§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0807201014213800
DOI 10.6846/TKU.2010.00253
論文名稱(中文) 逆流式Frazier型平板熱擴散塔之最佳設計
論文名稱(英文) Optimal Design of Thermal Diffusion Columns in Countercurrent-Flow Flat-Plate Frazier Scheme
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 陳冠俞
研究生(英文) Kuan-Yu Chen
學號 697400116
學位類別 碩士
語言別 英文
第二語言別 繁體中文
口試日期 2010-07-06
論文頁數 106頁
口試委員 指導教授 - 葉和明
委員 - 何啟東
委員 - 蔡少偉
關鍵字(中) 熱擴散
最佳設計
關鍵字(英) Thermal Diffusion
Frazier Scheme
Optimal Design
第三語言關鍵字
學科別分類
中文摘要
本研究旨在探討於成本固定下,逆流式Frazier型平板熱擴散塔組中四項設計條件(傾斜角、板間距、塔數及長寬比)對分離效率之影響。結果發現四項設計條件中,無兩項或兩項以上的最佳設計條件同時存在。至於每一單獨項的最佳設計條件計算公式,以及其對應的最大分離度的計算公式,可順利推導而出,而以其他三項設計條件為參數。文中並列舉兩個範例,利用其結果來比較四項最佳設計條件下的分離效率。結果發現:對分離苯-正庚烷混合物而言,組立一逆流式Frazier型平板熱擴散塔組的最佳方法為,採取最佳的板間距,並令傾斜角、長寬比及塔數在不違反常態之下盡量加大;對分離水同位素混合物而言,應該採取最佳的傾斜角,並令板間距、長寬比及塔數在不違反常態之下盡量加大。
英文摘要
The effect of four design conditions ( angle of inclination, plate spacing, column number and plate aspect ratio) on thermal diffusion performances in the countercurrent-flow Frazier scheme at fixed expense have been investigated. The equations for predicting each optimal design condition for the corresponding maximum separation have been derived with other three design conditions as parameters. However, there are no two optimal design conditions existing simultaneously for the best performance. The limitations of practical applications were also delineated. Two numerical examples were presented for illustration, and the performances obtained at each optimal design condition were compared. It was found that for separation of benzene-n-heptane system, the best way to construct a countercurrent-flow Frazier scheme is designed at the optimal plate spacing with larger inclination angle, larger plate aspect ratio and larger number of columns. For separation of water-isotope mixture, the best way to construct a countercurrent-flow Frazier scheme is designed at the optimal inclination angle with larger plate spacing, larger plate aspect ratio and larger number of columns.
第三語言摘要
論文目次
中文摘要                                                  I
英文摘要                                                 II
目錄                                                    III
 圖目錄                                                VI
 表目錄                                              VII
第一章 緒論	1
1-1 熱擴散沿革	1
1-2 熱擴散的應用	7
1-3 重水的用途	8
1-4 研究動機與目的	21
第二章 分離理論分析	23
2-1 熱擴散塔之現象	23
2-2 等塔高Frazier裝置中的分離度公式	25
2-2-1 一般二成份系統	28
2-2-2 水同位素中回收重水系統	30
2-3傾斜式等塔高Frazier裝置的最佳設計之分離度公式	31
2-3-1傾斜式熱擴散塔之最佳傾斜角度 及其最大分離度	33
2-3-2傾斜式熱擴散塔之最佳板間距 及其最大分離度	33
2-3-3傾斜式熱擴散塔之最佳長寬比 及其最大分離度	34
2-3-4傾斜式熱擴散塔之最佳塔數 及其最大分離度	34
第三章 傾斜式等塔高Frazier裝置之最佳設計	35
3-1 前言	35
3-2一般二成份系統	37

3-2-1計算範例	37
3-2-2 傾斜式等塔高Frazier熱擴散塔之最佳傾斜角度(θ*)及  其分離度	38
3-2-3 傾斜式等塔高Frazier熱擴散塔之最佳板間距(2ω*)及其分離度	44
3-2-4 傾斜式等塔高Frazier熱擴散塔之最佳長寬比(ξ*)及其分離度	52
3-2-5 傾斜式等塔高Frazier熱擴散塔之最佳塔數(N*)及其分離度	57
3-3水同位素中回收重水系統	63
3-3-1計算範例	63
3-3-2傾斜式等塔高Frazier熱擴散塔之最佳傾斜角度(θ*)其分離度	64
3-3-3傾斜式等塔高Frazier熱擴散塔之最佳板間距(2ω*)及其分離度	70
3-3-4傾斜式等塔高Frazier熱擴散塔之最佳長寬比(ξ*)及其分離度	78
3-3-5傾斜式等塔高Frazier熱擴散塔之最佳塔數(N*)及其分離度	83
第四章 結論	89
符號說明	93
參考文獻	98






















圖目錄
圖1-1 Ludwing之實驗裝置示意圖	1
