餅孔隙度減小時,粒子的有效比表面積會增加,表示過濾酵母菌固定化晶球時,除了濾餅受到壓縮之外,晶球粒子本身也會受到壓縮變形,柔軟指數大約為1.5,酵母菌固定化至藻酸鈣晶球可以保持細胞活性在75 %左右。和先前文獻比較發現本篇製備的藻酸鈣晶球粒子(1 mm)比先前文獻的粒子小(3.8 mm與5 mm),而且酵母菌活性會比先前文獻還要高。
英文摘要 Yeast cells are immobilized on the calcium alginate beads in this study. The alginate beads are prepared using different calcium concentrations, and their filtration characteristics, such as the retardation time for compression and softness index, are measured by a dead-end filtration system. The filter medium used in experiments include mixed cellulose acetate (MCE) membranes with mean pore sizes of 0.025 μm and 0.1 μm, and Whatman #2 filter paper. The effects of suspension materials, filtration pressure, and calcium concentration on the filtration rate, filtration resistance, and cake filtration and compression properties are discussed.
In the filtration of pure sodium alginate, the serious fouling on the membrane surface results in highly compressible cake with extremely high resistance as well as a rapid decline in filtration rate. The filtration rate increases with increasing filtration pressure. When a yeast fermentation broth is filtered, the filtration rate declines slowly at the beginning because the main source of filtration resistances is the filter cake formed by yeast cells. The filtration resistance increases quickly after a period of filtration due to the cake compression. The cake formed by yeast behaviors highly compressible. Therefore, the average specific cake filtration resistance increases significantly with increasing filtration pressure. In the filtration of calcium alginate beads, an increase in filtration pressure leads to a lower filtration rate due to severe cake and particle compressions, and leads to lighter cake mass due to the percolation of inter-particle water. The alginate beads prepared under high calcium concentration are more hardness, lower compressibility and lower specific cake filtration resistance. In the filtration of yeast immobilized beads, the filtration curves of dt/dv can be divided into three parts. The first part of filtration curve is a straight line and similar to those of incompressible particle. In the second part, the filtration resistance increases suddenly because of particle deformation and low cake porosity. Most solid compressive pressures are depleted in the cake formed in this period. The newly formed cake layer in the last part has a relatively loose structure. The increase in filtration resistance therefore becomes far smaller compared to the second part. Because the effective specific surface area of particles increases when the cake porosity decreases under high pressure, the cake compression and particle deformation occur simultaneously. The softness index of particles is measured as 1.5 for the yeast immobilized beads. The yeast activity for immobilized beads remains 75 % for a long period, which is much higher than those in free suspensions. Comparing the results of this study with those in previous literatures, the size of calcium alginate beads prepared by this study (ca 1 mm) are smaller and the yeast activity is higher than those in previous literatures.
論文目次 目錄
頁次
中文摘要 I
英文摘要 II
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 實驗動機與目標 4
第二章 文獻回顧 6
2-1 可變形粒子的特性 7
2-2 濾餅的性質 10
2-3 藻酸鈉過濾之特性 12
2-4 微生物細胞過濾之特性 15
2-5 酒精發酵及細胞固定化 17
第三章 理論 20
3-1 阻力串聯模式 20
3-2 濾餅之過濾比阻、孔隙度和固體壓縮壓力之關係 22
3-3 有效比表面積與柔軟指數(softness index)之關係 23
3-4 阻擋率(Rejection) 24
第四章 實驗裝置與步驟 27
4-1 恆壓過濾實驗裝置 27
4-2 實驗物料 29
4-2-1 藻酸鈉(sodium alginate) 29
4-2-2 酵母菌(Saccharomyces cerevisiae) 31
4-2-3 藻酸鈣晶球(Calcium alginate beads)製備及酵母菌固定化 32
4-3 實驗分析儀器 34
4-4 實驗步驟 37
4-4-1 緩衝溶液與懸浮液之配置 37
4-4-2 恆壓過濾之實驗步驟 38
4-5 實驗數據分析 39
4-5-1 胞外聚合物濃度分析 39
4-5-2 酵母菌活性測量 42
第五章 結果與討論 44
5-1 單成份藻酸鈉懸浮液之恆壓過濾 44
5-1-1 藻酸鈉之恆壓過濾特性 44
5-1-2 藻酸鈉之過濾阻力分析 49
5-2 添加培養基之酵母菌懸浮液恆壓過濾 50
5-2-1 添加培養基酵母菌之恆壓過濾特性 52
5-2-2酵母菌過濾之阻力分析 55
5-3 藻酸鈣晶球(calcium alginate beads)之恆壓過濾 60
5-3-1 藻酸鈣晶球之過濾特性 60
5-3-2 藻酸鈣晶球(calcium alginate beads)在恆壓過濾下之濾餅壓縮特性 63
5-3-3 改變鈣離子濃度對藻酸鈣晶球在恆壓過濾下之影響 68
5-4 酵母菌固定化至藻酸鈣晶球之恆壓過濾 71
5-4-1 酵母菌固定化晶球之過濾特性 71
5-4-2 改變鈣離子濃度對酵母菌固定化晶球之恆壓過濾的影響 74
5-4-3 酵母菌固定化前後之活性比較 80
第六章 結論 83
符號說明 86
參考文獻 88
附錄 94
附錄A 實驗物料及濾膜種類 95
附錄B 薄膜阻力Rm之求法 97
附錄C 聚集團內含水率之量測 98

