淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0806200518134800
中文論文名稱 複雜物體之電磁逆散射研究
英文論文名稱 Inverse Scattering of Complex Objects
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 林俊仁
研究生英文姓名 Chun-Jen Lin
學號 890350043
學位類別 博士
語文別 中文
口試日期 2005-05-23
論文頁數 93頁
口試委員 指導教授-丘建青
委員-林丁丙
委員-李慶烈
委員-林俊華
委員-余金郎
中文關鍵字 逆散射  半空間  三層空間  雙軸性介質物體  複雜物體 
英文關鍵字 Inverse scattering  Half space  Three space  Biaxial dielectric cylinders  Complex object 
學科別分類
中文摘要 本論文擬模擬研究雙軸性掩埋在半空間與三層空間中複雜柱體(即包含雙軸性介質物體與完全導體)的電磁影像重建。設一未知的不均勻雙軸性介質複雜物體掩埋在其中一空間中(不論是在半空間或三層空間中),吾人可在另外的空間中適當的安排一組具有不同入射和極化方向的無關聯波照射物體並量測在此之散射場,利用簡單的矩陣運算,我們就可以克服非線性和不良情況的發生的困擾,進而重建雙軸性複雜物體的介電常數分佈。在理論部份,主要是根據邊界條件導出一組非線性的積分方程組,接著利用以動差法與無關聯照射法計算其散射場,再根據電磁成像法則,重建出介質物體內部的介電常數。在數值結果方面,將證明理論部份的正確性。此結果亦顯示即使物體的介電常數很大時,我們能成功的重建介電常數的分佈。而且即使在在量測的散射場中有高斯雜訊的存在,依然可以得到良好的重建結果。除此之外,我們也會在文中探討雜訊對重建結果的影響程度。
英文摘要 In this thesis, inverse scattering of a biaxial complex cylinder which is buried in half space and three layers structure is investigated. Dielectric cylinders of unknown permittivities are buried in one space and scatter a group of unrelated waves incident from another space where the scattered field is recorded. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. For theoretical formulation, based on the boundary condition, a set of integral equations is derived and solved by the moment method as well as the unrelated illumination method. Numerical results show that the permittivity tensor distribution of the materials can be successfully reconstructed even when the permittivity is fairly large. Good reconstruction is obtained even in the presence of additive Gaussian noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.
論文目次 目錄

第一章 簡介…………………………………………………………. 1
1.1 研究動機與相關文獻……………………………………….1
  1.2 本研究之貢獻………………………………………………7
  1.3 內容簡述……………………………………………………8
第二章 電磁成像理論…………………………………………...…..9
  2.1 理論推導…………………………………………………...10
2.1.1 正散射的理論推導 ……………………………………….10
2.2 數值方法……………………………………………………16
2.2.1 動差法於求解積分方程式之應用 …………………16
2.2.2應用無關聯照射法於逆散射問題……………………20
2.3 數值模擬結果 ……………………………………………26
2.4 結 論 ………………………………………………………39
第三章 三層介質中雙軸性介質物體之逆散射………………….…..40
  3.1 理論推導…………………………………………………...41
3.2 數值方法……………………………………………………48
3.2.1 動差法於求解積分方程式之應用 …………………48
3.2.2 應用無關聯照射法於逆散射問題 …………………50
3.3 數值模擬結果 ……………………………………………55
3.4 結 論 ………………………………………………………68

第四章 本論文之總結………………………………………..…..…..69
 
附錄一 計算半空間格林函數的方法…………………..……………70
附錄二 矩陣[G1]~[G19]元素的計算…………………….……………73
附錄三 計算三層空間格林函數的方法 ……………………………77
附錄四 矩陣[G20]~[G27]元素的計算…………………………………83
參 考 文 獻 ………………………………………………….…...…85
Publication of C. J. Lin …………………………………………… 92