圖1-2 Dufour效應,因濃度梯度產生瞬時溫度梯度示意圖	2
圖1-3 Soret效應,因溫度梯度產生濃度梯度示意圖	3
圖1-4水平平板式熱擴散塔裝置示意圖	4
圖1-5熱重力式熱擴散塔裝置示意圖	5
圖1-6續流效應(Cascading Effect)示意圖	6
圖1-7核分裂與核融合反應	14
圖2-1熱重力式熱擴散塔裝置圖	                          24
圖2-2 Frazier裝置圖	25
圖2-3傾斜式等塔高Frazier之裝置圖	32
圖4-1一般二成份系統中最佳條件下之流速v.s.改良率	  91
圖4-2水同位素中回收重水系統中最佳條件下之流速v.s.改良率	92












表目錄
表1-1普通水與重水的比較[44]	10
表1-2氘、氚及氦3之同位素所形成的核融合反應	17
表3-1 分離苯與正庚烷在最佳傾斜角度下的極限流速值(σ, (g/min)): (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	  39
表3-2 分離苯與正庚烷在最佳傾斜角度下的塔寬(B, cm):           (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	40
表3-3 分離苯與正庚烷在最佳傾斜角度下的塔寬高(h, cm):        (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	41
表3-4 分離苯與正庚烷之最佳傾斜角度(θ*): (a) (2ω)=0.09cm ;    (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	42
表3-5 分離苯與正庚烷在最佳傾斜角度下的分離度 :            (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm    43
表3-6 分離苯與正庚烷在最佳傾斜角度、長寬比及塔數下的溫度差(ΔT): (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	45
表 3-7 分離苯與正庚烷在最佳板間距下的溫度差(ΔT): (a) θ=75° ; (b) θ=80° ; (c) θ=85°	46
表3-8 分離苯與正庚烷在最佳板間距下的塔寬(B, cm): (a) θ=75° ;  (b) θ=80° ; (c) θ=85°	47
表3-9 分離苯與正庚烷在最佳板間距下的塔高(h, cm): (a) θ=75° ;  (b) θ=80° ; (c) θ=85°	48
表 3-10分離苯與正庚烷之最佳板間距(2ω*): (a) θ=75° ;        (b) θ=80 ; (c) θ=85°	49
表3-11 分離苯與正庚烷在ξ=10的最佳板間距下之分離度 :      (a) θ=75° ; (b) θ=80° ; (c) θ=85°	50
表3-12 分離苯與正庚烷在ξ=20的最佳板間距下之分離度 :      (a) θ=75° ; (b) θ=80° ; (c) θ=85°	51
表3-13 分離苯與正庚烷在最佳長寬比下的塔寬(B, cm):           (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	53
表3-14 分離苯與正庚烷在最佳長寬比下的塔高(h, cm):           (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	54
表3-15 分離苯與正庚烷之最佳長寬比(ξ*): (a) (2ω)=0.09cm ;     (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	55
表3-16 分離苯與正庚烷在最佳長寬比下的分離度 :             (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	56
表3-17 分離苯與正庚烷在最佳塔數下的塔寬(B, cm):             (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm    58
表3-18 分離苯與正庚烷在最佳塔數下的塔高(h, cm):             (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	59
表3-19 分離苯與正庚烷之最佳塔數(N*): (a) (2ω)=0.09cm ;        (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	60
表3-20 分離苯與正庚烷在ξ=10的最佳塔數下之分離度 :        (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	61
表3-21 分離苯與正庚烷在ξ=20的最佳塔數下之分離度 :        (a) (2ω)=0.09cm ; (b) (2ω)=0.095cm ; (c) (2ω)=0.1cm	62
表3-22 回收重水系統在最佳傾斜角度下的極限流速值(σ, (g/hr)):   (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	65
表3-23 回收重水系統在最佳傾斜角度下的塔寬(B, cm):           (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	66
表3-24 回收重水系統在最佳傾斜角度下的塔寬高(h, cm):         (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	67
表3-25 回收重水系統之最佳傾斜角度(θ*): (a) (2ω)=0.0406cm ;   (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	68
表3-26 回收重水系統在最佳傾斜角度下的分離度 :             (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	69
表3-27 回收重水系統在最佳傾斜角度、長寬比及塔數下的溫度差 (ΔT): (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ;           (c) (2ω)=0.0606cm	71
表3-28 回收重水系統在最佳板間距下的溫度差(ΔT): (a) θ=75° ; (b) θ=80° ; (c) θ=85°	72
表3-29 回收重水系統在最佳板間距下的塔寬(B, cm): (a) θ=75° ;  (b) θ=80° ; (c) θ=85°	73
表3-30 回收重水系統在最佳板間距下的塔高(h, cm): (a) θ=75° ;  (b) θ=80° ; (c) θ=85°	74
