淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0808201113211400
中文論文名稱 Fenton 相關程序過氧化氫分解與有機物礦化之研究
英文論文名稱 Decomposition of hydrogen peroxide and mineralization of organics by Fenton related processes
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 賴佩嵐
研究生英文姓名 Pei-Lan Lai
學號 698480463
學位類別 碩士
語文別 中文
口試日期 2011-06-22
論文頁數 78頁
口試委員 指導教授-康世芳
委員-李柏青
委員-柯明賢
中文關鍵字 Fenton  脫色  混凝  礦化  染料 
英文關鍵字 Fenton  Decolorization  Coagulation  mineralization  Texitile wasterwater 
學科別分類 學科別應用科學環境工程
中文摘要 Fenton程序兼具OH‧氧化及鐵鹽混凝雙重功能去除有機物,本研究探討Fenton相關程序過氧化氫分解與有機物礦化之影響。以紅色反應性偶氮染料Evercion Red H-E3B與聚乙烯醇(Poly(vinyl alcohol),PVA)配置染料20 mg/L、PVA 50 mg/L之人工染整廢水,其色度與DOC濃度分別為1200單位與30 mg/L。以鐵鹽加藥量、pH、氧化時間及H2O2加藥量為操作變數,分析殘留之H2O2、色度及DOC。所有實驗採批次式瓶杯試驗。
  研究結果顯示Fenton程序去除色度與DOC效率為pH3>pH4>pH2.5。pH 2.5、pH 3、pH 4於低Fe2+加藥量下便可得到良好脫色效果,且脫色皆以氧化機制為主,增加Fe2+加藥量僅改變氧化及混凝脫色之比例;然而Fe2+加藥量對DOC之去除影響較顯著,增加Fe2+加藥量可提升DOC之去除率,並且提升混凝去除機制所佔之比例,其為增加Fe2+加藥量可生成較多之Fe3+增加混凝效果。  
  H2O2加藥量對脫色與DOC去除之研究,H2O2於25 mg/L時便可有效脫色,增加H2O2加藥量僅影響對DOC去除率,亦可提高氧化去除DOC及氧化脫色之比例,但超過H2O2最適加藥量,反而將使得氧化機制之比例下降,其為過量之H2O2與有機物競爭OH‧,使得用於氧化有機物之OH‧減少,相對造成混凝機制去除有機物之比例增加。氧化時間為5分鐘時色度與DOC之去除率即達穩定,且增加氧化時間對去除率差異不大。
英文摘要 The Fenton process is one of the advanced oxidation processes (AOPs) which eliminates organic matter by both hydroxyl radical (OH‧) oxidation and iron salts coagulation. The study was to evaluate the effects of the decomposition of hydrogen peroxide and the mineralization of organics by conducting Fenton-related process. A reactive azo dyestuff (Evecion Red H-E3B, 20 mg/L) and polyvinyl alcohol (PVA, 50 mg/L) were used to simulate color and dissolved organic carbon (DOC) in the industrial textile wastewater which consisted of color of 1200 ADMI unit and DOC of 30 mg/L. The dosages of iron salt, pH, oxidation time as well as dosage of hydrogen peroxide (H2O2) were applied as the operational variables. The capability of the treatment was evaluated by measuring the residual of H2O2 , color unit and DOC. All the experiments were in-beaker tested.
The results indicate that the ability to remove color and DOC in Fenton process is at the pH in the order of pH3> pH4> pH2.5. The color removal efficiency works well in pH 2.5, pH 3 and pH 4 under the circumstance of low iron salt dosage. The major mechanism to remove color is oxidation. The dosage of iron salt makes no significant difference in color removal and merely changes the ratio in color removal either by oxidation or coagulation. The iron dosage, however, greatly influences the DOC removal efficiency. Increasing iron salt (Fe2+) dosage enhances greatly on DOC and also improves the coagulation process due to the production of Fe3+ in the treatment.
The initial concentration of H2O2 plays a vital role in the oxidation of organic compounds in Fenton process. The optimal dosage of H2O2 is 25 mg/L for color removal as of the oxidation effect. Instead, the excessive amount of H2O2 does not increase the DOC removal since DOC removal is only performed best at some optimum dosage while excessive H2O2 will compete OH‧ with organic matter which retards the oxidation of the organic matter. The oxidation time of 5 minutes reaches the stable status for color and DOC removal, which excessive time period will make no difference.
