淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0806200714362700
中文論文名稱 通道估計誤差對正交分頻多工系統在多路徑雷利緩慢衰落通道下之位元錯誤率之影響
英文論文名稱 Effects of Channel Estimation Error on the BER Performance of OFDM Systems in Multipath Rayleigh Slowly Fading Channels
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 黃俊富
研究生英文姓名 Chun-Fu Huang
學號 694351023
學位類別 碩士
語文別 中文
口試日期 2007-06-04
論文頁數 50頁
口試委員 指導教授-易志孝
委員-詹益光
委員-趙亮琳
委員-易志孝
中文關鍵字 正交分頻多工  符際干擾  載波干擾  可加高斯雜訊  載波頻率偏差  通道狀態資訊  效能分析  位元錯誤率 
英文關鍵字 orthogonal frequency division multiplexing  intersymbol interference  intercarrier interference  additive Gaussian noise  carrier frequency offset  channel state information  performance analysis  bit error rate 
學科別分類 學科別應用科學電機及電子
中文摘要 在本論文中,我們研究通道估計誤差對正交分頻多工系統在多路徑雷利緩慢衰落通道之下之位元錯誤率之影響。由於可加白色高斯雜訊和殘餘載波頻率偏差所引起的載波間干擾,使得基於訓練符號的通道估測不完美。我們使用基於BPSK、QPSK、16-QAM、64-QAM的調變系統下所推導出的位元錯誤率公式,來描述由不完美的通道狀態資訊所導致系統效能降低的特性。而我們所推導出來的位元錯誤率公式不需要複雜的積分計算,可以很容易的計算出結果並且相當的精確。電腦模擬的結果可以驗證我們的理論分析。
英文摘要 In this thesis, we study the effects of channel estimation error on the bit error probability of orthogonal frequency division multiplexing (OFDM) systems in multipath Rayleigh slowly fading channels. The channel estimation errors come from the additive white Gaussian noise (AWGN) and intercarrier interference (ICI) caused by the residual frequency offset (CFO) We derive the bit error rate (BER) formulas for BPSK, QPSK, 16-QAM, and64-QAM modulation schemes to characterize the performance degradation resulting from imperfect channel state information (CSI). Without complex numerical integrals in our BER formulas, they can be evaluated easily and accurately. Simulation results verify the correctness of our theoretical analysis.
論文目次 ACKNOWLEDGENMENT I
CHINESE ABSTRACT II
ENGLISH ABSTRACT III
CONTENTS Ⅳ
LIST OF FIGURES Ⅵ
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 WIRELESS CHANNEL TYPES AND RAYLEIGH CHANNEL MODEL 4
2.1 Fading Parameters …………………..…………………….....…... 4
2.1.1 Delay Spread…………….…….…………...……4
2.1.2 Coherence Bandwidth…………...……...….…...5
2.1.3 Doppler Shift……………….……………………5
2.1.4 Doppler Spread………………………………….6
2.1.5 Coherence Time…………………………………7
2.2 The Characteristic of Wireless Channels…………………………7
2.2.1 Flat Fading……………..…….…………...……..7
2.2.2 Frequency Selective Fading……..……...….…...8
2.2.3 Fast Fading………..……………..………………8
2.2.4 Slow Fading………..…………………………….8
CHAPTER 3 OFDM SYSTEMS OVERIEW AND SYSTEM MODEL 10
3.1 Frequency-Division Multiplexing and Orthogonality………….10
3.2 Guard Interval and Cyclic xtension….………………………….12
3.3 System Model……………………………………………….……..13

CHAPTER 4 BER ANALYSIS 18
4.1 Background………..……………………………………………....18
4.2 BPSK……………..…………………………………………….….22
4.3 QPSK………………………………………………………………27
4.4 16-QAM……………………………………………………………29
4.5 64-QAM……………………………………………………………33
CHAPTER 5 NUMERICAL RESULTS 37
5.1 Simulation Setup…………………..………………….…………..37
5.2 Results…………………………………………………………..…37
CHAPTER 6 CONCLUSIONS 47
REFERENCES 48


LIST OF FIGURES


Figure 2.1 Doppler effect……………..………………………………..…………………..6
Figure 2.2 Fading illustration………………..………………..……………………………7
Figure 3.1 Subdivision of the channel bandwidth W………………..……………………11
Figure 3.2 No guard interval (GI) on each symbol…………………………………….....12