表目錄
頁次
Table 4-1 Component of the suspention 31
Table 4-2 The operation conditions in this study 33
Table 5-1 The resistances of yeast suspension under various filtration pressure. 56
Table 5-2 A comparison of the experimental condition with the literature. 82

圖目錄
頁次
Fig. 1-1 The separation process spectrum of different particle size. 2
Fig. 1-2 Schematics of dead-end filtration and cross-flow filtration. 3
Fig. 2-1 An idealized plot of fraction density versus pressure for particle compaction showing the four overlapping stages. (German, 1989) 8
Fig. 2-2 Structural formula of sodium alginate molecule. ( Katsoufidou,2007). 12
Fig. 2-3 The egg-box model for bonding Ca2+ to sodium alginate molecule. (Katsoufidou,2007) 13
Fig. 3-1 Overview of various types of resistance in membrane filtration. 20
Fig. 4- 1A schematic diagram of dead-end filtration system. 28
Fig. 4-2 A schematic diagram of filter chamber. 28
Fig. 4-3 Size distribution of sodium alginate particles. 29
Fig. 4-4 Zeta potential distribution on 0.1wt% sodium alginate. 30
Fig. 4-5 The diagram of manufacture of calcium alginate beads 32
Fig. 4-6 Phenol-sulfuric acid method. 39
Fig. 4-7 Bradford method. 40
Fig. 4-8 The absorbance vs. concentration of sodium alginate. 41
Fig. 4-9 The absorbance vs. concentration of BSA. 41
Fig. 5-1 Time courses of filtration rate during sodium alginate suspensions under various filtration pressures. 45
Fig. 5-2 Time courses of filtrate volume during sodium alginate suspensions under various filtration pressures. 45
Fig. 5-3 Filtration curves of dt/dv vs. v under various filtration pressures. 46
Fig. 5-4 The relationships between αav and △P under various filtration pressure.(sodium alginate) 47
Fig. 5-5 The relationships between εav and △P under various filtration pressure. (sodium alginate) 48
Fig. 5-6 The resistance change during dead-end microfiltration under various filtration pressures. 49
Fig. 5-7 The microscope of yeast suspension.(add medium,x 3600X,1day) 51
Fig. 5-8 The microscope of yeast suspension.(add medium,x 3600X,1day) 51
Fig. 5-9 Filtration curves of filtrate volume vs time under various filtration pressure. (yeast sus.) 52
Fig. 5-10 Filtration curves of dt/dv vs v under various filtration pressure. (yeast sus.) 53
Fig. 5-11 The relationships between αav and △P under various filtration pressure.(yeast suspension) 54
Fig. 5-12 The relationships between εav and △P under various filtration pressure.(yeast suspension) 54
Fig. 5-13 The resistances change during dead-end microfiltration using yeast suspension. 55
Fig. 5-14 The top view of membrane surface formed by yeast suspension measured by SEM.(x 2500X、△P=3 bar、t= 120 min) 56
Fig. 5-15 The side view of cake formed by yeast suspension measured by SEM.(x 1000X、△P=1 bar、t= 120 min) 58
Fig. 5-16 The side view of cake formed by yeast suspension measured by SEM.(x 900X、△P=3 bar、t= 120 min) 58
Fig. 5-17 The rejection change during dead-end microfiltration under various filtration pressure. 59
Fig. 5-18 Time courses of filtration rate using calcium alginate beads suspensions under various filtration pressures. 61
Fig. 5-19 Time courses of filtrate volume using calcium alginate beads suspensions under various filtration pressures. 61
Fig. 5-20 Filtration curves of dt/dv vs. v under various filtration pressure. (calcium alginate beads) 62
Fig. 5-21 The relationship betweenεav and t under various filtration pressures. (calcium alginate beads) 64
Fig. 5-22 The relationships between 1-εav and △P under various times.(Calcium alginate beads) 65
Fig. 5-23 The relationships between αav and △P under various filtration pressures at t=3600 (s). (calcium alginate beads) 66
Fig. 5-24 The relationships between Wc and t under various filtration pressures. (calcium alginate beads) 67
Fig. 5-25 Time courses of filtration rate using calcium alginate beads suspensions under various calcium chloride concentration. 68
Fig. 5-26 Filtration curves of dt/dv vs. v under various Ca2+ concentration. (calcium alginate beads) 70
Fig. 5-27 The relationships between αav and t under various Ca2+ concentration. (calcium alginate beads) 70
Fig. 5-28 The relationship between q and t under various filtration pressures. (yeast immobilized in Ca-alginate beads) 71
Fig. 5-29 The relationship between v and t under various filtration pressures. (yeast immobilized in Ca-alginate beads) 72
Fig. 5-30 Filtration curves of dt/dv vs. v under various filtration pressure. (yeast immobilized in Ca-alginate beads) 73
Fig. 5-31 The relationships between tc and △P under various calcium concentration.(yeast immobilized in Ca-alginate beads) 74
Fig. 5-32 The relationships between αav and △P under various calcium concentration.(yeast immobilized in Ca-alginate beads) 75
Fig. 5-33 The relationships between So and ε under various calcium concentration.(yeast immobilized in Ca-alginate beads) 76
Fig. 5-34 Filtration curves of dt/dv vs. v under various filtration pressure. (immobilized and unimmobilized beads) 77
Fig. 5-35 The relationship betweenεav and t under various filtration pressures. (immobilized and unimmobilized beads) 78
Fig. 5-36 The relationships between αav and △P at t=3600 (s). (immobilized and unimmobilized beads) 78
Fig. 5-37 The relationships between So and ε under various calcium concentration. (immobilized and unimmobilized beads) 79
Fig. 5-38 The relationships between activity and t by free cell and immobilized Ca-alginate beads. 80
Fig. C-1 A conceptual visualization of the moisture distribution in sludge. 99
(Tsang & Vesilind,1990) 99
Fig. C-2 The Drying Apparatus(Tsang & Vesilind,1990) 100
Fig. C-3 Drying curve for identifying four different types of water in sludge(Tsang & Vesilind,1990). 100
參考文獻 參考文獻