論文目次 目錄
目錄 I
圖目錄 III
表目錄 V
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 染整業廢水與處理技術 3
2-1-1 染整業廢水特性 3
2-2 化學混凝處理染整業廢水 6
2-2-1 化學混凝理論 6
2-2-2 化學混凝法處理染整廢水 8
2-3 Fenton程序處理染整業廢水 9
2-3-1 Fenton程序理論 9
2-3-2 Fenton程序影響因素 10
2-3-3 Fenton程序處理染整廢水 12
第三章 實驗材料與方法 14
3-1 實驗材料 14
3-1-1 人工染整廢水 14
3-1-2 實驗藥品 17
3-1-3 實驗設備 18
3-2 實驗方法 19
3-2-1 Fenton相關程序實驗方法 19
3-2-2水質分析 20
第四章 結果與討論 22
4-1 鐵鹽加藥量對Fenton相關程序分解H2O2之影響因素 22
4-1-1 Fe2+加藥量對分解H2O2之影響 22
4-1-2 Fe3+加藥量對分解過氧化氫之影響 26
4-1-3 Fenton與Fenton-like程序分解過氧化氫之比較 29
4-2 Fenton程序有機物礦化之影響因素 31
4-2-1 pH對有機物礦化之影響 31
4-2-2 鐵鹽加藥量對有機物礦化之影響 33
4-3氧化時間對Fenton程序有機物礦化之影響 48
4-3-1 氧化時間對Fenton程序分解H2O2之影響 48
4-3-2 氧化時間對脫色與DOC去除之影響 50
4-3-3 氧化時間對脫色與DOC去除之機制 53
4-3-4 氧化時間對人工染整廢水特性波長之影響 57
4-4 H2O2加藥量對Fenton程序脫色與DOC去除之影響 62
4-4-1 H2O2加藥量對分解H2O2之影響 62
4-4-2 H2O2加藥量對脫色與DOC去除之影響 63
4-4-3 H2O2加藥量對脫色與DOC去除之機制 66
第五章 結論 75
參考文獻 76


圖目錄
圖3- 1Evercion Red H-E3B偶氮染料之UV-VIS光譜圖 15
圖3- 2 六連式瓶杯試驗機 18
圖3- 3 H2O2標準檢量線 21
圖4- 1 Fe2+加藥量對H2O2殘留量之影響 24
圖4- 2 Fe2+加藥量對H2O2殘留量之影響 24
圖4- 3 Fenton程序之Fe2+加藥量對H2O2殘留率反應關係 25
圖4- 4 Fenton程序之Fe2+加藥量對H2O2殘留率反應關係 25
圖4- 5 Fe3+加藥量對H2O2殘留量之影響 27
圖4- 6 Fe3+加藥量對H2O2殘留量之影響 27
圖4- 7 Fenton-like程序之Fe3+加藥量對H2O2殘留率反應關係 28
圖4- 8 Fenton-like程序之Fe3+加藥量對H2O2殘留率反應關係 28
圖4- 9鐵鹽加藥量對分解H2O2之常數比較 30
圖4- 10 pH 對Fenton 程序去除色度之影響(H2O2 50 mg/L) 32
圖4- 11 pH 對Fenton 程序去除DOC之影響(H2O2 50 mg/L) 32
圖4- 12鐵鹽加藥量對Fenton程序色度溶出之影響 35
圖4- 13鐵鹽加藥量對Fenton程序色度溶出之影響 35
圖4- 14鐵鹽加藥量對Fenton程序色度溶出之影響 36
圖4- 15 pH與Fe2+加藥量對Fenton 程序之混凝機制脫色比較 38
圖4- 16 pH與Fe2+加藥量對Fenton 程序之氧化機制脫色比較 38
圖4- 17鐵鹽加藥量對Fenton程序DOC溶出之影響 41
圖4- 18鐵鹽加藥量對Fenton程序DOC溶出之影響 41
圖4- 19鐵鹽加藥量對Fenton程序DOC溶出之影響 42
圖4- 20 pH與Fe2+加藥量對Fenton 程序之混凝機制去除DOC比較 44
圖4- 21 pH與Fe2+加藥量對Fenton 程序之氧化機制去除DOC比較 44
圖4- 22 Fenton程序色度溶出前後之特性波長 46
圖4- 23 Fenton程序色度溶出前後之特性波長 47
圖4- 24 Fenton程序色度溶出前後之特性波長 47
圖4- 25氧化時間對Fenton程序分解H2O2之影響 49
圖4- 26氧化時間對Fenton程序去除色度之影響 52
圖4- 27氧化時間對Fenton程序去除DOC之影響 52
圖4- 28 Fenton程序溶出前後之色度殘留 54
圖4- 29 Fenton程序溶出前後之色度殘留 54
圖4- 30 Fenton程序溶出前後之DOC殘留 56
圖4- 31 Fenton程序溶出前後之DOC殘留 56
圖4- 32 Fenton程序色度溶出前之特性波長 59
圖4- 33 Fenton程序色度溶出後之特性波長 59
圖4- 34 Fenton程序色度溶出前之特性波長 60
圖4- 35 Fenton程序色度溶出後之特性波長 60
圖4- 36 Fenton程序色度溶出前之特性波長 61
圖4- 37 Fenton程序色度溶出後之特性波長 61
圖4- 38 H2O2加藥量對Fenton程序分解H2O2之影響 62