表3-31 回收重水系統之最佳板間距(2ω*): (a) θ=75° ; (b) θ=80° ; (c) θ=85°	75
表3-32 回收重水系統在ξ=10的最佳板間距下之分離度 :        (a) θ=75° ; (b) θ=80° ; (c) θ=85°	76
表3-33 回收重水系統在ξ=20的最佳板間距下之分離度 :        (a) θ=75° ; (b) θ=80° ; (c) θ=85°	77
表3-34回收重水系統在最佳長寬比下的塔寬(B, cm):             (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	79
表3-35回收重水系統在最佳長寬比下的塔高(h, cm):              (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	80
表3-36回收重水系統之最佳長寬比(ξ*):(a) (2ω)=0.0406cm ;      (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	81
表3-37回收重水系統在最佳長寬比下的分離度 :(a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	82
表3-38回收重水系統在最佳塔數下的塔寬(B, cm):               (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	84
表3-39回收重水系統在最佳塔數下的塔高(h, cm):                (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	85
表3-40 回收重水系統之最佳塔數(N*):(a) (2ω)=0.0406cm ;        (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	86
表3-41回收重水系統在ξ=10的最佳塔數下之分離度 :           (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	87
表3-42回收重水系統在ξ=20的最佳塔數下之分離度 :           (a) (2ω)=0.0406cm ; (b) (2ω)=0.0506cm ; (c) (2ω)=0.0606cm	  	88
參考文獻
[1] Ludwing, C., “Diffusion Zwischen Ungleich Erwärmten Orten Gleich Zusammengesetzter Lösungen”, Sitz. Ber. Arad. Wiss. Wien Math.-naturw. Kl, 20, 539 (1856).
[2] Dufour, L., “The Diffusion Thermoeffect”, Arch. Sci. (Geneva), 45, 9 (1872).
[3] Enskog, D., “A Generalization of Maxwell’s Second Kinetic Gas Theory”, Physik. Z., 12, 56 (1911).
[4] Chapman, S. and Dootson, F. W., “Thermal Diffusion”, Phil. Mag., 33, 248 (1917).
[5] Chapman, S., “Thermal Diffusion of Rare Constituents in Gas Mixtures And Isotopes”, Phil. Mag., 7, 1 (1929).
[6] Clusius, K. and Dickel, G., “New Process for Separation 0f Gas Mixtures and Isotopes”, Naturwiss., 26, 546 (1938).
[7] Clusius, K. and Dickel, G., “The Separating-Tube Process for Liquids”, Naturwiss., 27, 148 (1939).
[8] Powers, J. E. and Wilke, C. R., “Separation in Liquids by Thermal Diffusion”, AIChE J., 3, 213 (1957).
[9] Chueh, P. L. and Yeh, H. M., “Thermal Diffusion in a Flat-Plate Column Inclined for Improved Performance”, AIChE J. 13, 37 (1967).
[10] Yeh, H. M., “The Effect of Plate Spacing on the Degree of Separation in Inclined Thermal Diffusion Column With Fixed Operating Expense”, Sep. Sci. Technol., 18, 585 (1983).
[11] Yeh H.M. and Yang S.C., “The Enrichment of Heavy Water in A Continuous-Type Inclined Thermal Diffusion Column”, Sep. Sci. Technol., 20, 101(1985).
[12] Yeh, H. M., “Separation Theory of An Inclined Thermal Diffusion Column with Fixed Operating Expense”, J. Chin. Inst. Chem. Engrs., 20(5), 263 (1989).
[13] Yeh, H. M., “The Best Performance of Inclined Flat-Plate Thermal Diffusion Columns”, Sep. Tech., 5(2), 115 (1995).
[14] Yeh, H. M., “The Combine Effect of Inclined Angle and Plate Spacing on The Performances of Flat-Plate Thermal-Diffusion Columns”, Chem. Eng. Comm., 179, 179 (2000).
[15] Yeh, H. M., “Enrichment of Heavy Water in an Inclined Flat-Plate Thermal-Diffusion Column with Transverse Sampling Streams”, J. Chin. Inst. Chem. Engrs., 32, 63 (2001).
