§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0806200715420100
DOI 10.6846/TKU.2007.00255
論文名稱(中文) 利用模糊類免疫多目標演算法之電容器最佳設置策略
論文名稱(英文) Optimal Capacitor Placement Strategy of Distribution Systems Via Fuzzy-Based Artificial Immune Multi-Objective Method
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 張志翰
研究生(英文) Chih-Han Chang
學號 690380026
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2007-06-01
論文頁數 156頁
口試委員 指導教授 - 黃聰亮(tsongliang@tea.ntue.edu.tw)
委員 - 陳友倫(allen@tea.ntue.edu.tw)
委員 - 蕭瑛東(ythsiao@tea.ntue.edu.tw)
委員 - 翁慶昌(wong@ee.tku.edu.tw)
委員 - 黃聰耀(thwang@faculty.pccu.edu.tw)
關鍵字(中) 電容器最佳規劃
模糊系統
類免疫演算法
多目標最佳化
非劣解
妥協規劃法
關鍵字(英) optimal capacitor placement
fuzzy system
artificial immune algorithm
multiobjective method
non-inferior set
compromise programming
第三語言關鍵字
學科別分類
中文摘要
電力系統包含發電系統、輸電系統、配電系統等三大部份。傳統配電系統運轉在輻射狀架構上,將電能由發電廠經由變壓器以及輸電饋線傳輸分配給各客戶。配電系統為電力系統之最下游,涵蓋層面遼闊,電力輸送從主變電所或二次變電所之主變壓器、饋線、分歧線及配電變壓器、接戶線、線路接頭甚至電表等等,都會造成線路損失,同時會降低系統運轉效率。在電力饋線上裝設電容器以補償虛功率是一種廣泛被使用的方法,不論在城市或者鄉村型配電系統,利用此方式可以達到電壓調整、電能損失降低、修正功率因數、以及系統備轉容量提升。
一般而言,電容器設置的問題可以視為在不同的負載條件下之輻射型配電系統上,決定其裝設電容器之大小以及裝設位置。本論文將電容器規劃問題化成多目標規劃問題。此外,文中亦設計被動式單通濾波器來改善配電饋線的諧波污染。在輻射型配電系統上考慮四個目標函數,包括最小化電容器建構之成本、能量損失之成本、匯流排電壓之變動量及最大化饋線段(及變壓器)的安全邊界。在受諧波污染輻射型配電系統上考慮四個目標函數,包括最小化電容器建構之成本、能量損失之成本、匯流排電壓之變動量及最小化匯流排電壓總諧波失真。目標函數都以模糊模式建構之,可利用模糊集合反映目標函數的不精確的本質和可合併多個在規劃時的需求。
本論文提出二階段免疫多目標演算法去解決具限制問題之多目標問題。類免疫演算法係利用模擬抗體與抗原在人體免疫系統內的運作模式作最佳化來求解虛功率與電壓控制最佳化的問題,抗體及抗原可看成相當於最佳化問題中的最佳解與目標函數。利用抗體族群相似程度之關係,增加抗體族群之歧異度,可避免陷入局部最佳解的可能性,使得在求解空間的搜尋過程中,快速收斂且找到全域妥協解。本論文提出使用妥協規劃法之模糊類免疫多目標演算法去解決多目標電容器最佳配置。此方法可得到一妥協解(柏拉圖解)之集合而不是任一個由單一目標聚集出的最佳解,決策者依其需求選擇其中一組解來使用。此外,本方法不需經由對各目標函數定義權重因子即可求得妥協解。
最後在一個實際系統上與之前相關研究做比較,最後證實這個演算法之效能及實用性。以69-BUS之配電系統模擬,求解加裝電容器補償前以及補償後,各目標函數變化的情況,結果證實本論文所提出之方法優於其他最佳化方法,是解決電容器問題的有效方法。
英文摘要
Power System consists of generation, transmission and distribution systems to deliver the power service to customers. Typical distribution systems operate in a radial configuration which is supplied from substations and feeds to distribution transformers. Distribution systems cover a very wide area with components such as main transformers, primary feeders, laterals, distribution transformers, low tension lines and meters. All these components contribute distribution line loss to deteriorate system operation efficiency. Numerous shunt capacitors are installed along distribution feeders to compensate for reactive power to regulate the voltage, reduce energy, correct the power factor, and release system capacity, for both urban and rural areas.
