淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0808201114303900
中文論文名稱 建築受風水平隨機振動之舒適度評估
英文論文名稱 Evaluation of Random Comfort Criteria to Wind-Induced Horizontal Vibration of buildings
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 蔡伯安
研究生英文姓名 Po-An Tsai
學號 697380540
學位類別 碩士
語文別 中文
口試日期 2011-06-22
論文頁數 87頁
口試委員 指導教授-吳重成
委員-陳瑞華
委員-蕭葆羲
委員-鄭啟明
中文關鍵字 風致振動  舒適度標準  回歸週期  振動模擬台 
英文關鍵字 Wind-Induced Motion  Random Vibration  Comfort Criteria  Return Period  Motion Simulator 
學科別分類 學科別應用科學土木工程及建築
中文摘要 建築物除了考量安全性之外,在受風擾動之情況之下,其使用人員的舒適度在結構設計裡亦是一個重要的指標。對於建築物受到風力影響所產生的振動,關於其舒適度方面的規範,長久以來一直不明確,因為除了身體因素之外,還包括心理因素等眾多因素影響。而目前台灣風力規範訂定之舒適度標準為5 mm/sec²加速度,其對應之回歸週期為半年。

為建立在地資料以作為未來風力規範改進之參考,本研究使用淡江大學風工程研究中心建置之振動模擬台,建立一套方法學及流程,以求得舒適度門檻值與回歸週期;以隨機振動之試驗建立舒適度規範(2%、5%與50%反對百分比)和對應之回歸週期並與簡諧振動做比較。

由結果得知:(1)舒適度門檻值將隨不同振動頻率而改變(0~1Hz);(2)簡諧振動時前後振動方向較左右振動方向敏感,但隨機振動則不明顯。

經本論文之方法求得之回歸週期,與現實生活中的規範相比之下,呈現的數值顯得過於嚴謹,未來接續之研究希望以目前數據為參考,以期求得更為符合規範需求之回歸週期。
英文摘要 In addition to security considerations of building, the use of personnel comfort in the structural design, which is caused by wind disturbance in some circumstances, is also an important indicator. With regard to the impact on vibration of building results from the wind, the regulations of comfort, has long been unclear. On account of that besides physical factors, includes many other factors such as psychological factors and so on. The standard of wind comfort criteria in Taiwan now is set of 5 mm / sec² acceleration, with its corresponding return period of six months.

In order to establish local data as a reference for future improvement of wind norms, this study makes use of the vibration simulator at Wind Engineering Research Center in Tamkang University. We set up a methodology and process, so as to achieve comfort threshold and return cycle; on basis of random vibration tests to build up comfort criteria (2%, 5% and 50% against the percentage) and corresponds to the Return Period in comparison with Simple Harmonic Motion.

By the results that:
(1) The comfort threshold will change with different motion-frequencies(0~1Hz);
(2) The before-and-after direction of Simple Harmonic Motion is more sensitive than the left-and-right direction, but random motion is not obvious.

The resulting value for the Return Period by the method of this paper appears to be too stringent with comparison to the standard of real life. The future continuation of the study wish to use the data as a reference and in the hope of obtaining plans that are more in line with standard requirements of the Return Period.
論文目次 目錄
目錄…………………………………………………………………………………Ⅰ
表目錄………………………………………………………………………………III
圖目錄………………………………………………………………………………IV
符號對照表 VI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 6
1.4 論文架構 7
第二章 實驗設計與流程 15
2.1實驗設備與器材 15
2.1.1水平振動台 15
2.1.2感受室 16
2.2第一階段實驗設計-簡諧振動試驗 17
2.2.1振動參數之選取 17
2.2.2實驗要項 17
2.2.3試驗流程 18
2.3第二階段實驗設計-隨機振動試驗 19
2.3.1振動參數之產生 19
2.3.2第二階段實驗改善 20
2.4問卷設計 21
2.4.1先期問卷 21
2.4.2舒適度問卷 23
第三章 方法與理論 42
3.1舒適度門檻值之分析 42
3.1.1 對數常態分佈(Log-Normal Distribution)之假設 42
3.2回歸週期分析 43
3.2.1 隨機振動負面抱怨百分比之期望值與回歸週期之關係 44
第四章 問卷統計結果 45
4.1簡諧試驗RMS之振動感受 45
4.1.1 門檻值 45
4.1.2 回歸週期 46
4.2隨機試驗之振動感受(門檻值以加速度RMS表示) 46
4.3隨機試驗之前後振動感受(門檻值以加速度RMS表示) 47
4.3.1 RMS門檻值 47
4.3.2 回歸週期 48
4.4隨機試驗之前後振動感受(門檻值以加速度Peak值表示) 48
4.4.1 Peak門檻值 49
4.4.2 回歸週期 50
4.5隨機試驗之左右振動感受(門檻值以加速度RMS表示) 50
4.5.1 RMS門檻值 51
4.5.2 回歸週期 51
4.6隨機試驗之左右振動感受(門檻值以加速度尖峰值表示) 52
4.6.1 Peak門檻值 52
4.6.2 回歸週期 53
4.7本研究舒適度門檻與ISO 6987-1984 之比較 54
第五章 討論與結論 76
參考文獻 80
附錄一 先期問卷…………………………………………………………………83
附錄二 簡諧試驗驗-舒適度問卷-………………………………………………86
附錄三 隨機試驗-舒適度問卷……………………………………………………87

