淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0808200714412800
中文論文名稱 微流道毛細填充流動之理論與實驗研究
英文論文名稱 Theory and Experiment of the Microchannel Capillary Filling Flow
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 陳冠宇
研究生英文姓名 Kuan-yu Chen
學號 694340026
學位類別 碩士
語文別 中文
口試日期 2007-07-10
論文頁數 78頁
口試委員 指導教授-楊龍杰
委員-施文彬
委員-李其源
委員-康尚文
中文關鍵字 聚對二甲苯  毛細作用  填充流動  接觸角 
英文關鍵字 MEMS  parylene  Capillary  Filling flow  Contact angle 
學科別分類 學科別應用科學機械工程
中文摘要 本研究以聚對二甲苯(parylene)作為微流道的材料,利用面型微細加工(surface micromachining)技術製作出具入口緩衝區的微流道晶片,並以丙酮、甲醇、乙醇、異丙醇和純水作為毛細力填充流體(filling flow),成功使用高速顯微系統,觀察紀錄低表面能液體填充流的位置與時間關係;在微流道填充流動的理論推導方面,本文利用不可壓縮流(Incompressible Flow)Navier-Stokes方程式,來推導毛細位移與填充時間的關係式,並加以無因次化,繪製出理論曲線與實驗結果進行比較。
在動態接觸角量測方面,製作ㄧ個傾斜平台,放置鍍有parylene的基材,比較DI Water在傾斜與水平的基材,其靜態接觸角的差異;由於,parylene置於一傾斜平台,DI Water液滴處於一個即將滑動的狀態,其前端動態接觸角較為靜態接觸角大20度左右,與文獻[33]所反推之DI Water與parylene接觸角為90度左右,有其吻合的趨勢。
英文摘要 In experiment aspects, the thesis fabricates a silicon chip with parylene microchannels having a buffer zone from beginning to end by surface micromachining. Channels are characterized using spontaneous capillary filling with acetone, methanol, ethanol, isopropanol and de-ionized water. The moving images of filling flow meniscus are successfully measured by using the video camera of high speed. In theory aspects, a mathematical model is developed to understand the functional relationship among flow displacement, flow time, surface tension, and viscosity for laminar flow in parylene channels by using the incompressible Navier–Stokes equation. Further, the study use dimensionless analysis for the purpose of comparing the displacement of different solutions.
In dynamic contact angle measurement, the thesis fabricates an inclined platform putting the substrate with parylene on. After that, de-ionized water is dripped on the chip, and the result on the inclined platform is compared with that on the horizontal platform.
論文目次 目錄
中文摘要…………………………………………………………...……..I
英文摘要……………………………...…………………………………II
目錄..........................................................................................................III
圖目錄......................................................................................................V
表目錄...................................................................................................VIII


第一章 緒論
1-1 研究動機與目的………………………………………….1
1-2 文獻回顧………………………………………………….4
第二章 微流道之設計製作與parylene接觸角量測
2-1 parylene接觸角之量測…………………………………..11
2-2 微流道之製作程序………………………………….…..18
2-3 微流道之製作成果……………………………………...26
第三章 量測結果與討論
3-1 理論………………………………………………...……32
3-2 微流道之填充流量測方法……………………………...34
3-3 丙酮加入染色劑之量測與結果………………………36
3-4 有機溶液之填充流量測與結果………………………40
3-5 有機溶劑無因次化的理論與結果比較………………51
3-6 有機溶劑在parylene微流道中之沿徑行為...…………..52
第四章 結論和未來建議
4-1 結論………………………………………………….…..55
4-2 未來建議………………………………………………...57
參考文獻…………………………………………………………..……58
附錄A…………………………………………………………………..62
附錄B…………………………………………………………………...74
附錄C………………………………………………………………...…75
圖目錄
圖1-1 parylene材質微流道充填純水之瞬間拍攝影像…………..…..5
圖1-2 .J. C. T. Eijkel以polyimide製作出之微流道…………………....6