Figure 3.3 Add guard interval (GI) on each symbol………………………….…………..12
Figure 3.4 Cyclic extension types……………………………………………………...…13
Figure 3.5 A typical frame structure of OFDM symbols…………………..….…………..14
Figure 4.1 QPSK constellation with Gray encoding………………………………………27
Figure 4.2 16-QAM constellation with Gray encoding.…………………………………...30
Figure 4.3 16-QAM bit-by-bit demapping………………….……..………………………30
Figure 4.4 64-QAM constellation with Gray encoding.…………………………………...36
Figure 4.5 64-QAM bit-by-bit demapping………………………………………………...36
Figure 5.1 Effect of channel estimation error on the BER of BPSK modulated OFDM signals in multipath Rayleigh fading channels.…………..……………..….....41
Figure 5.2 Effect of channel estimation error on the BER of QPSK modulated OFDM signals in multipath Rayleigh fading channels.…………..……………..….....42
Figure 5.3 Effect of channel estimation error on the BER of 16-QAM modulated OFDM signals in multipath Rayleigh fading channels.…………..……………..….....43
Figure 5.4 Effect of channel estimation error on the BER of 64-QAM modulated OFDM signals in multipath Rayleigh fading channels.…………..……………..….....44

Figure 5.5 The BER performance of BPSK, QPSK, 16-QAM, and 64-QAM modulated OFDM signals with different numbers of training symbols……………..….....45
Figure 5.6 The BER performance of BPSK and 64-QAM modulated OFDM signals with three different training sequences………………………………………..….....46
參考文獻 [1] R. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwell, MA: Artech House, 2000.
[2] J. K. Cavers, ”The performance of phased locked transparent tone in band with symmetric phase detection,” IEEE Trans. Commun., vol. 39, no. 9, pp. 1389-1399, Sep. 1991.
[3] J. K. Cavers, ”An analysis of pilot-symbol-assisted modulation for Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 40, no. 5, pp. 1389-1399, Nov. 1991.
[4] L. Cao and N. C. Beaulieu, ”Exact error-rate analysis of diversity 16-QAM with channel estimation error,” IEEE Trans. Commun., vol. 52, no. 6, pp. 1019-1028, June 2004.
[5] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. B¨orjesson, ”On channel estimation in OFDM systems,” in Proc. 45th IEEE Vehicular Technology Conf., Chicago, IL, July 1995, pp. 815-819.
[6] Y. Li, L. J. Cimini, and N. R. Sollenberger, ”Robust Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels” IEEE Trans. Commun., vol. 46, no. 7, pp. 902-915, Jul. 1998.
[7] P. Hoeher, S. Kaiser and P. Robertson, ”Two-dimensional pilot-symbol-aided channel estimation by Wiener filtering,” Proc. Int. Conf. Acoustics, Speech, and Signal Processing, pp. 1845-1848, Munich, Germany, Apr. 1997.
[8] Y. Li, ”Pilot-symbol-aided channel estimation for OFDM in wireless systems,” IEEE Trans. Veh. Technol., vol. 49, no. 4, pp. 1207-1215, Jul. 2000.
[9] L. Hanzo, W. Webb, and T. Keller, Single- and Multi-carrier Quadrature Amplitude Modulation: Principles and Applications for Personal Communications, WLANs and Broadcasting, Chichester: John Wiely & Sons, Inc. 2000.
[10] R. Negi and J. Cioffi, ”Pilot tone selection for channel estimation in a mobile OFDMsystem, ” IEEE Trans. Consum. Electron., vol. 44, no. 8, pp. 1122-1128, Aug. 1998.
