§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0808200809315300
DOI 10.6846/TKU.2008.00182
論文名稱(中文) 聚丙烯/玉米澱粉崩解性複合材料之製備及性質之研究
論文名稱(英文) A Study on the Preparation and Properties of the Polypropylene/Corn Starch Destructible Polymer Composites
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 林育新
研究生(英文) Yu- Hsin Lin
學號 695401348
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2008-07-22
論文頁數 124頁
口試委員 指導教授 - 林國賡(gglin168@yahoo.com.tw)
委員 - 賴森茂
委員 - 董崇民
關鍵字(中) 聚丙烯
澱粉
崩解性複合材料
糊化
馬來酸酐
熔融混煉
流變性質
關鍵字(英) Polypropylene
Corn starch
Destructible Polymer Composites
Maleic anhydride
Melt mixing
Rheology
第三語言關鍵字
學科別分類
中文摘要
本研究主要以聚丙烯(PP)與玉米澱粉之熔融混煉製成崩解性複合材料。以添加不同接枝率之馬來酸酐相容劑(PP-g-MA或PB3200)及改質澱粉於PP基材中,進行各種性質分析。極性澱粉與非極性PP可由SEM、TGA及DSC觀察兩者不相容之情形。且隨著澱粉增加,因為嚴重相分離及低分子量之相容劑添加過量,使得機械性質下降。
    未添加相容劑之複材與摻混0.5phr PP-g-MA之複材中,仍有大顆粒玉米澱粉存在,其餘配方經混煉過程之強大剪切力,及相容劑附著,撕裂成細碎小顆粒。
    藉由FTIR可發現相容劑與澱粉(未糊化)之羥基(-OH)並無化學接枝反應,而是以物理作用力(Van der Waal force或hydrogen bonding)提升複材之相容性及機械性質。流變性質測試中,可發現複材之儲存模數(G´),會隨著添加相容劑之相容作用而上升。由動態機械與拉伸測試分析結果,發現相容劑PB3200添加5phr是不足的,而PP-g-MA最佳值為1phr。且由於相容劑接枝率及其分子量上的差異,本研究發現添加相容劑PB3200複材之機械性質較添加相容劑PP-g-MA略差。
英文摘要
In this study, we aim at blending polypropylene/corn starch by melt-
mixing to manufacture destructible polymer composites. We compounded 
polypropylene with various concentrations of compatiblizer and modified corn starch by a Brabender mixer. Then, the different properties of destructible polymer composites were analyzed. 
The high levels of immiscibility in the polar-nonpolar corn starch-PP system were shown by SEM, DSC, and TGA. Serious phase separation and/or excess compatiblizer added may cause bad mechanical properties. The results of SEM showed that polymer composites with compatiblizers added below 0.5 phr had great starch granules. Moreover, the corn starch might be cut to small bits by great shear stress and adherent compatiblizers during melt-mixing process, if the content of compatibilizer was over 0.5 phr. The FTIR spectra showed that maleic anhydride groups had no chemical graft reaction with the hydroxyl groups in the unmodified corn starch. 
Appropriate amount of compatibilizer added may cause an improvement for the mechanical properties of polymer composites, due to the physical intermolecular force (Van der Waal force or hydrogen bonding) between the maleic anhydride and corn starch. The results of rheological analysis showed that the storage modulus went up because of the compatibilizing effect. 
We could observe that the amount of PB3200 added up to 5 phr is insufficient to improve the mechanical properties of polymer composites. The suitable concentration of compatiblizer (PP-g-MA) was 1phr. We concluded in this study, based on the different grafting ratios and molecular weight that the mechanical properties of polymer composites with PB3200 were lower than with PP-g-MA .