[16] Yeh, H. M., “Enrichment of Heavy Water in Flat-Plate Thermal Diffusion Columns Inclined for Improved Performance”, Sep. and Puri. Tech., 26, 227 (2002).
[17] Yeh, H. M., “Recovery of Deuterium from Water-Isotopes Mixture in Inclined Flat-Plate Thermal Diffusion Columns with Transverse Sampling Streams”, J. Chin. Inst. Chem. Engrs., 34, 575 (2003).
[18] Washall, T. A. and Melpolder, F. W., “Improving the Separation Efficiency of Liquid Thermal Diffusion Column”, Ind. Eng. Chem. Proc. Des. Dev., 1, 26 (1962).
[19] Yeh, H. M. and Ward, H. C., “The Improvement in Separation of Concentric Tube Thermal Diffusion Columns”, Chem. Eng. Sci., 26, 937 (1970).
[20] Rabinovich, G. D., Ivakhnik, V. P., Zimina, K. I. and Sorokina, N. G., “Use of Spiral Inserts In Thermal-Diffusion Column”, Inzh. Fiz. Zh., 35, 278 (1978).
[21] Yeh, H. M., “The Best Performance in Wired Thermal Diffusion Columns”, Chem. Eng. Comm., 189, 528 (2002).
[22] Yeh, H. M., “Enrichment of Heavy Water in Spiral Wired Thermal Diffusion Columns of The Frazier Scheme”, J. Chin. Inst. Chem. Engrs., 33, 203 (2002).
[23] Yeh, H. M., “Recovery of Deuterium from Water-Isotopes Mixture in Concentric-Tube Thermal Diffusion Columns Inserted with Wire Spiral for Improved Performance”, Int. J. of Hydrogen Energy, 29, 521 (2004).
[24] Yeh, H. M., “Recovery of Deuterium from Water-Isotopes Mixture in Wired Thermal Diffusion Columns With Transverse Sampling Streams”, J. Chin. Inst. Chem. Engrs., 35, 697 (2004).
[25] Yeh, H. M. and Ho, F. K., “A study of the Separation Efficiency of Wired Thermal Diffusion Columns with Tube Rotating in Opposite Directions”, Chem. Eng. Sci., 30, 1381 (1975).
[26] Yeh, H. M. and Tsai, S. W., “Improvement of Separation of Concentric-Tube Thermal Diffusion Columns with Viscous Heat Generation under Consideration of the Curvature Effect”, Sep. Sci. Technol., 16, 63 (1981).
[27] Yeh, H. M. and Hsieh, S. J., “A Study on the Separation Efficiencies of Rotating-Tube Wired Thermal-Diffusion Columns under Higher Flow-Rate operations”, Sep. Sci. Technol., 18, 1065 (1983).
[28] Yeh, H. M., “Enrichment of Heavy Water in Rotated Wired Concentric-Tube Thermal Diffusion Column”, Sep. and Puri. Tech., 40, 321 (2004).
[29] Sullivan, L. J., Ruppel, T. C. and Willingham, C. B., “Rotary and Packed Thermal Diffusion Fractionating Columns for Liquids”, Ind. Eng. Chem., 47, 208 (1955).
[30] Emery, A. E. and Lorenz, M., “Thermal Diffusion in Packed Column”, AIChE. J., 9, 660 (1963).
[31] Lorenz, M. and Emery, A. E., “The Packed Thermal Diffusion Column”, Chem. Eng. Sci., 11, 16 (1959).
[32] Yeh, H. M. and Chu, T. Y., “A Study of the Separation Efficiency of Continuous-Type Packed Thermal Diffusion Columns”, Sep. Sci. Technol., 29, 1421 (1974).
[33] Frazier, D., “Analysis of Transverse-Flow Thermal Diffusion”, Ind. Eng. Chem. Prov. Dev., 1, 237 (1962).
[34] Grasselli, R. and Frazier, D., “A Comparative Study of Continuous Liquid Thermal Diffusion Systems”, Ind. Eng. Chem. Proc. Des. Dev., 1, 241 (1962).
[35] Yeh, H. M. and Yang, S. C., “Thermal Diffusion of The Frazier Scheme with Columns Inclined for Improved Performance”, J. Chin. Inst. Chem. Engrs., 18(4), 249 (1987).
[36] Yeh, H. M., “Thermal Diffusion in Inclined Flat-Plate Columns of The Frazier Scheme”, The Canaidan J. of Chem. Eng., 72, 815 (1994).
