§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0806200714362700
DOI 10.6846/TKU.2007.00254
論文名稱(中文) 通道估計誤差對正交分頻多工系統在多路徑雷利緩慢衰落通道下之位元錯誤率之影響
論文名稱(英文) Effects of Channel Estimation Error on the BER Performance of OFDM Systems in Multipath Rayleigh Slowly Fading Channels
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 黃俊富
研究生(英文) Chun-Fu Huang
學號 694351023
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-06-04
論文頁數 50頁
口試委員 指導教授 - 易志孝(chyih@ee.tku.edu.tw)
委員 - 詹益光
委員 - 趙亮琳
委員 - 易志孝
關鍵字(中) 正交分頻多工
符際干擾
載波干擾
可加高斯雜訊
載波頻率偏差
通道狀態資訊
效能分析
位元錯誤率
關鍵字(英) orthogonal frequency division multiplexing
intersymbol interference
intercarrier interference
additive Gaussian noise
carrier frequency offset
channel state information
performance analysis
bit error rate
第三語言關鍵字
學科別分類
中文摘要
在本論文中,我們研究通道估計誤差對正交分頻多工系統在多路徑雷利緩慢衰落通道之下之位元錯誤率之影響。由於可加白色高斯雜訊和殘餘載波頻率偏差所引起的載波間干擾,使得基於訓練符號的通道估測不完美。我們使用基於BPSK、QPSK、16-QAM、64-QAM的調變系統下所推導出的位元錯誤率公式,來描述由不完美的通道狀態資訊所導致系統效能降低的特性。而我們所推導出來的位元錯誤率公式不需要複雜的積分計算,可以很容易的計算出結果並且相當的精確。電腦模擬的結果可以驗證我們的理論分析。
英文摘要
In this thesis, we study the effects of channel estimation error on the bit error probability of orthogonal frequency division multiplexing (OFDM) systems in multipath Rayleigh slowly fading channels. The channel estimation errors come from the additive white Gaussian noise (AWGN) and intercarrier interference (ICI) caused by the residual frequency offset (CFO) We derive the bit error rate (BER) formulas for BPSK, QPSK, 16-QAM, and64-QAM modulation schemes to characterize the performance degradation resulting from imperfect channel state information (CSI).  Without complex numerical integrals in our BER formulas, they can be evaluated easily and accurately. Simulation results verify the correctness of our theoretical analysis.
第三語言摘要
論文目次
ACKNOWLEDGENMENT                                                I
CHINESE ABSTRACT                                                   II
ENGLISH ABSTRACT                                                  III
CONTENTS                                                            Ⅳ
LIST OF FIGURES                                                      Ⅵ
CHAPTER 1  INTRODUCTION                                          1
CHAPTER 2  WIRELESS CHANNEL TYPES AND RAYLEIGH CHANNEL MODEL                                                  4
2.1	Fading Parameters …………………..…………………….....…... 4
2.1.1	Delay Spread…………….…….…………...……4
2.1.2	Coherence Bandwidth…………...……...….…...5
2.1.3	Doppler Shift……………….……………………5
2.1.4	Doppler Spread………………………………….6
2.1.5	Coherence Time…………………………………7
2.2	The Characteristic of Wireless Channels…………………………7
2.2.1	Flat Fading……………..…….…………...……..7
2.2.2	Frequency Selective Fading……..……...….…...8
2.2.3	Fast Fading………..……………..………………8
2.2.4	Slow Fading………..…………………………….8
CHAPTER 3  OFDM SYSTEMS OVERIEW AND SYSTEM MODEL          10
3.1  Frequency-Division Multiplexing and Orthogonality………….10
3.2  Guard Interval and Cyclic xtension….………………………….12
3.3  System Model……………………………………………….……..13

CHAPTER 4  BER ANALYSIS                                           18
4.1	Background………..……………………………………………....18
4.2	BPSK……………..…………………………………………….….22
4.3	QPSK………………………………………………………………27
4.4	16-QAM……………………………………………………………29
4.5	64-QAM……………………………………………………………33
CHAPTER 5  NUMERICAL RESULTS                                    37
5.1	Simulation Setup…………………..………………….…………..37
5.2	Results…………………………………………………………..…37
CHAPTER 6  CONCLUSIONS                                           47
REFERENCES                                                         48