The general capacitor placement problem is to locate and determine the sizes of capacitors to be installed at the nodes of a radial distribution system under various loading conditions. This dissertation formulates the capacitor placement problem as a multi-objective problem, including operational requirements. Furthermore, the single-tuned filter design is also presented to improve the harmonic distortion of the distribution feeders. The problem formulation presented in radial distribution system considers four objectives including of minimizing the cost of installing capacitors, minimizing the real power loss, minimizing the deviation of the bus voltage, and maximizing the capacity margin of the feeders and the transformer. The problem formulation presented in distorted distribution networks considers four objectives including of minimizing the cost of installing capacitors, the real power loss, the deviation of the bus voltage, and the total harmonic distortion of the bus voltage. A new problem formulation model of all objective functions with fuzzy sets to reflect the imprecise nature of objectives and incorporate the multiple requirements on planning is presented. 
This dissertation presents a two-staged immune multi-objective method to solve the constrained multi-objective problem. The artificial immune algorithm simulates the operating relationship between the antigen and antibody in human immune system, which are in corresponding to the optimal solution and objective function of the optimization problem, to solve the optimization problem of reactive power and voltage control. The affinity among the antibodies is applied to increase the diversity among them to avoid the local optimal solution such that the quick convergent speed and the global optimal solution can be achieved. This dissertation proposes the fuzzy-based artificial immune multi-objective method embedded with the compromise programming to the multi-objective optimal capacitor placement. The proposed method finds a set of non-inferior (Pareto) solutions rather than any single aggregated optimal solution for the decision maker to choose one particular solution. Besides, this proposed method eliminated the need of any user-defined weight factor for aggregating all objectives. 
Finally, to demonstrate the effectiveness of the proposed method, comparative studies are conducted on an actual system with rather encouraging results. To find out the changes of each objective function between before and after the placement of capacitors, 69-BUS distribution system is used to test in this method. It proves that the proposed method is the most effective method to solve the optimal capacitor placement problem.
第三語言摘要
論文目次
目 錄
淡江大學論文中文提要..................................I
淡江大學論文英文提要................................III
致謝辭............................................... V
目 錄................................................VI
圖目錄...............................................IX
表目錄..............................................XII
符號表..............................................XIV
第一章 簡介.......................................... 1
1.1 研究動機......................................... 1
1.2 研究背景......................................... 2
1.3 研究內容......................................... 4
1.4 研究概要......................................... 5
第二章 電力饋線潮流分析.............................. 8
2.1 簡介............................................. 8
2.2 基頻負載潮流分析................................. 8
2.2.1 傳統負載潮流分析............................... 9
2.2.2 快速負載潮流解法.............................. 11
2.2.2.1 網路分支電流矩陣............................ 12
2.2.2.2 網路阻抗矩陣................................ 14
2.2.2.3 配電系統快速負載潮流演算法.................. 16
2.3 諧波負載潮流分析................................ 19
2.3.1 建立系統模型.................................. 19
2.3.1.1 負載模型.................................... 19
2.3.1.2 線性負載.................................... 20
2.3.1.3 非線性負載.................................. 21
2.3.1.4 傳輸線...................................... 22
2.3.1.5 電容器...................................... 23
2.3.1.6 濾波器...................................... 24
2.3.2 諧波潮流分析.................................. 25
第三章 多目標免疫演算法............................. 28
3.1 多目標函數最佳化問題............................ 28
3.1.1 定義.......................................... 29