圖4- 39 H2O2加藥量對Fenton程序脫色及DOC去除之影響(pH 3) 65
圖4- 40 H2O2加藥量對Fenton程序脫色及DOC去除之影響(pH 3) 65
圖4- 41 H2O2加藥量對Fenton程序之色度溶出前後比較 67
圖4- 42 H2O2加藥量對Fenton程序之DOC溶出前後比較 67
圖4- 43 H2O2加藥量對Fenton程序之色度溶出前後比較 69
圖4- 44 H2O2加藥量對Fenton程序之DOC溶出前後比較 69
圖4- 45 H2O2加藥量對Fenton程序之色度溶出前後比較 71
圖4- 46 H2O2加藥量對Fenton程序之DOC溶出前後比較 71
圖4- 47 H2O2加藥量對Fenton程序之色度溶出前後比較 73
圖4- 48 H2O2加藥量對Fenton程序之DOC溶出前後比較 74
圖4- 49 三價鐵混凝對脫色及DOC去除之影響(pH 3) 74

表目錄
表2- 1典型染整廢水水質特性 3
表2- 2我國目前印染整業規範之放流水標準 5
表3- 1 染料Evercion Red H-E3B基本資料 15
表3- 2 水溶性高分子化合物聚乙烯醇基本資料 16
表4- 1 Fenton程序之Fe2+對H2O2殘留關係反應常數 23
表4- 2 Fenton-like程序之Fe3+對H2O2殘留關係反應常數 26

參考文獻 參考文獻
1. Azbar N.,Yonar T. and Kestioglu K. 2004. Comparison of various advanced oxidation process and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere, 55, 35-43.
2. Merzouk B., Gourich B., Madani K., Vial Ch. and Sekki A., 2011. Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. Desalination 272, 246–253.
3. Badawy M.I. and Ali M.E.M., 2006. Fenton’s oxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials, 136, 961-966.
4. Ciotti C., Baciocchi R. and Tuhkanen T., 2009. Influence of the operating conditions on highly oxidative radicals generation in Fenton’s systems. Journal of Hazardous Materials ,161, 402-408.
5. Furlan F.R., Silva L.G.M., Morgado A.F., Souza A.A.U. and Souza S.M.G.U., 2010. Romoval of reactive dyes form aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon. Resources, Conservation and Recycling, 54, 283-290.
6. Gao B.Y., Wang Y., Yue Q.Y., Wei J.C. and Li Q., 2007. Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by polyferric chloride and polydimethyldiallylammonium chloride. Separation and Purification Technology 54, 157-163.
7. Gulkaya I., Surucu G.A. and Dilek F.B., 2006. Importance of H2O2/Fe2+ ration in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, 136,763-769.
8. Hameed B.H. and Lee T.W., 2009. Degradation of malachite green in aqueous solution by Fenton process. Journal of Hazardous Materials, 164, 468-472.
9. Hermosilla, D., Cortijo M. and Huang C.P., 2009. The role of iron on the degradation and mineralization of organic compounds using convertional Fenton and photo-Fenton processes. Chemical Engineering Journal, 155(3), 637-646.