第三語言摘要
論文目次
總目錄
致謝	I
中文摘要	II
英文摘要	III
總目錄	IV
圖目錄	VI
表目錄	IX
第一章 緒論	1
1.1 前言	1
1.2 研究動機與目的	3
第二章 文獻回顧	6
2.1 分解性塑膠種類	6
2.1.1 崩解性塑膠填充材之種類	                7
2.2澱粉之簡介	7
2.2.1 澱粉之物理結構與性質	7
2.2.2 常見澱粉[54]	10
2.3 混合及摻合方式	14
2.4 相容劑種類	15
2.5 崩解性複材文獻回顧	19
第三章 理論基礎	23
3.1 生物分解性	23
3.2 填充複合材料	27
3.3 填充複合材料之相容性	28
3.4 流變學原理	30
3.4.1 流變學研究內容與意義	30
3.4.2 剪切黏度	31
3.4.3 動態流變行為	        33
3.4.4 線性黏彈性質	34
3.5 抗張測試[46]	35
第四章 實驗	37
4.1 實驗材料	37
4.2 實驗儀器	39
4.3 實驗方法	43
4.3.1 PP1080/玉米澱粉之製備	43
4.3.2 PP1080/玉米澱粉/PP-g-MA之複合材料製備	45
4.3.3 PP1080/玉米澱粉/PB3200之複合材料製備	47
4.3.4 PP1080/改質玉米澱粉之複合材料製備	49
4.4 材料測試與分析	51
4.5 樣品分析流程	54
第五章 結果與討論	55
5.1 SEM微觀相形態	55
5.2 紅外線光譜(FTIR)	68
5.3 DSC熱分析探討	73
5.4 TGA熱重損失分析	82
5.5 流變分析	94
5.6 動態機械分析(DMA)	100
5.7 拉伸測試分析	107
第六章 結論	115
第七章 參考文獻	117
圖目錄

圖2-1 直鏈澱粉化學結構	8
圖2-2 支鏈澱粉化學結構	9
圖2-3 玉米澱粉SEM圖	10
圖2-4 各種化學澱粉分類[54]	13
圖2-5 相容劑種類	16
圖3-1 生物可分解塑膠的檢測、標準與認證	26
圖3-2 純張力	36
圖4-1 聚丙烯/玉米澱粉 複合材料的製備流程圖	44
圖4-2 PP1080/玉米澱粉/PP-g-MA複合材料的製備流程圖	46
圖4-2 PP1080/玉米澱粉/PB3200複合材料的製備流程圖	48
圖4-3 PP1080/PP-g-MA /玉米澱粉複合材料的製備流程圖	50
圖4-4 PP/玉米澱粉崩解性複材樣品分析流程	54
圖5-1 配方c10之SEM圖(X100)	56
圖5-2 配方c20之SEM圖(X100)	56
圖5-3 配方c30之SEM圖(X100)	57
圖5-4 配方c10之SEM圖(X1000)	57
圖5-5 配方c20之SEM圖(X1000)	58
圖5-6 配方c30之SEM圖(X1000)	58
圖5-7 配方c10m05之SEM圖(X1000)	59
圖5-8 配方c10m1之SEM圖(X1000)	59
圖5-9 配方c10m5之SEM圖(X1000)	60
圖5-10 配方c20m05之SEM圖(X1000)	60
圖5-11 配方c20m1之SEM圖(X1000)	61
圖5-12 配方c20m5之SEM圖(X1000)	61
圖5-13 配方c30m05之SEM圖(X1000)	62
圖5-14 配方c30m1之SEM圖(X1000)	62
圖5-15 配方c30m5之SEM圖(X1000)	63
圖5-16 配方c10pb05 SEM圖 (x1000)	64
圖5-17 配方c10pb1 SEM圖 (x1000)	64
圖5-18 配方c10pb5 SEM圖 (x1000)	65
圖5-19 配方c20pb05 SEM圖 (x1000)	65
圖5-20 配方c20pb1 SEM圖 (x1000)	66
圖5-21 配方c20pb5 SEM圖 (x1000)	66
圖5-22 配方c30pb05 SEM圖 (x1000)	67
圖5-23 配方c30pb1 SEM圖 (x1000)	67
圖5-24 配方c30pb5 SEM圖 (x1000)	68