表目錄

表(1.2.1) Takeshi Goto建議之感受標準 10
表(1.2.2) Isyumov與Kilpatrick建議之感受標準 10
表(2.2.1) 簡諧振動試驗頻率、振幅與加速度對應表 26
表(2.3.1) 隨機振動試驗頻率振幅與加速度對應表 27
表(2.3.3) 修正後之隨機振動試驗頻率振幅與加速度對應表 27
表(4.1.1) 簡諧試驗前後振動下受試者出現負面抱怨百分比 56
表(4.1.1a) 簡諧試驗下出現2% 負面抱怨之加速度門檻值與回歸週期 57
表(4.1.1b) 簡諧試驗下出現10%負面抱怨之加速度門檻值與回歸週期 57
表(4.1.1c) 簡諧試驗下出現50%負面抱怨之加速度門檻值與回歸週期 57
表(4.3.1) 隨機試驗前後振動下受試者出現負面抱怨百分比 58
表(4.3.1a) 隨機試驗前後振動下出現2% 負面抱怨之加速度 59
表(4.3.1b) 隨機試驗前後振動下出現10%負面抱怨之加速度 59
表(4.3.1c) 隨機試驗前後振動下出現50%負面抱怨之加速度 59
表(4.4.1a) 隨機試驗前後振動下出現2% 負面抱怨之加速度 60
表(4.4.1b) 隨機試驗前後振動下出現10%負面抱怨之加速度 60
表(4.4.1c) 隨機試驗前後振動下出現50%負面抱怨之加速度 60
表(4.3.2) 隨機試驗前後振動下受試者不能忍受該振動的回歸期之百分比 61
表(4.5.1) 隨機試驗左右振動下受試者給予負面抱怨百分比 62
表(4.5.1a) 隨機試驗左右振動下出現2% 負面抱怨之加速度 63
表(4.5.1b) 隨機試驗左右振動下出現10% 負面抱怨之加速度 63
表(4.5.1c) 隨機試驗左右振動下出現50% 負面抱怨之加速度 63
表(4.6.1a) 隨機試驗左右振動下出現2% 負面抱怨之加速度 64
表(4.6.1b) 隨機試驗左右振動下出現10% 負面抱怨之加速度 64
表(4.6.1c) 隨機試驗左右振動下出現50% 負面抱怨之加速度 64
表(4.5.2) 隨機試驗左右振動下受試者不能忍受該振動的回歸期之百分比 65