圖1-3 .J. C. T. Eijkel以Pyrex glass製作出之微流道……………...…...7
圖1-4 .Silicon oil和DI Water界面位移所拍攝的影像…………..…….8
圖1-5 .PEG與PDMS的實驗與理論比較圖………………………...…9
圖2-1 接觸量測儀器拍攝圖…………………………………………13
圗2-2 接觸角量測儀器所拍攝出去離子水與parylene的接觸角…14
圗2-3 接觸角量測儀器所拍攝出浸泡丙酮之後的parylene與去離子
.水的接觸角……………………………………………..……..15
圖2-4 .parylene基材放置於傾斜平台上………….…………………16
圖2-5 .DI Water與傾斜平台上的parylene基材之接觸角量測結果.17
圖2-6 .parylene微流道製作程序………...…….……………………..22
圖2-7 parylene微流道製程光罩………………...…………………..24
圖2-8 刻度尺的製作成果……………………………………………27
圖2-9 緩衝區之製程實體圖…………………………………………29
圖2-10 微流道製作成果圖……………...…………………………….30
圖2-11 製作完成之微流道晶片…………..…..………………………31
圖3-1 液體在流道內部的ㄧ維流動示意圖…………………………34
圖3-2 使用針筒將純水滴在流道開洞區所拍攝之圖片……………35
圖3-3 量測毛細液前緣位移之實驗設備……………………………35
圖3-4 .Brilliant Blue R之分子結構圖……………………………….36
圖3-5 丙酮加入染色劑在10-15μm之液前緣鏡頭…………………37
圖3-6 丙酮加入染色劑在20-30μm之液前緣鏡頭………….….…..37
圖3-7 丙酮加入染色劑在35-45μm之液前緣鏡頭…………………38
圖3-8 丙酮(加入Brilliant Blue R)之時間位置曲線圖………….….38
圖3-9 丙酮(加入Brilliant Blue R)之時間位置平方曲線圖………..39
圖3-10 高速運動影像擷取及分析系統………………………………41
圖3-11 丙酮之時間位置曲線圖………………………………………41
圖3-12 甲醇之時間位置曲線圖………………………………………42
圖3-13 乙醇之時間位置曲線圖………………………………………42
圖3-14 異丙醇之時間位置曲線圖……………………………………43
圖3-15 丙酮之時間位置平方曲線圖…………………………………43
圖3-16 甲醇之時間位置平方曲線圖…………………………………44
圖3-17 乙醇之時間位置平方曲線圖…………………………………44
圖3-18 異丙醇之時間位置平方曲線圖………………………………45
圖3-19 各類有機溶劑之位置比較圖…………………………………45
圖3-20 甲醇在流道寬為35-45μm之毛細液前緣前8μs的鏡頭……46
圖3-21 乙醇在流道寬為35-45μm之毛細液前緣前8μs的鏡頭……47
圖3-22 無因次化之有機溶劑時間位置曲線圖………………………52
表目錄
表1-1 參考文獻之理論與實驗結果比較表格……………………...…10
表2-1 parylene與去離子水之接觸角量測數據………..…………13
表2-2 浸泡丙酮後的parylene與去離子水之接觸角量測數據…...15
表2-3 DI Water與置於傾斜平台上之parylene基材所量測之結果.17
表3-1 在工作溫度為20℃,其有機溶液之表面張力與黏滯係數值..48
表3-2 各溶液間之理論定性比值…………………………………….49
表3-3 各溶液間之實驗比值與誤差………………………………….49
表3-4 各類有機溶劑的動態接觸角數據…………………………….50
參考文獻 [1] N. Tas et al., “2D-Confined Nanochannels Fabricated by Conventional Micromachining,” Nano Letters, Vol. 2, No. 9, pp. 1031-1032 (2002)
[2] N. Tas et al., “Capillarity Induced Negative Pressure of Water Plugs in Nanochannels,” Nano Letters, Vol. 3, No. 11, pp. 1537-1540 (2003)
[3] N. Tas et al., “Capillary Filling Speed of Water in Nanochannels,” Applied Physics Letters, Vol. 85, No. 15, pp.3274-3276 (2004)
[4] A. Hibara et al.,“Nanochannels on a Fused-Silica Microchip and Liquid Properties Investigation by Time-Resolved Fluorescence Measurements,” Analytical Chemistry, Vol. 74, No. 24, pp. 6170-6176 (2002)
[5] A. Han et al.,“Filling Kinetics of Liquids in Nanochannels as Narrow as 27 nm by Capillary Force,” Journal of Colloid and Interface Science, pp.151-157 (2006)
[6] D. S. Kim et al.,“Micro-Channel Filling Flow Considering Surface Tension Effect,” Journal of micromechanics and microengineering , pp. 236–246 (2002)
[7] J. Pihl et al.,“Microfluidic Technologies in Drug Discovery,” Reviews Drug discovery today, Vol. 10, No. 20, pp. 1377-1383 (2005)
[8] X. F. Peng and G. P. Peterson, “Convective Heat Transfer and Flow Friction for Water Flow in Micro channel Structures,” Int. J. Heat Mass Transfer, Vol. 39, No.12, pp. 2599-2608 (1996)