圖5-25 相容劑PP-g-MA水合之反應機制圖	69
圖5-26 PP-g-MA室溫下與真空80℃之FTIR圖(範圍:4000-400cm-1)	70
圖5-27 PP-g-MA室溫下與真空80℃之FTIR圖(範圍:2000-1000cm-1)	70
圖5-28 相容劑與玉米澱粉之反應機制圖	71
圖5-29 糊化及未糊化玉米澱粉摻混相容劑之FTIR圖(範圍:4000-400cm-1)	72
圖5-30 糊化及未糊化玉米澱粉摻混相容劑之FTIR圖(範圍:2000-1000cm-1)	72
圖5-31 c10添加不同比例相容劑(PP-g-MA)之DSC圖	75
圖5-32 c20添加不同比例相容劑(PP-g-MA)之DSC圖	76
圖5-33 c30添加不同比例相容劑(PP-g-MA)之DSC圖	76
圖5-34 c10添加不同比例相容劑(PB3200)之DSC圖	77
圖5-35 c20添加不同比例相容劑(PB3200)之DSC圖	77
圖5-36 c30添加不同比例相容劑(PB3200)之DSC圖	78
圖5-37 c10添加不同比例相容劑(PP-g-MA)之結晶溫度圖	78
圖5-38 c20添加不同比例相容劑(PP-g-MA)之結晶溫度圖	79
圖5-39 c30添加不同比例相容劑(PP-g-MA)之結晶溫度圖	79
圖5-40 c10添加不同比例相容劑(PB3200)之結晶溫度圖	80
圖5-41 c20添加不同比例相容劑(PB3200)之結晶溫度圖	80
圖5-42 c30添加不同比例相容劑(PB3200)之結晶溫度圖	81
圖5-43 不同比例玉米澱粉之比較圖	84
圖5-44 c10不同PP-g-MA比例之熱重損失圖	84
圖5-45 c20不同PP-g-MA比例之熱重損失圖	85
圖5-46 c30不同PP-g-MA比例之熱重損失圖	85
圖5-47 c10不同PB3200比例之熱重損失圖	86
圖5-48 c20不同PB3200比例之熱重損失圖	86
圖5-49 c30不同PB3200比例之熱重損失圖	87
圖5-50 不同比例玉米澱粉之熱重一階微分圖	87
圖5-51 c10不同PP-g-MA比例之熱重一階微分圖	88
圖5-52 c20不同PP-g-MA比例之熱重一階微分圖	88
圖5-53 c30不同PP-g-MA比例之熱重一階微分圖	89
圖5-54 c10不同PB3200比例之熱重一階微分圖	89
圖5-55 c20不同PB3200比例之熱重一階微分圖	90
圖5-56 c30不同PB3200比例之熱重一階微分圖	90
圖5-57 不同比例澱粉0.5phr PP-g-MA比例之熱重一階微分圖	91
圖5-58 不同比例澱粉1phr PP-g-MA比例之熱重一階微分圖	91
圖5-59 不同比例澱粉5phr PP-g-MA比例之熱重一階微分圖	92
圖5-60 不同比例澱粉0.5phr PB3200比例之熱重一階微分圖	92
圖5-61 不同比例澱粉1phr PB3200比例之熱重一階微分圖	93
圖5-62 不同比例澱粉5phr PB3200比例之熱重一階微分圖	93
圖5-63 不同澱粉比例振幅掃描比較圖	95
圖5-64 不同澱粉比例比較圖	96
圖5-65 c10不同相容劑PP-g-MA比例頻率掃描圖	96
圖5-66 c20不同相容劑PP-g-MA比例頻率掃描圖	97
圖5-67 c30不同相容劑PP-g-MA比例頻率掃描圖	97
圖5-68 c10不同相容劑PB3200比例頻率掃描圖	98
圖5-69 c20不同相容劑PB3200比例頻率掃描圖	98
圖5-70 c30不同相容劑PB3200比例頻率掃描圖	99
圖5-71 不同澱粉比例之儲存模數圖	101
圖5-72 c10不同相容劑PP-g-MA比例之儲存模數圖	102
圖5-73 c20不同相容劑PP-g-MA比例之儲存模數圖	102
圖5-74 c30不同相容劑PP-g-MA比例之儲存模數圖	103
圖5-75 c10不同相容劑PB3200比例之儲存模數圖	103
圖5-76 c20不同相容劑PB3200比例之儲存模數圖	104