圖目錄

圖(1.2.1)特殊用途建築物內人體之振動感受門檻值;曲線1–容許加速度值之最低門檻;曲線2–容許加速度值之平均門檻 11
圖(1.2.2)曲線1–一般用途建築物容許加速度門檻值;曲線2–離岸結構(Off-Shore Fixed Structures)容許加速度門檻值 12
圖1.3.3 水平向正弦波之感受門檻值 13
圖1.3.4 水平向之舒適度標準 14
圖1.3.5 一年回歸週期下之各國舒適度規範 14
圖(2.1) 舒適度感受實驗室 28
圖(2.1.1) 水平振動模擬台 28
圖(2.1.2a) 感受室外觀 29
圖(2.1.2b) 感受室內觀透視圖 29
圖(2.1.2c) 感受室內部實景 30
圖(2.3.1c) 百世大樓數值模擬受風振動能量頻譜 32
圖(2.3.1d) 百世大樓數值模擬受風振動濾波 33
前後之能量頻譜 33
圖(2.3.1e) 隨機振動試驗使用之0.1099Hz 下4種等級之位移 34
圖(2.3.1f) 隨機振動試驗使用之0.3235Hz 下4種等級 34
圖(2.3.1g) 隨機振動試驗使用之0.7507Hz 下4種等級 35
圖(2.3.1h) 隨機振動試驗使用之1.08Hz 下4種等級 35
圖(2.3.2a) 隨機振動試驗使用之0.1099Hz 下4種等級之 36
圖(2.3.2b) 隨機振動試驗使用之0.3235Hz 下4種等級之 36
圖(2.3.2c) 隨機振動試驗使用之0.7507Hz 下4種等級之 37
圖(2.3.2d) 隨機振動試驗使用之1.08Hz 下4種等級之加 37
圖(4.1.1) 簡諧試驗前後振動下舒適度門檻值之累積分佈函數(CDF) 66
圖(4.1.2a) 簡諧試驗前後振動下受試者出現負面抱怨時,加速度與回歸週期關係 67
圖(4.3.1) 隨機試驗前後振動下舒適度RMS門檻值之累積分佈函數(CDF) 68
圖(4.3.2) 隨機試驗前後振動下,受試者對RMS振動之加速度與回歸週期關係 68
圖(4.4.1) 隨機試驗前後振動下peak門檻值之累積分佈函數(CDF) 69
圖(4.4.2) 隨機試驗前後振動下受試者對peak振動之加速度與回歸週期關係 69
圖(4.5.1) 隨機試驗左右振動下舒適度RMS門檻值之累積分佈函數(CDF) 70
圖(4.5.2) 隨機試驗左右振動下,受試者對RMS振動之加速度與回歸週期關係 70
圖(4.6.1) 隨機試驗左右振動下舒適度尖峰門檻值之累積分佈函數(CDF) 71
圖(4.6.2) 隨機試驗左右振動下受試者對peak振動之加速度與回歸週期關係 71
圖(4.7.1) 簡諧振動試驗結果與ISO 6897之比較 72
圖(4.7.2) 隨機振動試驗RMS門檻與 ISO 6897 之比較 73
圖(4.7.3) 隨機振動試驗Peak門檻與 ISO 6897 之比較 74
圖(4.7.4) 隨機和簡諧振動試驗於2%門檻值與 ISO 6897 之比較 75

參考文獻 參考文獻
1. Fazlur R. Khan and Richard A. Parmelee (1971), “Service Criteria for Tall Buildings for Wind Loading”, Proceedings of 3rd International Conference on Wind Effects on Buildings and Structures, Tokyo, Japan, pp. 401-407.
2. Peter W. Chen and Leslie E. Robertson (1972), “Human Perception Threshold of Horizontal Motion”, ASCE Journal of Structural Division, Vol. 98, No. ST8, pp. 1681-1695, 1972.
3. Robert J. Hansen、John W. Reed and Eric H. Vanmarcke, (1973), ”Human Response to Wind-induced Motion of Buildings”, ASCE Journal of Structural Division, Vol. 99, No. ST7, pp. 1589-1605.
4. Takeshi Goto (1983), “Studies on Wind-Induced Motion of Tall Buildings Based on Occupants’ Reactions”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 13, pp. 241-252.
5. A.P.Jeary, R.G.Morris and R.W.Tomlinson (1988), “Perception of Vibration – Tests in a Tall Building”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 29, pp.361-370.
6. Andy W. Irwin (1978), ”Human Response to Dynamic Motion of Structures”, The Structural Engineer, Vol. 56A , No. 9, pp. 237-244.
7. Andy W. Irwin (1986), ”Motion in Tall Buildings”, Proceedings of Conference on Tall Buildings and Urban Habitat - Second Century of the Skyscraper, Van Nostrand, Chicago, pp. 759-778.
8. International Organization for Standardization (1984), Guidelines for the evaluation of the response of occupants of fixed structures, especially buildings and off-shore structures, to low-frequency horizontal motion (0.063 to 1 Hz), ISO6897-1984, Geneva, Switzerland.
9. N. Isyumov (1993), “Criteria for Acceptable Wind-Induced Motions of Tall Buildings”, Proceedings of International Conference on Tall Buildings, Council on Tall Buildings and Urban Habitat, Rio de Janeiro.
10. N. Isyumov and J. Kilpatrick (1996), “Full-Scale Experience with Wind-Induced Motions of Tall Buildings”, Procceedings of ASCE Structures Congress, Chicago, USA.
11. W. H. Melbourne and J.C.J. Cheung (1988), “Designing for Serviceable Accelerations in Tall Buildings”, Proceedings of 4th International Conference on Tall Buildings, Hong Kong and Shanghai, pp. 148-155.