[9] S. Han and K. K. Wang, “Analysis of the Flow of Encapsulant during Underfill Encapsulation of Flip-Chips,” IEEE Tran. Comp. Packing Manu. Tech. Part B, Vol. 20, No.4, pp. 424-433 (1997)
[10] J. Jang and S. S. Lee, “Theoretical and Experimental Study of MHD Micropump,” Sensors and Actuators A: Physical, Vol. 80, pp. 84-89 (2000)
[11] M. J. Madou, L. J. Lee, K. W. Koelling and S. Daunert, “Design and Fabrication of Polymer Microfluidic Platforms for Biomedical Applications,” Ann. Tech. Conf. – Soc. Plast. Eng., 2534-2538 (2001)
[12] A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy and E. Peled, “Water-Neutral Micro Direct-Methanol Fuel Cell(DMFC) for Portable Applications,” J. Power Sources, Vol. 5994, pp. 1-4 (2003)
[13] E. W. Washburn, “The Dynamics of Capillary Flow,” The Physical Review, 17(3), pp.273-283 (1921)
[14] J. M. Bell and F. K. Cameron, “The Flow of Liquids through Capillary Spaces,” Journal of Physical Chemistry, 10, pp.658-674 (1906)
[15] K. Shinohara et al., “High-Speed Micro-PIV Measurements of Transient Flow in Microfluidic Devices,” Measurement Science and Technology ,15 (10), pp. 1965-1970 (2004)
[16] B. J. Kim et al., “Micro PIV Measurement of Two-Fluid Flow with Different Refractive Indices,” Measurement Science and Technology 15 (6), pp. 1097-1103 (2004)
[17] J. N. Israelachvili, Intermolecular and Surface Forces (London: Academic Press), p.120 (1985)
[18] P. G. De Gennes, “Wettting: Statics and Dynamics,” Reviews of Modern Physics, 57(3-I), pp.827-890 (1985)
[19] Tas, N. et al., “Stiction in Surface Micromachining,” J. of Micromechanics and Microengineering, 6(4) pp.385-397 (1996)
[20] Tas, N. et al., “Nanofluidic Bubble Pump Using Surface Tension Directed Gas Injection,” Analytic Chemistry, 74(9), pp.2224-2227 (2002)
[21] M. J. De Boer et al., “Micromachining of Buried Micro Channels in Silicon,” Journal of Microelectromechanical Systems, 9 (1), pp. 94-103 (2000)
[22] J. Haneveld et al., “Wet Anisotropic Etching for Fluidic 1D Nanochannels, ” Journal of Micromechanics and Microengineering, 13 (4), pp. S62-S66 (2003)
[23] I. Papautsky et al., “Low Temperature IC Compatible Process for Fabricating Surface Micromachined Metallic Microchannels, ” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 317-322 (1997)
[24] I. Papautsky et al., “A Low-Temperature IC-Compatible Process for Fabricating Surface-Micromachined Metallic Microchannels,” Journal of Microelectromechanical Systems, 7 (2), pp. 267-273 (1998)
[25] W. W. Y. Chow et al., “Microfluidic Channel Fabrication by PDMS-Interface Bonding,” Smart Materials and Structures, 15 (1), pp. S112-S116 (2006)
[26] B.-H. Jo et al., “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” Journal of Microelectromechanical Systems, 9 (1), pp. 76-81 (2000)
[27] N. Sundararajan et al., “Three-Dimensional Hydrodynamic Focusing in Polydimethylsiloxane (PDMS) Microchannels,” Journal of Microelectromechanical Systems, 13 (4), pp. 559-567 (2004)
[28] H. Wu et al., “Fabrication of Complex Three-Dimensional Microchannel system in PDMS,” Journal of the American Chemical Society, 125 (2), pp. 554-559 (2003)