圖5-77 c30不同相容劑PB3200比例之儲存模數圖	104
圖5-78 c10不同相容劑比例之之儲存模數圖	105
圖5-79 c20不同相容劑比例之之儲存模數圖	105
圖5-80 c30不同相容劑比例之儲存模數之儲存模數圖	106
圖5-81 不同澱粉比例之拉伸結果	111
圖5-82 PP-g-MA系列之比較	111
圖5-83 PB3200系列之比較	112
圖5-84 不同相容劑之比較	112
圖5-85 不同澱粉比例之斷裂點結果	113
圖5-86 PP-g-MA系列之斷裂點結果	113
圖5-87 PB3200系列之斷裂點結果	114
圖5-88 不同相容劑之斷裂點結果	114
 
             表目錄

表1-1 分物可分解性塑膠與傳統塑膠性質比較	4
表1-2 生物可分解性塑膠、傳統塑膠及澱粉價格表	5
表1-3 各地區生物可分解產品之產能表	5
表2-1 反應型相容劑	17
表2-2 非反應型相容劑	18
表4-1 玉米澱粉成分	38
表4-2 不同混煉時間配方表	43
表4-3 不同添加量之相容劑PP-g-MA配方	45
表4-4 不同添加量之相容劑PB3200配方	47
表4-5 PP摻混改質玉米澱粉之配方	49
表5-1 MA官能基之紅外吸收特性波數	71
表5-2 PP掺混不同含量的玉米澱粉之熔點、吸熱焓、結晶度	74
表5-3 PP添加相容劑(PP-g-MA)系列之熔點、吸熱焓、結晶度	74
表5-4 PP添加相容劑(PB3200)系列之熔點、吸熱焓、結晶度	75
表5-5 不同比例玉米澱粉及相容劑(PP-g-MA)系列	83
表5-6 不同比例玉米澱粉及相容劑(PB3200)系列	83
表5-7 不同澱粉比例之拉伸結果	108
表5-8 PP-g-MA系列之拉伸結果	109
表5-9 PB3200系列之拉伸結果	109
參考文獻
【1】G.J.L. Griffin, “Synthetic Polymers and The Living environment” , 
     Pure & appl. Chem., Vol. 45, p. 241-247(1980).
【2】G.J.L. Griffin, “Starch polymer blends”, Polymer Degradation and 
     Stability, Vol. 45, p. 241-247(1994).
【3】Wanjun Liu, Ya-Jane Wang, Zhenhua Sun, “Crystallization Behavior of Starch-Filled Polypropylene”, Journal of Applied Polymer Science, Vol. 92, p. 484-492(2004).
【4】N Abacha, S Fellahi, “Synthesis of polypropylene-graft-maleic anhydride Compatibilizer and evaluation of nylon6/polypropylene blend properties”, Polymer International, Vol.54, p.909-916(2005).
【5】Rouhallah Bagheri, “Effect of processing on the melt degradation of 
     starch-filled polypropylene”, Polymer International, Vol.48,  
     p.1257-1263 (1999).
【6】Youn Cheol Kim,Jin-Chul Kim, “Study on the Silicate Dispersion and Rheological Properties of PP/Starch-MB/Silicate Composites”, J. Ind. Eng. Chem., Vol. 13, 1029-1034 , (2007).