3.1.1.1 可行解區域.................................. 29
3.1.1.2 非劣解...................................... 29
3.1.1.3 全域非劣解.................................. 29
3.1.2 權重法........................................ 30
3.1.3 妥協規劃法.................................... 31
3.1.4 交談式模糊滿足法.............................. 36
3.2 免疫系統........................................ 36
3.2.1 免疫演算法.................................... 40
3.2.2 二階段多目標免疫演算法........................ 44
第四章 多目標免疫演算法於饋線上電容配置............. 51
4.1 前言............................................ 51
4.2 電容器規劃...................................... 51
4.2.1 購設電容器之成本函數.......................... 52
4.2.2 能量損失成本函數.............................. 54
4.2.3 匯流排電壓最大變動量函數...................... 56
4.2.4 饋線段及變壓器安全餘裕函數.................... 57
4.3 模擬測試........................................ 59
4.3.1 固定式電容器.................................. 63
4.3.2 混合式電容器.................................. 72
第五章 諧波污染饋線上電容配置....................... 82
5.1 前言............................................ 82
5.2 電容器規劃...................................... 82
5.2.1 購設電容器之成本函數.......................... 83
5.2.2 能量損失成本函數.............................. 84
5.2.3 匯流排電壓最大變動量函數...................... 86
5.2.4 諧波失真因數函數.............................. 88
5.3 模擬測試........................................ 90
5.3.1 固定式電容器.................................. 92
5.3.2 混合式電容器................................. 106
第六章 諧波污染饋線上濾波器配置.................... 120
6.1 前言........................................... 120
6.2 電容器規劃目標函數............................. 120
6.2.1 購設濾波器之成本函數......................... 121
6.2.2 能量損失成本函數............................. 122
6.2.3 匯流排電壓最大變動量函數..................... 124
6.2.4 諧波失真因數函數............................. 126
6.3 模擬測試....................................... 128
第七章 未來展望.................................... 142
7.1 結論........................................... 142
7.2 未來展望....................................... 144
參考文獻........................................... 145

圖目錄
圖2. 1 單一饋線配線系統.......................................................................... 11
圖2. 2 配電系統示範例.............................................................................. 12
圖2. 3 網路分支矩陣B 之建立................................................................. 14
圖2. 4 網路阻抗矩陣Z 之建立.................................................................. 16
圖2. 5 配電系統快速負載潮流演算法...................................................... 18
圖2. 6 並聯式RL 電路模型....................................................................... 20
圖2. 7 串聯式RL 電路模型....................................................................... 21
圖2. 8 諧波源模型...................................................................................... 21
圖2. 9 諧波潮流分析流程圖...................................................................... 27
圖3. 1 兩目標問題之求解空間.................................................................. 32
圖3. 2 全域最佳非劣解求解空間.............................................................. 34
圖3. 3 全域最佳非劣解示意圖.................................................................. 35
圖3. 4 免疫系統的示意圖.......................................................................... 39
圖3. 5 信息熵圖示...................................................................................... 41
圖3. 6 多目標免疫演算法流程.................................................................. 50
圖4. 1 購設電容器成本歸屬函數.............................................................. 53
圖4. 2 能量損失成本歸屬函數.................................................................. 55
圖4. 3 匯流排電壓最大變動量歸屬函數.................................................. 57
圖4. 4 饋線段及變壓器安全餘裕歸屬函數.............................................. 58
圖4. 5 69-BUS 之配電系統........................................................................ 60
圖4. 6 裝設固定式電容器前後系統電能損失成本、購設成本以及年成本.......................................... 65
圖4. 7 裝設固定式電容器前後系統之最大最小電壓.............................. 67
圖4. 8 裝設固定式電容器前後系統各負載程度損失.............................. 69
圖4. 9 裝設固定式電容器前後系統負載餘裕.......................................... 71
圖4. 10 裝設混合式電容器前後系統電能損失成本、購設成本以及年成本............................................................................................................. 75
圖4. 11 裝設混合式電容器前後系統之最大最小電壓............................ 77
圖4. 12 裝設混合式電容器前後系統各負載程度損失............................ 79
圖 4. 13 裝設混合式電容器前後系統負載餘裕........................................ 81