10. Hsing H.J., Chiang P.C., Chang E.E. and Chen M.Y., 2007. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes:A comparative study. Journal of Hazardous Materials, 141 (1), 8-16.
11. Hsueh C.L., Huang Y.H., Wand C.C., and Chen C.Y., 2005. Degradation of azo dye using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58, 1409-1414.
12. Jiang C., Pang S., Ouyang F., Ma J. and Jiang J., 2010. A new insight into Fenton and Fenton-like processes for water treatment. Journal of Hazardous Materials, 174 ,813–817.
13. Kang S.F. and Chang, H.M., 1997. Coagulation of textile secondary effluents with Fenton’s reagent. Water Science and Technology 36, 215-222.
14. Kang S.F., Liao C.H. and Chen M.C., 2002. Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46, 923-928.
15. Kang S.F., Liao C.H. and Po S.T., 2000. Decolorization of Textile Wastewater by Photo-Fenton Oxidation Technology. Chemosphere, 41(8), 1287-1294.
16. Kim T.H., Park C., Yang J. and Kim S.Y., 2004. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of Hazardous Materials, 112, 95-103.
17. Kulik N., Panova Y. and Trapido M., 2007. The Fenton Chemistry and Its Combination with Coagulation for Treatent of Dye Solutions. Separation Science and Technology, 42, 1521-1534.
18. Lucas M.S., Dias A.A., Sampiao A., Amaral C. and Peres J.A., 2007. Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Research, 41, 1103-1109.
19. Ma X.J. and Xia H.L., 2009. Treatment of water-based printing ink wasterwater by Fenton process combined with coagulation. Journal of Hazardous Materials, 162 ,386-390.
20. Ozdemir C., Oden M.K., Sahinkaya S. and Kalipci E., 2011. Color Removal from Synthetic Textile Waterwater by Sono-Fenton Process. Clean-Soil, Air Water, 39(1), 60-67.
21. Papic S., Vujevic D., Koprivanac N. and Sinko D., 2009. Decolourization and mineration of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton process. Journal of Hazardous Materials, 164, 1137-1145.
22. Rajaa I.A., Manuel V., Abdlrani Y., Boumediene T. and Montserrat L.M., 2011. Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745-750.
23. Sellers R.M., 1980. Spectrophotometric determination of hydrogen peroxide using potassium titanium(Ⅳ) oxalate, The Anlyst ,105 (1225), 950-954.
24. Sun S.P., Li C.J., Sun J.H. and Shi S.H., 2009. Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161, 1052-1057.
25. Ustun G.E., Solmaz S.K.A., Morsunbul T. and Azak, H.S., 2010. Advanced oxidation and mineralization of 3-indole butyric acid (IBA) by Fenton and Fenton-like processes. Journal of Hazardous Materials, 180, 508-513.
26. Wang S., 2008. A Comparative study of Fenton and Fenton-like reaction Kinetics in decolorization of wastewater. Dye and Pigment 76, 714-720.
27. Wu Y., Zhou S., Zheng K., Ye X. and Qin F., 2011. Mathematical model analysis of Fenton oxidation of landfill leachate. Water Management 31, 468-474.
28. Xu X.R., Li X.Y., Li X.Z. and Li H.B., 2009. Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes, Separation and Purification Technology, 68(2), 261-266.
29. Yu F.Y., Li C.W. and Kang S.F., 2005. Color, dye and DOC removal, and acid generation during Fenton oxidation of dyes. Environmental Technology, 26(5), 537-544.
30. 環保署,2003,「印染整理業」、「農藥業」、「印刷電路板業」及「晶圓製造及半導體製造業」第四行業之廢水中特定物質前處理及管理制度評估計畫,第4-1~4-57頁。
31. 黃建維 (2009) ,「三價鐵與Fenton混凝處理染整廢水之比較」,淡江大學水資源及環境工程研究所碩士論文。
32. 中華民國行政院環境保護署,2009. 水污染防治法規,放流水標準.
33. 陳佩茹 (2010) ,「Fenton相關程序去除色度與DOC之研究」,淡江大學水資源及環境工程研究所碩士論文。
34. 楊萬發,1987,水及廢水處理化學。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信