【7】F. J. Rodriguez-Gonzalez, B. A .Ramsay, B. D. Favis, “High
     performance LDPE/thermoplastic starch blends : a sustainable     
     alternative to pure Polyethylene”, Polymer, Vol.44, 
     p.1517-1526(2003)
【8】W. Liu, Y.-J. Wang, Z. Sun, “Effects of polyethylene-grafted maleic 
anhydride (PE-g-MA) on thermal properties, morphology, and 
tensile properties of low-density polyethylene (LDPE) and 
corn starch blends”,Journal of Applied Polymer Science, 
Vol.88, p.2904-2911(2003)
【9】A.G. Pedroso, D.S. Rosa, “Mechanical, thermal and morphological 
characterization of recycled LDPE/corn starch blends”,
Carbohydrate Polymers, Vol.59, p.1-9(2005)
【10】R. Chandra, Renu Rustgi, “Biodegradation of maleated linear 
 low-density polyethylene and starch blends”, Polymer   
 Degradation and Stability, Vol.56, p.185-202(1997)
【11】L. Averous, L. Moro, P. Dole, C. Fringant, “Properties of 
 thermoplastic blends: starch-polycaprolactone”, Polymer, Vol.   
 41, p. 4157-4167(2000).
【12】Eung Gu Kim, Beom Soo Kim, Dae su Kim, “Physical properties 
      and Morphology of Polycaprolactone/Starch/Pine-Leaf 
      Composites”, Journal of Applied Polymer Science, Vol. 103, 
      p. 928~934 (2007).
【13】M. Barikani, M. Mohammadi, “Synthesis and characterization of 
      starch-modified polyurethane”, Carbohydrate Polymers, Vol. 68, 
      p. 773-780(2007).
【14】Pierre Sarazin, Gang Li, William J. Orts, Basil D. Favis, “Binary   
     and ternary blends of polylactide, polycaprolactone 
     and thermoplastic starch”, Polymer, Vol. 49, p. 599-609(2008).
【15】Giuseppina ceccorulli,Mariastella scandola,Grazyna adamus,   
      “Compatibilizing Effect of a Graft Copolymer on Bacterial 
        PHB/PMMA Blends”, Journal of Applied Polymer Science, Vol. 
      40, p. 1390-1399(1990).
【16】S.-M. Lai*, T.-M. Don, Y.-C. Huang, “Preparation and Properties  
      of Biodegradable Thermoplastic Starch/Poly (hydroxy butyrate) 
      Blends”, Journal of Applied Polymer Science, Vol. 100, p. 
      2371-2379 (2006).
【17】Michel A. Huneault, Hongbo Li, “Morphology and properties of   
     compatibilized polylactide/thermoplastic starch blends”, polymer, 
     Vol.40, p. 270-280 , (2007).
【18】S.-M. Lai, C.-S.Wu, H.-T Liao, ”The Characterization of   
     Biodegradable Polybutylene Succinate/starch Blends Using 
     HDPE-g-acrylic Acid as a Compatibilizer”, Polym. Polym.    
     Composites, Vol. 14 , p.365-376 (2006).
【19】S.-M. Lai, C-K. Huang, H.-F. Shen, “Preparation and Properties 
      of Biodegradable Poly(butylene Succinate)/Starch Blends” ,   
      Journal of Applied Polymer Science, Vol. 97, p. 257-264 (2005).
【20】J. A. Me’ndez, F. Vilaseca, M. A. Pe`lach, J. P. Lo’pez, L. 
      Barbera`, X. Turon, J. Girone`s, P. Mutje, “Evaluation of the 
      Reinforcing Effect of Ground Wood Pulp in the Preparation of 
      Polypropylene-Based Composites Coupled with Maleic  
      Anhydride Grafted Polypropylene”, Journal of Applied Polymer 
      Science, Vol. 105, p. 3588~3596 (2007).
【21】J.-I. Weon, K.-T. Gam, W.-J. Boo,1 H.-J. Sue, C.-M. Chan, 
     “Impact-Toughening Mechanisms of Calcium Carbonate-
      Reinforced Polypropylene Nanocomposite”, Journal of Applied    
      Polymer Science, Vol. 99, p. 3070-3076,(2006).