Aeschlimann, A., Stockar, U. V., “Continuous production of lactic acid from whey permeate by Lactobacillus helveticus in a cell recycle reactor”, Enzyme Microb Technol 13, 811-816(1991).

Brink, P., Zwijnenburg, A., Smith, G., Temmink, H., Loosdrechta, M., “Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration”, J. Membr. Sci., 345, 207-216 (2009).

Bradford, M.M., “Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Anal. Biochem.,72,248-254(1976).

Ding, W. W., Wu, Y. T., Tang, X. Y., Yuan, L., Xiao, Z. Y., “Continuous ethanol fermentation in a closed-circulating system using an immobilized cell coupled with PDMS membrane pervaporation”, J Chem Technol Biotechnol 86, 82-87(2011).

Dubois, M., Gilles, K.A.,Hamilton, J.K.,Rebers, P.A.,Smith F., “Colorimetric method for determination of sugars and related substances”,Anal. Chem. 28,350-356(1956).

German,R. M., “Particle Packing Characteristics”, Chap. 9, Metal Powder Industries Federation, Princeton, New Jersey, 219-252 (1989).

Hashino, M., Katagiri, T., Kubota. N., Ohmukai, Y., Maruyama, T., Matsuyama, H., “Effect of membrane surface morphology on membrane fouling with sodium alginate”, J. Membr. Sci, 366, 258-265(2011).

Hashino, M., Hirami, K., Katagiri, T., Kubota N., Ohmukai. Y., Ishigami, T., Maruyama, T., Matsuyama, H., “Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling”, J. Membr. Sci, 379, 233-238(2011).

Hodgson, P. A., Leslie, G. L., Schneider, R. P., Fane, A. G., Fell, C. J. D. and Marshall, K. C. “Cake resistance and solute rejection inbacterial microfiltration: The role of the extracellular matrix”, J. Membr. Sci., 79, 35-53 (1993).

Hwang, K.J., Lyu, S.Y., Chen F.F.,“ The preparation and filtration characteristics of Dextran-MnO2 gel particles”, Powder Technol., 161,41-47(2006).

Hwang, K.J. and C.L. Hsueh, “A Study on the Mechanism of Cake Filtration of Soft Colloids”, Proc. 2001 Symposium on Transport Phenomena & Its Application, 19-22, Taipei, Taiwan,(2001).

Hwang, K.J., Wang, Y.S., “Cross-flow Micorfiltration of Soft Porous Submicon Particles”, J. Chin. Inst. Chem. Engrs 34,161-169 (2003).

Hwang, K.J., Wang, Y.T., Eiji Iritani, Nobuyuki Katagiri, “Effect of porous gel particle compression properties on microfiltration characteristics”, J. Membr. Sci 341, 286-293 (2009).

Inal, M., Yigitoglu, M., “Production of bioethanol by immobilized Saccharomyces cerevisiae onto modified sodium alginate beads”, J Chem Technol Biotechnol 86, 1548-1554(2011).