LIST OF FIGURES


Figure 2.1 Doppler effect……………..………………………………..…………………..6
Figure 2.2 Fading illustration………………..………………..……………………………7
Figure 3.1 Subdivision of the channel bandwidth W………………..……………………11
Figure 3.2 No guard interval (GI) on each symbol…………………………………….....12
Figure 3.3 Add guard interval (GI) on each symbol………………………….…………..12
Figure 3.4 Cyclic extension types……………………………………………………...…13
Figure 3.5 A typical frame structure of OFDM symbols…………………..….…………..14
Figure 4.1 QPSK constellation with Gray encoding………………………………………27
Figure 4.2 16-QAM constellation with Gray encoding.…………………………………...30
Figure 4.3 16-QAM bit-by-bit demapping………………….……..………………………30
Figure 4.4 64-QAM constellation with Gray encoding.…………………………………...36
Figure 4.5 64-QAM bit-by-bit demapping………………………………………………...36
Figure 5.1 Effect of channel estimation error on the BER of BPSK modulated OFDM signals in multipath Rayleigh fading channels.…………..……………..….....41
Figure 5.2 Effect of channel estimation error on the BER of QPSK modulated OFDM signals in multipath Rayleigh fading channels.…………..……………..….....42
Figure 5.3 Effect of channel estimation error on the BER of 16-QAM modulated OFDM signals in multipath Rayleigh fading channels.…………..……………..….....43
Figure 5.4 Effect of channel estimation error on the BER of 64-QAM modulated OFDM signals in multipath Rayleigh fading channels.…………..……………..….....44

Figure 5.5 The BER performance of BPSK, QPSK, 16-QAM, and 64-QAM modulated OFDM signals with different numbers of training symbols……………..….....45
Figure 5.6 The BER performance of BPSK and 64-QAM modulated OFDM signals with three different training sequences………………………………………..….....46
參考文獻
[1] R. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwell, MA: Artech House, 2000.
[2] J. K. Cavers, ”The performance of phased locked transparent tone in band with symmetric phase detection,” IEEE Trans. Commun., vol. 39, no. 9, pp. 1389-1399, Sep. 1991.
[3] J. K. Cavers, ”An analysis of pilot-symbol-assisted modulation for Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 40, no. 5, pp. 1389-1399, Nov. 1991.
[4] L. Cao and N. C. Beaulieu, ”Exact error-rate analysis of diversity 16-QAM with channel estimation error,” IEEE Trans. Commun., vol. 52, no. 6, pp. 1019-1028, June 2004.
[5] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. B¨orjesson, ”On channel estimation in OFDM systems,” in Proc. 45th IEEE Vehicular Technology Conf., Chicago, IL, July 1995, pp. 815-819.
[6] Y. Li, L. J. Cimini, and N. R. Sollenberger, ”Robust  Channel  Estimation  for  OFDM Systems with Rapid Dispersive Fading Channels” IEEE Trans. Commun., vol. 46, no. 7, pp. 902-915, Jul. 1998.
[7] P. Hoeher, S. Kaiser and P. Robertson, ”Two-dimensional  pilot-symbol-aided  channel estimation by Wiener filtering,” Proc. Int. Conf. Acoustics, Speech, and Signal Processing, pp. 1845-1848, Munich, Germany, Apr. 1997.
[8] Y. Li, ”Pilot-symbol-aided  channel  estimation  for  OFDM  in  wireless  systems,”  IEEE Trans. Veh. Technol., vol. 49, no. 4, pp. 1207-1215, Jul. 2000.
[9] L. Hanzo, W. Webb, and T. Keller, Single- and Multi-carrier Quadrature Amplitude Modulation:   Principles and Applications for Personal Communications, WLANs and Broadcasting, Chichester:  John Wiely & Sons, Inc. 2000.
[10] R. Negi and J. Cioffi, ”Pilot  tone  selection  for  channel  estimation  in  a  mobile  OFDMsystem, ” IEEE Trans. Consum. Electron., vol. 44, no. 8, pp. 1122-1128, Aug. 1998.