【22】Jun Zhang, Qing-Jun Ding, Ning-Lin Zhou, Li Li, Zhen-Mao Ma, 
      Jian Shen,“Studies on Crystal Morphology and Crystallization 
      Kinetics of Polypropylene Filled with CaCO3 of Different Size 
      and Size Distribution”, Journal of Applied Polymer Science, Vol. 
      101, p. 2437~2444 (2006).
【23】M. S. F. Samsudin, Z. A. Mohd Ishak, S. S. Jikan, Z. M. Ariff, A.  
      Ariffin, “Effect of Filler Treatments on Rheological Behavior of    
      Calcium Carbonate and Talc-Filled Polypropylene Hybrid 
      Composites”, Journal of Applied Polymer Science, Vol. 102, p. 
      5421~5426 (2006).
【24】D. Bikiaris, J. Aburto, I. Alric, E. Borredon, M. Botev, C. Betchev, 
     C. Panayiotou, “ Mechanical properties and biodegradability of 
     LDPE blends with fatty-acid esters of amylose and starch”, Journal 
     of Applied Polymer Science, Vol.71, p.1089-1100(1999)
【25】Jian-Ping Deng, Wan-Tai Yang, Bengt Rånby, “Melt-photografting 
     polymerization of maleic anhydride onto LDPE film”, European    
     Polymer Journal, Vol. 38, p.1449-1455(2002).
【26】Strach:Properties and Potential, edited by T.Galliard, Published for 
      the Socuety of Chemical Industry by John Wiley& Sons, 
      Chichester, New York, Brisbane, Toronto, Singapore, p.18-33 
      (1987).
【27】A. R. Oromehie, S. A. Hashemi, I. G. Meldrum, D. N. Waters, 
      “Functionalisation of Polypropylene with Maleic Anhydride and 
      Acrylic Acid for Compatibilising Blends of Polypropylene with    
      Poly(ethylene terephthalate)”, Polymer International, Vol.12, p. 
      117-120 (1997).
【28】Wulin Qiu, Takashi Endo, Takahiro Hirotsu, “A novel technique 
      for preparing of maleic anhydride grafted polyolefins”, European 
      Polymer Journal, Vol. 41, p.1979-1984(2005).
【29】Marcelo A. Villar, Edwin L. Thomas, Robert C. Armstrong,
      “Rheological properties of thermoplastic starch and starch/
      poly(ethylene-co-vinyl alcohol) blends”, polymer, Vol.36,
      p.1869-1876(1995)
【30】Utpal R. Vaidya, Mrinal Bhattacharya, “Properties of blends of 
      starch and synthetic polymers containing anhydride groups”, 
      Journal of Applied Polymer Science, Vol. 52, p. 617-628(1994).
【31】Yongsok Seo, Tran Hai Ninh, Soon Man Hong, Sehyun Kim,Tae 
      Jin Kang, Hansung Kim,and Jinyeol Kim, “In Compatibilizer-
      Reinforced Interface between a Flexible Polymer (a     
      Functionalized Polypropylene) and a Rodlike Polymer(a 
      Thermotropic Liquid Crystalline Polymer)”, Langmuir, Vol. 22, 
      3062-3067 , (2007).
【32】D.R. Paul and S. Newman, Editors, Polymer blends vol. 2, Academic Press, New York (1978).
【33】D. Bikiaris, C.Panayiotou, “LDPE/Starch Blends 
      Compatibilized with PE-g-MA Copolymers”, Journal of Applied  
      Polymer Science, Vol. 103, p. 928~934 (2007).
【34】A.G. Pedroso, D.S Rosa, “Mechanical thermal and morphological 
      characterization of recycled LDPE/corn starch blends”, 
      Carbohydrate Polymers, Vol. 59, p.1-9(2005).
【35】L. H. Sperling, “Introduction to Phyical Polymer Science”,Chap.4,     
      second edition, WILEY (1992).
【36】L. A. Utracki, “Polymer Alloys and Blends and Rheology”,
      Hanser Publisher, New York. Part 2 (1989).34.H. J. Barnes, J. F.     
      Hutton, K. Walters, “An Introduction to Rheology”, Elsevier,    
      (1989).