[11] M. Morelli and U. Mengali, ”A comparison of pilot-aided channel estimation methods for OFDM systems,” IEEE Trans. Signal Processing, vol. 49, no. 12, pp. 3065-3073, Dec.2001.
[12] V. Mignone and A. Morello, ”CD3-OFDM: a novel demodulation scheme for fixed and mobile receivers”, IEEE Trans. Commun., vol. 44, no. 5, pp. 1144-1151, Sep. 1996.
[13] J. Heath and G. Giannakis, ”Exploiting input cyclostationarity for blind channel identification in OFDM systems, ” IEEE Trans. Signal Process., vol. 47, no. 3, pp. 848-856, Mar. 1999.
[14] Y. Song, S. Roy, and L. Akers, ”Joint blind estimation of channel and data symbols in OFDM,” Proc. IEEE Veh. Technol. Conf., pp. 46-50, May 2000.
[15] S. Zhou and G. Giannakis, ”Finite-alphabet based channel estimation for OFDM and related multicarrier systems,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1402-1414, Aug.2001.
[16] B. Muquet, M. de Courville, and P. Duhamel, ”Subspace-based blind and semi-blind channel estimation for OFDM systems,” IEEE Trans. Signal Process., vol. 50, no. 7, pp.1699-1712, Jul. 2002.
[17] L. Mazet, V. Buzenac-Settineri, M. de Courville, and P. Duhamel, ” An EM based semi- blind channel estimation algorithm designed for OFDM systems,” Proc. Thirty-Sixth Asilomar Conf. on Signals, Systems and Computers, pp. 1642-1646, Nov. 2002.
[18] Wireless LAN Media Access Control (MAC) and Physical Layer (PHY) Specification: High-Speed Physical Layer in the 5 GHz Band, Piscataway, NJ: IEEE Std. 802.11a, Sep.1999.
[19] H. Cheon and D. Hong, ”Effect of channel estimation error in OFDM-based WLAN”,IEEE Commun. Letter, vol. 6, no. 5, pp. 190-192, May 2002.
[20] L. Rugini and P. Banelli, ”BER of OFDM systems impaired by carrier frequency offset in multipath fading channels”, IEEE Trans. on Wireless Commun., vol. 4, pp. 2279-2288, Sep. 2005.
[21] S. Wu and Y. Bar-Ness, ”OFDM channel estimation in the presence of frequency offset and phase noise,” Proc. IEEE Int. Conf. Commun., pp. 3366-3370, May 2003.
[22] D. D. Lin, R. A. Pacheco, T. J. Lim, and D. Hatzinakos, ”Optimal OFDM channel estimation with carrier frequency offset and phase noise”, Proc. IEEE Wireless Commun. and Networking Conf., pp. 1050-1055, Las Vegas, USA, Apr. 2006.
[23] Theodore S. Rapport, Wireless Communications Principles and Practice Second Edition. New Jersey: Prentice Hall PTR , 2002.
[24] Ahmad R.S Bahai, Burtion R. Saltzberg and Mustafa Ergen , Multi-Carrier Digital Communications Theory and Applications of OFDM. New York: Springer Science+Business Media, 2004.
[25] J. G. Proakis, Digital Communications. New York: McGraw-Hill, 2001.
[26] J. Heiskala and J. Terry, OFDM Wireless WLANs: A Theoretical and Practical Guide. Sams Publishing, 2001.
[27] K. Sathananthan and C. Tellambura, ”Probability of error calculation of OFDM systems with frequency offset,” IEEE Trans. Commun., vol. 49, no. 11, pp. 1884-1888, Nov. 2001.
[28] T. M. Schimidl and D. C. Cox, ”Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp. 1613-1621, Dec. 1997.
[29] M. K. Simon and M.-S. Alouini, Digital Communications over Fading Channels. New Jersey: John Wiley & Sons, Inc. 2005.
[30] X. Tang, M.-S. Alouini, and A. J. Goldsmith, ”Effect of channel estimation error on M-QAM BER performance in Rayleigh fading, ” IEEE Trans. Commun., vol. 47, no. 12, pp. 1856-1864, Dec. 1999.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-06-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-06-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信