圖5. 1 購設電容器成本歸屬函數.............................................................. 84
圖5. 2 能量損失成本歸屬函數.................................................................. 86
圖5. 3 匯流排電壓最大變動量歸屬函數.................................................. 87
圖5. 4 諧波失真因數歸屬函數.................................................................. 89
圖5. 5 補償前系統各匯流排THD 及其限制值....................................... 91
圖5. 6 受諧波污染饋線上裝設固定式電容器前後系統電能損失成本、購設成本以及年成本................................................................................. 94
圖5. 7 受諧波污染饋線上裝設固定式電容器前後系統之最大最小電壓................................................................................................................. 96
圖5. 8 受諧波污染饋線上裝設固定式電容器前後系統各負載程度損失................................................................................................................. 98
圖5. 9 受諧波污染饋線上裝設固定式電容器前後系統總THD .......... 100
圖5. 10 受諧波污染饋線上裝設固定式電容器前後系統各匯流排THDv及其限制值(Part I).......................................................................... 101
圖5. 11 受諧波污染饋線上裝設固定式電容器前後系統各匯流排THDv及其限制值(Part II)......................................................................... 102
圖5. 12 受諧波污染饋線上裝設混合式電容器前後系統電能損失成本、購設成本以及年成本........................................................................... 108
圖5. 13 受諧波污染饋線上裝設混合式電容器前後系統之最大最小電壓............................................................................................................... 110
圖5. 14 受諧波污染饋線上裝設混合式電容器前後系統各負載程度損失............................................................................................................... 112
圖5. 15 受諧波污染饋線上裝設混合式電容器前後系統總THD ........ 114
圖5. 16 受諧波污染饋線上裝設混合式電容器前後系統各匯流排THDv及其限制值(Part I) .......................................................................... 115
圖5. 17 受諧波污染饋線上裝設混合式電容器前後系統各匯流排THDv及其限制值(Part II)......................................................................... 116
圖6. 1 購設電容器成本歸屬函數............................................................ 122
圖6. 2 能量損失成本歸屬函數................................................................ 124
圖6. 3 匯流排電壓最大變動量歸屬函數................................................ 125
圖6. 4 諧波失真因數歸屬函數................................................................ 127
圖6. 5 受諧波污染饋線上裝設被動式單通濾波器前後系統電能損失成本、購設成本以及年成本................................................................... 130
圖6. 6 受諧波污染饋線上裝設被動式單通濾波器前後系統之最大最小
電壓....................................................................................................... 132
圖6. 7 受諧波污染饋線上裝設被動式單通濾波器前後系統各負載程度
損失....................................................................................................... 134
XI
圖6. 8 受諧波污染饋線上裝設被動式單通濾波器前後系統總THD .. 136
圖6. 9 受諧波污染饋線上裝設被動式單通濾波器前後系統各匯流排
THDv 及其限制值(Part I)............................................................... 137
圖6. 10 受諧波污染饋線上裝設被動式單通濾波器前後系統各匯流排THDv 及其限制值(Part II) ............................................................. 138

表目錄
表4. 1 電能成本以及持續時間之關係...................................................... 59
表4. 2 69-BUS 之配電系統之負載與各區饋線段資料(Part I)........... 61
表4. 3 69-BUS 之配電系統之負載與各區饋線段資料(Part II) ......... 62
表4. 4 裝設固定式電容器之位置及大小.................................................. 63
表4. 5 裝設固定式電容器前後系統電能損失成本、購設成本以及年成本................................................................................................................. 65
表4. 6 裝設固定式電容器前後系統之最大最小電壓.............................. 67
表4. 7 裝設固定式電容器前後系統各負載程度損失.............................. 69
表4. 8 裝設固定式電容器前後系統負載餘裕.......................................... 71
表4. 9 裝設混合式電容器之位置、大小及型式...................................... 73
表4. 10 裝設混合式電容器前後系統電能損失成本、購設成本以及年成本............................................................................................................. 75
表4. 11 裝設混合式電容器前後系統之最大最小電壓............................ 77
表4. 12 裝設混合式電容器前後系統各負載程度損失............................ 79
表4. 13 裝設混合式電容器前後系統 負載餘裕........................................ 81
表5. 1 受諧波污染饋線上裝設固定式電容器之位置及大小................. 92
表5. 2 受諧波污染饋線上裝設固定式電容器前後系統電能損失成本、購設成本以及年成本................................................................................. 94
表5. 3 受諧波污染饋線上裝設固定式電容器前後系統之最大最小電壓................................................................................................................. 96
表5. 4 受諧波污染饋線上裝設固定式電容器前後系統各負載程度損失................................................................................................................. 98