[29] C. H. Chiou et al., “Micro Devices Integrated with Microchannels and Electrospray Nozzles Using PDMS Casting Techniques,” Sensors and Actuators, B: Chemical, 86 (2-3), pp. 280-286 (2002)
[30] J. C. T. Eijkel et al.﹐“1-D Nanochannels Fabricated in Polyimide,” Lab on a Chip - Miniaturisation for Chemistry and Biology, 4 (3), pp. 161-163 (2004)
[31] X. N. Jiang, Z. Y. Zhou, J. Y. Li and X. Y. Ye, “Micro-Fluid Flow in Microchannel,” Transducers ’95, Stockholm, Sweden, June 25-29, pp. 317-320 (1995)
[32] B. K. Gale, “Scaling Effects in a Microfabricated Electric Field Flow Fractionation System with Integrated Detector,” Ph.D. thesis, University of Utah, Salt Lake City,(2000)
[33] L. J. Yang et al.﹐“The Marching Velocity of the Capillary Meniscus in a Microchannel,” Journal of Micromechanics and Microengineering, 14 (2), pp. 220-225 (2004)
[34] J. C. T. Eijkel et al.﹐“Strongly Accelerated and Humidity Independent Drying of Nanochannels Induced by Sharp Corners ” Physical Review Letters 95 (25), pp. 1-4 (2005)
[35] W. K. Chan and C. Yang, “Surface-Tension-Driven Liquid-Liquid Displacement in a Capillary,” Journal of Micromechanics and Microengineering, 15 (9), pp. 1722-1728 (2005)
[36] A. Han et al., “Filling Kinetics of Liquids in Nanochannels as Narrow as 27 nm by Capillary Force,” Journal of Colloid and Interface Science, 293 (1), pp. 151-157 (2006)
[37] H. E. Jeong et al., “Capillary Kinetics of Water in Homogeneous, Hydrophilic Polymeric Micro- To Nanochannels,” Small 3 (5), pp. 778-782 (2007)
[38] http://www.sigma-aldrich.com
[39] M. Madou, Fundamentals of microfabrication (New York: CRC Press), p.433 (1997)
[40] J. N. Israelachvili, Intermolecular and Surface Forces (London: Academic Press), p.120 (1985)
[41] H. J. Wang et al., “Capillary of Rectangular Micro Grooves and their Application to Heat Pipes,” Tamkang Journal of Science and Engineering, Vol. 8, No. 3, pp.249-255 (2005)
[42] C. H. Mastrangelo et al.,“Mechanical Stability and Adhesion of Microstructures Under Capillary Forces-Part I: Basic Theory,” Journal of Microelectromechanical Systems, Vol. 2, No..1,pp.33-43 (1993)
[43] C. H. Mastrangelo et al.,“Mechanical Stability and Adhesion of Microstructures Under Capillary Forces-Part II: Experiments,” Journal of Microelectromechanical Systems, Vol. 2, No..1,pp.44-55 (1993)
[44] C. H. Mastrangelo and C. H. Hsu,“A Simple Experimental Technique for the Measurement of the Work of Adhesion of Microstructures,” Technical Digest- IEEE Solid-State Sensor and Actuator Workshop, pp. 208-212 (1992)
[45] K. Kendall, “The Adhension and Surface Energy of Elastic Solid,” J. Phys. D: Appl. Phys., Vol. 4, pp.1186-1195 (1971)
[46] N. Tas et al., “Nanofluidic Bubble Pump Using Surface Tension Directed Gas Injection,” Analytic Chemistry, 74(9), pp.2224-2227 (2002)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-08-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-08-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信