Juang, R.S,, Chen, H.L., Chen Y.S., “Membrane fouling and resistance analysis in dead-end ultrafiltration of Bacillus subtilis fermentation broths”, Sep Pur Technol,63, 531-538 (2008).

Karasu, K., Yoshikawa, S., Ookawara, S., Ogawa, K., Kentish, S. E., Stevens, G. W., “A combined model for the prediction of the permeation flux during the cross-flow ultrafiltration of a whey suspension”, J. Membr. Sci. 361, 71-77(2010).

Katsoufidou, K.S., Yiantsios, S.G., Karabelas, A.J., “Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing”, J. Membr. Sci. 300, 137-146(2007).

Katsoufidou, K.S., Sioutopoulos, D.C., Yiantsios, S.G. and Karabelas, A.J., “UF membrane fouling by mixtures of humic acids and sodium alginate: Fouling mechanisms and reversibility”, Desalination, 264, 220-227(2010).

Kuberkar, V. T., R. H. Davis, “Effects of Added Yeast on Protein Transmission and Flux in Cross-Flow Membrane Microfiltration”, Biotechnol. Prog. 15 ,472-479(1999).

Kiersten, M., Bucke, C., “The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels”, Biotechnol Bio Eng., 19, 387-397(1977).

Kuriyama, H., Seiko Y., Murakami T., Kobayashi H., Sonoda Y., “Continuous ethanol fermentation with cell recycling using flocculation yeast”, J. Ferment. Technol., 63, 159-165(1985).

Lee, K. S., Lin, P. J., Chang, J. S., “Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor”, Int J Hydrogen Energy 32, 950-957(2007).

Lee, K. H., Choi, I. S., Kim, Y. G., Yang, D. J., Bae, H. J., “Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads”, Bioresour. Technol., 102, 8191-8198(2011).

Leu, W. F., M. H. Lee and F. M. Tiller, “Cake Compressibility-A rigorous Definition”,Proc. Of the 6th World Filtration Congress, Nagoya, Japan, 148(1993).

Listiarini, K., Chun, W., Sun, D. D., Leckie, J. O., “Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes”, J. Membr. Sci. 344, 244-251(2009).

Listiarini, K., Tan, L., Sun, D. D., Leckie, J. O., “Systematic study on calcium–alginate interaction in a hybrid coagulation-nanofiltration system”, J. Membr. Sci. 370,109-115(2011).

Lu, W. M., Tung, K. L., Pan, C. H., Shih, C. P. and Hwang, K. J., “Crossflow microfiltration of deformable particles”, J. Membr. Sci., 41-44 (1998).

Lu, W.M., Tung, K. L., Hung, S. M., Shiau, J. S. and Hwang, K. J., “Compression of deformable gel particles”, Powder Technol 116, 1-12(2001).

Shimizu, Y., Rokudai, M., Tohya, S., Kayaware, E., Yazawa, T., Tanaka, H. and Eguchi, K. “Filtration characteristics of charged alumina membranes for methanogenic waste.”, J. Chem. Eng., 22, 635-641 (1989).

Taylor, F., Kurantz, M. J., Goldberg, N., Craig, J. C. Jr., “Control of Packed Column Fouling in the Continuous Fermentation and Stripping of Ethanol”, Biotechnol and Bioeng. 51, 33-39(1996).

Tiller, F.M., Huang, C.J., “Theory of Filtration Equipment”, Ind. Eng. Chem., 53, 529(1961).

Tsang, K. R. and Vesilind, P. A., “Moisture Distribution in Sludge”, Wat. Sci., Technol., 22, 135-142 (1990).

Wickramasinghe, S. R., Y. Wu and, B. Han, “Enhanced Microfiltration of yeast by Flocculation”, Desalination 147, 25-30(2002).

Yan, S., Wang, P., Zhai, Z., Yao, J., “Fuel ethanol production from concentrated food waste hydrolysates in immobilized cell reactors by Saccharomyces cerevisiae H058”, J Chem Technol Biotechnol 86, 731-738(2011).

Ye, Y., Clech, P. L., Chen, V., Fane, A.G., “Evolution of fouling during crossflow filtration of model EPS solutions”, J. Membr. Sci 264, 190-199(2005).

Ye, Y., Clech, P. L., Chen, V., Fane, A.G., Jefferson, B., “Fouling mechanisms of alginate solutions as model extracellular polymeric substances”, Desalination 175, 7-20(2005).

王鐘逸,“枯草桿菌懸浮液之微過濾結垢特性〞碩士論文,淡江大學化學工程與材料工程學系 (2010)。

童國倫,“可變形粒子之過濾與濾布堵塞機構之研究〞博士論文,台灣大學化工系 (1998)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-08-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-08-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信