表5. 5 受諧波污染饋線上裝設固定式電容器前後系統總THD .......... 100
表5. 6 受諧波污染饋線上裝設固定式電容器前後系統各匯流排THDv
值(Part I) .......................................................................................... 103
表5. 7 受諧波污染饋線上裝設固定式電容器前後系統各匯流排THDv
值(Part II)......................................................................................... 104
表5. 8 受諧波污染饋線上裝設固定式電容器前後系統各匯流排THDv
值(Part III) ....................................................................................... 105
表5. 9 受諧波污染饋線上裝設混合式電容器之位置及大小............... 107
表5. 10 受諧波污染饋線上裝設混合式電容器前後系統電能損失成本、購設成本以及年成本........................................................................... 108
表5. 11 受諧波污染饋線上裝設混合式電容器前後系統之最大最小電壓
............................................................................................................... 110
表5. 12 受諧波污染饋線上裝設混合式電容器前後系統各負載程度損失
............................................................................................................... 112
表5. 13 受諧波污染饋線上裝設混合式電容器前後系統總THD ........ 114
表5. 14 受諧波污染饋線上裝設混合式電容器前後系統各匯流排THDv值(Part I) .......................................................................................... 117
表5. 15 受諧波污染饋線上裝設混合式電容器前後系統各匯流排THDv值(Part II)......................................................................................... 118
表5. 16 受諧波污染饋線上裝設混合式電容器前後系統各匯流排THDv值(Part III) ............................... ........................................................ 119
表6. 1 受諧波污染饋線上裝設單通濾波器之位置及其大小............... 129
表6. 2 受諧波污染饋線上裝設被動式單通濾波器前後系統電能損失成本、購設成本以及年成本................................................................... 130
表6. 3 受諧波污染饋線上裝被動式單通濾波器前後系統之最大最小電
壓........................................................................................................... 132
表6. 4 受諧波污染饋線上裝設被動式單通濾波器前後系統各負載程度
損失....................................................................................................... 134
表6. 5 受諧波污染饋線上裝設被動式單通濾波器前後系統總THD .. 136
表6. 6 受諧波污染饋線上裝設被動式單通濾波器前後系統各匯流排
THDv 值(Part I)............................................................................... 139
表6. 7 受諧波污染饋線上裝設被動式單通濾波器前後系統各匯流排
THDv 值(Part II) ............................................................................. 140
表6. 8 受諧波污染饋線上裝設被動式單通濾波器前後系統各匯流排
THDv 值(Part III) ............................................................................ 141
參考文獻
[1]	鄭仁福。「結合基因演算法與模擬退火法在饋線上電容配置」。國立台北科技大學電機工程系碩士班,碩士論文,民國89年6月。
[2]	簡靖陽。「配電系統操作最佳化之研究」。淡江大學電機工程學系,博士論文,民國89年6月。
[3]	M.E. Baran, and F.F. Wu, “Optimal capacitor placement on radial distribution systems,” IEEE Trans. Power Delivery, Vol. 4, No. 1, pp. 725-734, Jan. 1989.
[4]	M. Chis, M.M.A. Salama, and S. Jayaram, “Capacitor placement in distribution systems using heuristic search strategies,” IEE Proceedings- Generation, Transmission and Distribution, Vol. 144, No. 3, May 1997, pp. 225-230.
[5]	M.Y. Cho, and Y.W. Chen, “Fixed/switched type shunt capacitor planning of distribution systems by considering customer load patterns and simplified feeder model,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 144, No. 6, pp. 533-540, Nov. 1997.
[6]	C.T. Su, and C.C. Tsai, “A new fuzzy-reasoning approach to optimum capacitor allocation for primary distribution systems,” in Proceedings of 1996 IEEE on Industrial Technology Conference, 1996, pp.237-241.
[7]	H.D. Chiang, J.C. Wang, O. Cockings, and H.D. Shin, “Optimal capacitor placements in distribution systems. I. A new formulation and the overall problem”, IEEE Trans. Power Delivery, Vol. 5, No. 2, pp. 634-642, April 1990.
[8]	H.D. Chiang, J.C. Wang, O. Cockings, and H.D. Shin, “Optimal capacitor placements in distribution systems. II. Solution algorithms and numerical results”, IEEE Trans. Power Delivery, Vol. 5, No. 2, pp. 643-649, April 1990.
[9]	Y.C. Huang, H.T. Yang, and C.L. Huang, “Solving the capacitor placement problem in a radial distribution system using Tabu Search approach,” IEEE Trans. Power Systems, Vol. 11, No. 4, pp. 1868-1873, Nov. 1996.
[10]	S. Sundhararajan and A. Pahwa, “Optimal selection of capacitors for radial distribution systems using a genetic algorithm,” IEEE Trans. Power Systems, Vol. 9, No. 3, pp. 1499-1507, Aug. 1994.
[11]	V. Ajjarapu and Z. Albanna, “Application of genetic based algorithms to optimal capacitor placemen,” in Proceedings of the First International Forum on Applications of Neural Networks to Power Systems, July 1991, pp. 251-255.