12. W. H. Melbourne, (1998), “Comfort Criteria for Wind-Induced Motion in Structures”, Structural Engineering International 1/98, International Association of Bridge and Structural Engineering, pp. 40-44.
13. Andy W.Irwin (1978), ”Human Response to Dynamic Motion of Structures”, The Structural Engineer, Vol. 56A , No. 9, pp. 237-244.
14. Andy W.Irwin (1986), ”Motion in Tall Buildings”, Proceedings of Conference on Tall Buildings and Urban Habitat - Second Century of the Skyscraper, Van Nostrand, Chicago, pp. 759-778.
15. W. H. Melbourne and J.C.J. Cheung (1988), “Designing for Serviceable Accelerations in Tall Buildings”, Proceedings of 4th International Conference on Tall Buildings, Hong Kong and Shanghai, pp. 148-155.
16. W. H. Melbourne (1998), “Comfort Criteria for Wind-Induced Motion in Structures”, Structural Engineering International 1/98, International Association of Bridge and Structural Engineering, pp. 40-44.
17. Standards Australia/ Standards New Zealand (2002), AS/NZS 1170.2 Supplement 1:2002, Structural Design Actions - Wind Actions - Commentary (Supplement to AS/NZS 1170.2:2002), Sidney, Australia.
18. Takeshi Goto (1975), “Research on Vibration Criteria from the View Point of People Living in Tall Buildings. (Part 1) Various Responses of Humans to Motion”, Transactions of the Architectural Institute of Japan, Vol. 237, No. 11, pp.109-118.
19. J. Kanda, Y. Tamura and K. Fujii, (1988), “Probabilistic Criteria for Human Perception of Low-Frequency Horizontal Motions, Proceedings of Symposium/Workshop on Serviceability of Buildings, Ottawa, pp. 260-269.
20. N. Isyumov, (1993), “Criteria for Acceptable Wind-Induced Motions of Tall Buildings”, Proceedings of International Conference on Tall Buildings, Council on Tall Buildings and Urban Habitat, Rio de Janeiro.
21. N. Isyumov and Kilpatrick, J. (1996), “Full-Scale Experience with Wind-Induced Motions of Tall Buildings”, Procceedings of ASCE Structures Congress, Chicago, USA.
22. S. Nakata, Y. Tamura and T. Otsuki,(1993), “Habitability under Horizontal Vibration of Law Building”, International Colloquium on Structural Serviceability of Buildings, Göteborg, Sweden, IABSE Reports, Vol. 69, pp.39-44.

23. K. Shioya and J. Kanda (1993), “Human Perception Thresholds of Horizontal Motion”, International Colloquium on Structural Serviceability of Buildings, Göteborg, Sweden, IABSE Reports, Vol. 69, pp. 45-52.
24. Kenny C. S. Kwok, Melissa D. Burton and Peter A. Hitchcock, (2007),“Occupant Comfort and Perception of Motion in Wind-Excited Tall Buildings”, Proc. of 12th International Conference on Wind Engineering, Cairns, Australia, pp. 101-115.
25. Melissa D. Burton, Roy O. Denoon, Richard D. Roberts, Kenny C. S. Kwok, and Peter A. Hitchcock (2003),“A motion simulator to investigate effects of wind-induced building mption”, Proc. of 11th International Conference on Wind Engineering, Texas, USA, pp. 1341-1348.
26. John F. Golding(1998), “Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness”, Brain Research Bulletin, Vol.47, No. 5, pp.507-516.
27. John F. Golding(2006), “Predicting individual differences in motion sickness susceptibility by questionnaire”, Personality and Individual Differences 41, pp.237-248.
28. John F. Golding(2006), “Motion sickness susceptibility”, Autonomic Neuroscience: Basic and Clinical 129, pp.67-76.
29. Architectural Institute of Japan (2004), Guidelines for the evaluation of habitability to building vibration, AIJES-V001-2004, Tokyo, Japan.
30. Architecture and Building Research Institute of Taiwan (2007), Taiwan Building Wind Code, Taipei, Taiwan.
31. 應用超越門檻法建立基本設計風速之機率分析, “結構工程” 第二十一卷 第二期(1996), 著者 吳重成、鄭啟明、陳若華, pp.4-7
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-08-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-08-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信