[37] Yeh, H. M., “Enrichment of Heavy Water in Flat-Plate Thermal Diffusion Columns of the Frazier Scheme Inclined for Improved Performance”, Sep. Sci. and Tech., 30(6), 1025 (1995).
[38] Yeh, H. M., “Thermal Diffusion in a Countercurrent-Flow Frazier Scheme Inclined for Improved Performance”, Chem. Eng. Sci., 56, 2889 (2001).
[39] Yeh, H. M., “Optimum Plate Spacing for the Best Performance of the Enrichment of Heavy Water in Thermal Diffusion Columns of a Countercurrent-Flow Frazier Scheme”, Sep. Sci. Tech., 38, 1883 (2003).
[40] Yeh, H. M., Tsai, S. W. and Lin, C. S., “A Study of Separation Efficiency in Thermal Diffusion Column with A Permeable Vertical Barrier”, AIChE J., 32(6), 971 (1986).
[41] Yeh, H. M. and Tsai, S. W., “A Study of The Separation Efficiency of The Batch-Type Thermal Diffusion Column with An Impermeable Barrier Inserted between The Plates”, I&EC Fundamentals, 25, 367 (1986).
[42] Yeh, H. M. and Tsai, S. W., “Improvement in Separation of The Batch-Type Thermal Diffusion Column with Impermeable Barriers Inserted between The Plates”, Canadian. J. of Ch. Eng., 67, 589 (1989).
[43] 黃慰國,“熱擴散塔中提煉重水之最佳進料位置”, 淡江大學碩士論文 (1998).
[44] 蔡正修,“塔高總和固定的Frazier裝置中令塔高依等差遞變之熱擴散分離研究”, 淡江大學碩士論文 (2009).
[45] 潘家寅譯“核燃料”, 徐氏基金會出版, p.95 (1967).
[46] Taleyarkhan, R. P. et al, “Evidence for Nuclear Emissions During Acoustic Cavitation”, Science, 295, 1868 (2002).
[47] Fox, M. C., “Thermal Diffusion as Adjunct of Electromagnetic Process”, Chem. Met. Eng., 52, 102 (1945).
[48] Furry, W. H., Jones, R. H., and Onsager, L., “On the Theory of Isotope Separation by Thermal Diffusion”, Physical Review, 55, (1939).
[49] Jones, R., C., and Furry, W. H., “The Separation of Isotopes by Thermal Diffusion”, Reviews of Modern Physics, 18, 106 (1946).
[50] Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in a Batch-Type Thermal Diffusion Column”, Chem. Eng. Sci., 39, 1277 (1984).
[51] Yeh, H. M., “Recovery of Deuterium from Water-isotopes Mixture in Flat-plate Thermal-diffusion Columns of the Frazier Scheme with Optimal Plate Aspect Ratio for Improved Performance”, Sep. Sci. and Technol., 42, 2629 (2007).
[52] Chueh, P. L. and Yeh, H. M., “Thermal Diffusion in a Flat-Plate Column Inclined for Improved Performance”, AIChE J., 13, 37 (1967).
[53] Yeh, H. M., “The Optimum Plate-Spacing for the Best Performance in Flat-plate Thermal Diffusion Columns of the Frazier Scheme”, Chem. Eng. Comm. 165, 227 (1998).
[54] Yeh, H. M., “Enrichment of Heavy Water in Flat-plate Thermal Diffusion Columns Inclined for Improved Performance”, Sep. and Pur. Technol. 26, 227 (2002).
[55] Yeh, H. M. and Yang, S. C. “Experimental Studies on the Separation of Deuterium Oxide in Continuous Thermal Diffusion Column for Low Concentration Range”, Sep. Sci. and Tech., 20, 687 (1985).
[56] Yeh, H. M., “Separation of water-isotopes mixture in continuous -flow thermal diffusion columns for recovery of deuterium”, Sep. and Pur. Technol. 26, 259 (2002).
[57] G. S. G. Beveridge, R.S. Schechter, Optimization: Theory and Practice, McGraw-Hill, New York, pp. 363, (1970).
[58] Yeh, H.M., “Further work on the modification of the Frazier thermal-diffusion system”, Sep. Technol. 4, 112 (1994).
[59] Ho-Ming Yeh, “Enrichment of heavy water in flat-plate thermal-diffusion columns with optimal plate aspect ratio”, Progress in Nuclear Energy, 52, 327 (2010).
[60] Ho-Ming Yeh , “Thermal Diffusion in a Countercurrent-Flow Frazier Scheme with Optimum Plate Spacing for Improved Performance”, J. Chin. Inst. Chem. Engrs , 40, 98 (2009).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信