[12]	M.A.S. Masoum, M. Ladjevardi, A. Jafarian, and E.F. Fuchs, “Optimal placement, replacement and sizing of capacitor banks in distorted distribution networks by genetic algorithms,” IEEE Trans. Power Delivery, Vol. 19, No. 4, pp. 1794-1801, Oct. 2004.
[13]	X.M. Yu, X.Y. Xiong, and Y.W. Wu, “A PSO-based approach to optimal capacitor placement with harmonic distortion consideration,” Electric Power Systems Research, Vol. 71, No. 1, pp. 27-33, Sep. 2004.
[14]	F.C. Schweppe, H.M. Merrill, and W.J. Burke, “Least-cost planning: issues and methods,” Proceedings of the IEEE, Vol. 77, No. 6, pp. 899-907, June 1989.
[15]	張宗福。「應用蟻行混合差分進化法於配電系統運轉之研究」。國立中正大學電機工程研究所,博士論文,民國93年6月。
[16]	J. H. Teng, “A network-topology-based three-phase load flow for distribution systems,” in Proc. Natl. Sci. Counc. ROC, Vol. 24, No. 4, pp.259-264, 2000.
[17]	J.H. Teng and C.Y. Chang, “A novel and fast three-phase load flow for unbalanced radial distribution systems,” IEEE Trans. Power Systems, Vol. 17, No. 4, pp.1238-1244, Nov. 2002.
[18]	D. J. Pileggi, N. H. Chandra, and A. E. Emanuel, “Prediction of harmonic voltages in distribution systems,” IEEE Trans. Power Apparatus and Systems, Vol. PAS-100, No. 3, pp.1307-1315, March 1981.
[19]	劉建勳。「工業配電被動式濾波器安裝位置之探討」。中原大學電機工程研究所,碩士論文,民國89年6月。
[20]	鄭煌仕。「考慮分散式電源之配電系統電壓與諧波分析」。南台科技大學電機工程系,碩士論文,民國92年6月。
[21]	Y. Baghzouz and S. Ertem, “Shunt capacitor sizing for radial distribution feeders with distorted substation voltages,” IEEE Trans. Power Delivery, Vol. 5, No. 2, pp. 650-657, April 1990.
[22]	A.G. Bhutad, S.V. Kulkarni, and S.A. Khaparde, “Three-phase load flow methods for radial distribution networks,” in TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, Vol. 2, Oct. 2003, pp.781-785.
[23]	黃偉芬。「以基因演算法進行多目標模糊參數之被動式濾波器規劃」。中原大學電機工程研究所,碩士論文,民國89年6月。
[24]	E. W. Kimbark, Power system stability. New York: Wiley, 1956.
[25]	M.R. Lighner and S.W. Director, “Multiple criterion optimization for the design of electronic circuits,” IEEE Trans. Circuits and Systems, Vol. CAS-28, pp. 169-179, March 1981.
[26]	K. Deb, Multi-objective optimization using evolutionary algorithms. Chichester: Wiley, 2001.
[27]	馬誠韋。「解答多目標規劃的新方法-免疫系統法」。元智大學工業工程與管理學系,碩士論文,民國90年6月。
[28]	V. Chankong and Y.Y. Haimes, “On the characterization of noninferior solutions of the vector optimization problem,” Automation, Vol. 18, No. 6, pp. 697-707, Nov. 1982.
[29]	P.P. Khargonekar and M.A. Rotea, “Multiple objective optimal control of linear systems: the quadratic norm case,” IEEE Trans. Automatic Control, Vol. 36, No. 1, pp. 14-24, Jan. 1991.
[30]	J.B. Yang and D. Li, “Normal vector identification and interactive tradeoff analysis using minimax formulation in multiobjective optimization,” IEEE Trans. Systems, Man and Cybernetics, Part A, Vol. 32, No. 3, pp. 305-319, May 2002.
[31]	Y.L. Chen, “Weighted-norm approach for multiobjective VAr planning,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 145, No. 4, pp. 369-374, July 1998.
[32]	U. Nangia, N.K. Jain, and C.L. Wadhwa, “Optimal weight assessment based on a range of objectives in a multiobjective optimal load flow study,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 145, No. 1, pp. 65-69, Jan. 1998.
[33]	郭政謙。「應用多目標規劃法之配電自動化決策軟體」。國立台灣科技大學電機工程技術研究所,碩士論文,民國86年6月。
[34]	D. Chattopadhyay and J. Momoh, “A multiobjective operations planning model with unit commitment and transmission constraints,” IEEE Trans. Power Systems, Vol. 14, No. 3, pp. 1078-1084, Aug. 1999.