【37】L. A. Utracki, “Melt Flow of Polymer Blend” Polym. eng. sci.,
      Vol.23,p.602 (1983).
【38】C. D. Han, H. H. Yang, “Rheological Behavior of Compatible    
      Polymer Blends.I. Blends of Poly(Styrene-Co-Acrylonitrile) and   
      Poly(Caprolactone)”, Journal of Applied Polymer Science, 
Vol.33,p.1199-1220 (1987).
【39】C. D. Han, “Rheological behavior of Polymer Blends”, Journal of 
      Applied Polymer Science, Vol. 29, p. 2205-2229 (1984).
【40】A. P. Plochocki, “Melt Rheology of Polymer Blends The 
      Morphology Feedback”, Polymer Engineering and Science, 
      Vol. 23, p. 618-626 (1983).
【41】P. Scholz, D. Froelich, and R. Muller, “Viscoelastic Properties and
      Morphology of Two-Phase Polypropylene/Polyamide 6 Blends in 
      the Melt. Interpretation of Results With an Emulsion Model”, 
      Journal of Rheology, Vol. 33, p. 481~499 (1989).
【42】Fujiyama, “Rheological Properties of Polypropylene/High-Density  
      Polyethylene Blend Melts. II.Dynamic Viscoelastic Properties”,  
      Journal of Applied Polymer Science, Vol. 42, p. 481~488 (1991).
【43】巫靜安,高分子材料流變學導論,化學工業出版社,(1994)
【44】H. L. Goldsmith, S. G. Mason, In “Rheology”, Academic Press 
      New York, Vol. 4, (1967).
【45】C. W. Macosko, “Rheology: Principles, Measurements and 
      Application ”, VCH, (1994).
【46】劉玉梅,高分子加工實驗,高立圖書有限公司,(2001).
【47】B.K. Hong, W.H. Jo, “Effects of molecular weight of SEBS 
      triblock copolymer on the morphology, impact strength, and 
      rheological property of syndiotactic polystyrene/ethylene-
      propylene rubber blends ”, Polymer, Vol. 41, p. 2069-2079 
      (2000).
【48】Patrick Cigana and Basil D. Favis, “Morphology-Interface-
Property Relationships in polystyrene/Ethylene-propylene Rubber 
Blends. 1. Influence of Triblock Copolymer Interfacual Modifiers”, Macromolecules, Vol. 30, p. 4163-4169 (1997).
【49】C. Creton, H.R.Brown, and V.R.Deline, “Influence of Chain 
      Entanglement on the Failure Modes in Block Copolymer 
      Toughened Interfaces”, Macromolecules, Vol. 27, p. 1774-1780 
      (1994).
【50】N. C. Beck Tan, D. G. Peiffer, and R. M. Briber, “Reactive 
      Reinforcement of Polystyrene/Poly(2-vinylpyridine) Interfaces”, 
      Macromolecules, Vol. 29, p. 4969-4975 (1996).
【51】Yongsok Seo, Tran Hai Ninh, Soon Man Hong, Sehyun Kim, 
      Tae Jin Kang, Hansung Kim, and Jinyeol Kim, “In Situ 
      Compatibilizer Reinforced Interface between an Amorphous 
      Polymer (Polystyrene) and a Semicrystalline Polymer (Polyamide 
      Nylon 6)”, Marcomolecules, Vol. 40, p. 5953-5958 (2007).
【52】Infrared and Raman Characteristic Group Frequencies Tables and 
      Charts, Third Edition, George Socrates, John Wiley & Sons, LTD
【53】Yongsok Seo, Tran Hai Ninh, “Enhanced interfacial adhesion 
      between polypropylene and nylon 6 by in situ reactive   
  compatibilization”, Polymer, Vol. 45, p. 8573-8581 (2004).
【54】Starch : chemistry and technology, edited by Roy L. Whistler and 
Eugene F. Paschall. Assistant editors: J. N. Bemiller and Hugh J. 
Roberts.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信