[11] M. Morelli and U. Mengali, ”A  comparison  of  pilot-aided  channel  estimation  methods for OFDM systems,” IEEE Trans. Signal Processing, vol. 49, no. 12, pp. 3065-3073, Dec.2001.
[12] V. Mignone and A. Morello, ”CD3-OFDM:  a  novel  demodulation  scheme  for  fixed  and mobile receivers”, IEEE Trans. Commun., vol. 44, no. 5, pp. 1144-1151, Sep. 1996.
[13] J. Heath and G. Giannakis, ”Exploiting  input  cyclostationarity  for  blind  channel  identification in OFDM systems, ” IEEE  Trans. Signal Process., vol. 47, no. 3, pp. 848-856, Mar. 1999.
[14] Y. Song, S. Roy, and L. Akers, ”Joint blind estimation of channel and data symbols in OFDM,” Proc. IEEE Veh. Technol. Conf., pp. 46-50, May 2000.
[15] S. Zhou and G. Giannakis, ”Finite-alphabet  based  channel  estimation  for  OFDM  and related multicarrier systems,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1402-1414, Aug.2001.
[16] B. Muquet, M. de Courville, and P. Duhamel, ”Subspace-based  blind  and  semi-blind channel estimation for OFDM systems,” IEEE Trans. Signal Process., vol. 50, no. 7, pp.1699-1712, Jul. 2002.
[17] L. Mazet, V. Buzenac-Settineri, M. de Courville, and P. Duhamel, ” An EM based semi- blind  channel  estimation  algorithm  designed  for  OFDM  systems,”  Proc.  Thirty-Sixth Asilomar Conf. on Signals, Systems and Computers, pp. 1642-1646, Nov. 2002.
[18] Wireless LAN  Media  Access  Control  (MAC)  and  Physical  Layer  (PHY)  Specification: High-Speed Physical Layer in the 5 GHz Band, Piscataway, NJ: IEEE Std. 802.11a, Sep.1999.
[19] H. Cheon and D. Hong, ”Effect  of  channel  estimation  error  in  OFDM-based  WLAN”,IEEE Commun. Letter, vol. 6, no. 5, pp. 190-192, May 2002.
[20] L. Rugini and P. Banelli, ”BER of OFDM systems impaired by carrier frequency offset in multipath fading channels”, IEEE Trans. on Wireless Commun., vol. 4, pp. 2279-2288, Sep. 2005.
[21] S. Wu and Y. Bar-Ness, ”OFDM channel estimation in the presence of frequency offset and phase noise,” Proc. IEEE Int. Conf. Commun., pp. 3366-3370, May 2003.
[22] D. D. Lin, R. A. Pacheco, T. J. Lim, and D. Hatzinakos, ”Optimal  OFDM  channel estimation with carrier frequency offset and phase noise”, Proc. IEEE Wireless Commun. and Networking Conf., pp. 1050-1055, Las Vegas, USA, Apr. 2006.
[23] Theodore S. Rapport, Wireless Communications Principles and Practice Second Edition. New Jersey: Prentice Hall PTR , 2002.
[24] Ahmad R.S Bahai, Burtion R. Saltzberg and Mustafa Ergen , Multi-Carrier Digital Communications Theory and Applications of OFDM. New York:  Springer Science+Business Media, 2004.
[25] J. G. Proakis, Digital Communications. New York:  McGraw-Hill, 2001.
[26] J. Heiskala and J. Terry, OFDM Wireless WLANs: A Theoretical and Practical Guide. Sams Publishing, 2001.
[27] K. Sathananthan and C. Tellambura, ”Probability of error calculation of OFDM systems with frequency offset,” IEEE Trans. Commun., vol. 49, no. 11, pp. 1884-1888, Nov. 2001.
[28] T. M. Schimidl and D. C. Cox, ”Robust  frequency  and  timing  synchronization  for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp. 1613-1621, Dec. 1997.
[29] M. K. Simon and M.-S. Alouini, Digital Communications over Fading Channels.  New Jersey: John Wiley & Sons, Inc. 2005.
[30] X. Tang, M.-S. Alouini, and A. J. Goldsmith, ”Effect  of  channel  estimation  error  on M-QAM BER performance in Rayleigh fading, ” IEEE Trans. Commun., vol. 47, no. 12, pp. 1856-1864, Dec. 1999.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信