[35]	C.M. Fonseca and P.J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation,” IEEE Trans. Systems, Man and Cybernetics, Part A, Vol. 28, No. 1, pp. 26-37, Jan. 1998.
[36]	C.M. Fonseca and P.J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example” IEEE Trans. Systems, Man and Cybernetics, Part A, Vol. 28, No. 1 ,pp. 38-47, Jan. 1998.
[37]	M. Sakawa and K. Yauchi, “An interactive fuzzy satisficing method for multiobjective nonconvex programming problems with fuzzy numbers through coevolutionary genetic algorithms,” IEEE Trans. Systems, Man and Cybernetics, Part B, Vol.31, No.3, pp. 459-467, June 2001.
[38]	李居昇。「配電系統最佳饋線重組與電容配置」。國立中正大學電機工程研究所,博士論文,民國91年6月。
[39]	K. Mori, M. Tsukiyama and T. Fukuda, “Multi-optimization by immune algorithm with diversity and learning,” in 2nd Int. Conf. on Multi-Agent Systems, Workshop Notes on Immunity-Based Systems, 1996, pp.118-123.
[40]	D. Dasgupta, Artificial immune systems and their applications. Berlin: Springer, 1999.
[41]	Leandro N. de Castro and Jonathan Timmis, Artificial immune systems : A new computational intelligence approach. London: Springer, 2002.
[42]	J.S. Chun, M.K. Kim, H.K. Jung, and S.K. Hong, “Shape optimization of electromagnetic devices using immune algorithm,” IEEE Trans. Magnetics, vol. 33, no. 2, pp. 1876–1879, March 1997.
[43]	A. Ishiguro, Y. Watanabe, and Y. Uchikawa, “Fault diagnosis of plant systems using immune networks,” in 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Las Vegas, Nevada, Oct. 1994, pp.34-42.
[44]	N. Mitsumoto, T. Fukuda, and F. Arai, “The immune mechanism, adaptation, learning for the multi agent system,” in 1994 IEEE Symposium on Emerging Technologies and Factory Automation, Tokyo, Japan, May 1994, pp.446-453.
[45]	肯德爾著,涂可欣譯。免疫兵團。臺北市:天下遠見,民國90年。
[46]	J. D. Farmer, N. H. Packard, and A. S. Perelson, “The immune system: adaptation and machine learning,” Physica, vol. 22D, pp. 187–204, 1986.
[47]	K. Mori, M. Tsukiyama, and T. Fukuda, “Immune algorithm with searching dversity and its application to resource allocation problem”, Trans. IEE Japan, Vol. 113-C, No. 10, pp. 872-878, 1993.
[48]	S. Forrest, and A. Perelson, “Genetic algorithms and the immune system”, in Workshop on parallel problem solving from nature, 1990, pp.320-325.
[49]	S. Forrest, and A. Perelson, “Computation and the immune system”, ACM SIGBIO Newsletter, Association for Computing Machinery, Vol. 12, No.2, pp 52-57, 1992.
[50]	S.J. Huang, "An immune-based optimization method to capacitor placement in a radial distribution system", IEEE Trans. Power Delivery, Vol. 15, No. 2, pp. 744-749, April 2000.
[51]	“IEEE recommended practices and requirements for harmonic control in electrical power systems,” IEEE Std 519-1992, April 12, 1993.
[52]	M.E. Baran and F.F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing”, IEEE Trans. Power Delivery, Vol. 7, No. 2, pp.1401-1407, April 1989.
[53]	Runarsson, T.P., and Xin Yao, ”Search biases in constrained evolutionary optimization,” IEEE Trans. Systems, Man and Cybernetics, Part C, Vol. 35-C,  No. 2,  May 2005, pp.233-243
[54]	蘇玉生。「配電網路模型與電容器應用之研究」。國立中山大學電機工程學系研究所,博士論文,民國90年6月。
[55]	簡永衡。「一次配電系統虛功率補償策略之研究」。國立中正大學電機工程研究所,碩士論文,民國91年6月。
[56]	曹登發。「配電系統規劃之可靠度塑模研究」。國立台灣科技大學電機工程系,博士論文,民國91年6月。
[57]	William H. Kersting, Distribution system modeling and analysis. Boca Raton: CRC Press, 2002.
[58]	張喜翔。「應用多目標最佳化演算法於配電系統」。國立中正大學電機工程研究所,碩士論文,民國92年6月。
[59]	M.A.S. Masoum, A. Jafarian, M. Ladjevardi, and E.F. Fuchs, and W.M. Grady, “Fuzzy approach for optimal placement and sizing of capacitor banks in the presence of harmonics,” IEEE Trans. Power Delivery, Vol. 19, No. 2, pp. 822-829, April 2004.
[60]	鄭明仁。「應用蟻行演算法於配電系統最佳饋線路徑規劃之研究」。國立台灣科技大學電機工程系,碩士論文,民國92年6月。
[61]	張英彬。「工業用戶大容量電力諧波濾波器之最佳規劃」。國立台灣科技大學電機工程系,博士論文,民國92年6月。
[62]	S. Bandyopadhyay, S.K. Pal, and B. Aruna, “Multiobjective GAs, quantitative indices, and pattern classification,” IEEE Trans. Systems, Man and Cybernetics, Part B, Vol. 34, No. 5, pp. 2088-2099, Oct. 2004.
[63]	M.A. Abido, “A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch,” International Journal of Electrical Power & Energy Systems, Vol. 25, No. 2, pp. 97-105, 2003.
[64]	呂少君。「應用混合差分進化演算法及動態規劃法於發輸電系統虛功補償與調度」。國立中正大學電機工程研究所,碩士論文,民國93年6月。
[65]	李公明。「應用迴路分析演算法於配電系統電容器配置」。國立中正大學電機工程研究所,碩士論文,民國93年6月。
[66]	吳俊德。「應用免疫演算法於饋線電容器最佳化規劃」。國立中山大學電機工程學系研究所,碩士論文,民國94年6月。
[67]	C. Kawann and A.E. Emanuel, “Passive shunt harmonic filters for low and medium voltage: a cost comparison study,” IEEE Trans. Power Systems, Vol. 11, No. 4, pp. 1825-1831, Nov. 1996. 
[68]	I.P. Abril and J.A.G. Quintero, “VAr compensation by sequential quadratic programming,” IEEE Trans. Power Systems, Vol. 18, No. 1, pp.36-41, Feb. 2003.
[69]	李榮乾。「諧波電力潮流分析及消除諧波之方法」。國立台灣大學電機工程研究所,碩士論文,民國76年6月。
[70]	江榮城。「諧波電力潮流分析輿濾波器設計」。國立中山大學電機工程研究所,碩士論文,民國78年6月。
[71]	何信龍。「含諧波污染源之電力系統最佳虛功補償規劃」。國立中山大學電機工程研究所,碩士論文,民國81年6月。
[72]	T. Hiyama, M.S.A.A. Hammam, and T.H. Ortmeyer, “Distribution system modeling with distributed harmonic sources,” IEEE Trans. Power Delivery, Vol. 4, No. 2, pp.1297-1304, April 1989.
[73]	T.C. Shuter, H.T. Jr. Vollkommer, and T.L. Kirkpatrick, “Survey of harmonic levels on the American Electric Power distribution system,” IEEE Trans. Power Delivery, Vol. 4, No. 4, pp.2204-2213, Oct. 1989.
[74]	李雪銀。「實用配電饋線電容器規劃」。國立中山大學電機工程研究所,碩士論文,民國82年6月。
[75]	蘇隆華。「配電饋線上可切式電容器操作策略之研究」。國立成功大學電機工程研究所,碩士論文,民國82年6月。
[76]	曾忠銘。「利用基因演算法決定諧波濾波器之最佳容量」。國立台灣工業技術學院電機工程技術研究所,碩士論文,民國85年6月。
[77]	P. Venkataraman, Applied optimization with MATLAB programming. New York: Wiley, 2002.
[78]	R. Natarajan, Ramasamy, Computer-aided power system analysis. New York: Marcel Dekker, 2002.
[79]	J. Yen and R. Langari, Fuzzy logic : intelligence, control, and information. Upper Saddle River, N.J.: Prentice Hall, 1999.
[80]	Y.Y. Hong and W.F. Huang, “Interactive multiobjective passive filter planning with fuzzy parameters in distribution systems using genetic algorithms,” IEEE Trans. Power Delivery, Vol. 18, No. 3, pp. 1043-1050, July 2003.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文延後至2017-12-31公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2017-12-31公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信