圖目錄 圖2-1 在半空間中,雙軸性複雜物體在X-Y平面上的示意圖 ..….24
圖2-2 無關聯照射法之波束聚焦法示意圖 ………………….……...25
圖2-3 第一個例子(長方形)的原始介電常數分佈 (a) ),(yx 1 ε (b) ),(yx 2 ε)……………………………………..…29
圖2-3 第一個例子(長方形)的原始介電常數分佈 (c) ),(yx 3 ε ……………………………………………..……...30
圖2-4 第一個例子(長方形)的重建介電常數分佈 (a) ),(yx 1 ε (b) ),(yx 2 ε……………………….………………..31
圖2-4 第一個例子(長方形)的重建介電常數分佈 (c) ),(yx 3 ε….………………………………………………...32
圖2-5 第二個例子(正方形)的原始介電常數分佈 (a) ),(yx 1 ε (b) ),(yx 2 ε………………………….…………….33
圖2-5 第二個例子(正方形)的原始介電常數分佈 (c) ),(yx 3 ε…………………………………………………….34
圖2-6 第二個例子(正方形)的重建介電常數分佈 (a) ),(yx 1 ε (b) ),(yx 2 ε…...……………………………………35
圖2-6 第二個例子(正方形)的重建介電常數分佈 (c) ),(yx 3 ε……………………………………………………...36
圖2-7 第一個例子(長方形)介電常數的重建誤差對雜訊階的模擬結果…………………………………………………………….37
圖2-8 第二個例子(正方形)介電常數的重建誤差對雜訊階的模擬結果…………….………………………………………………38
圖3-1 在三層空間中,雙軸性介質物體在X-Y平面上的示意圖………………………………………………………………41
圖3-2 第一個例子(長方形)的原始介電常數分佈 (a) ),(yx 1 ε (b) ),(yx 2 ε………………………………..………58
圖3-2 第一個例子(長方形)的原始介電常數分佈 (c) ),(yx 3 ε……………………………………………………..59
圖3-3 第一個例子(長方形)的重建介電常數分佈 (a) ),(yx 1 ε (b) ),(yx 2 ε………………………………………...60
圖3-3 第一個例子(長方形)的重建介電常數分佈 (c) ),(yx 3 ε.……………………………………..………………61
圖3-4 第二個例子(正方形)的原始介電常數分佈 (a) ),(yx 1 ε (b) ),(yx 2 ε………………………………………...62
圖3-4 第二個例子(正方形)的原始介電常數分佈 (c) ),(yx 3 ε……………………………………………………...63
圖3-5 第二個例子(正方形)的重建介電常數分佈 (a) ),(yx 1 ε (b) ),(yx 2 ε………………………………………...64
圖3-5 第二個例子(正方形)的重建介電常數分佈 (c) ),(yx 3 ε………………………………………......................65
圖3-6 第一個例子(長方形)介電常數的重建誤差對雜訊階的模擬結果……………………………………………………………….66
圖3-7 第二個例子(正方形)介電常數的重建誤差對雜訊階的模擬結果……………………………………………………………….67
參考文獻 參 考 文 獻
[1] S. Caorsi, G.L. Gragnani, and M. Pastorino, “Numerical Electromagnetic Inverse-Scattering Solution for Two-Dimensional Infinite Dielectric Cylinders Buried in a Lossy Half-Space,” IEEE Trans. Antennas Propagat., Vol. AP-41, pp. 352-356, Feb. 1993.
[2] C. C. Chiu and Y. M. Kiang, “Inverse Scattering of a Buried Conducting Cylinder,” Inv. Prob., Vol.7, pp. 187-202, April 1991.
[3] C. C. Chiu and C. P. Huang, “Inverse Scattering of Dielectric Cylinders Buried in a Half Space,” Microwave and Optical Technology Letters, Vol. 13, pp. 96-99, Oct. 1996.
[4] M. J. Akhtar and A. S. Omar, “Reconstructing Permittivity Profiles Using an Improved Renormalization Technique,” IEEE MTT-S Digest, p.p. 1815-1818, June 1999.
[5] C. J. Lin, C. Y. Chou, and C. C. Chiu, “Electromagnetic Imaging for a Conducting Cylinder Buried in a Slab Medium by the Genetic Algorithm”, International Journal of Imaging Systems and Technology, Vol. 14 , pp. 1-7, June 2004
[6] Y. S. Lin, C. C Chiu,, “Image Reconstruction for a Perfectly Conducting Cylinder Buried in Slab Medium by a TE Wave Illumination”, Electromagnetics, No. 3, pp. 203-216, April 2005.
[7] O. M. Bucci, L. Crocco, T. Isernia, V. Pascazio, “Subsurface Inverse Scattering Problems: Quantifying, Qualifying, and Achieving the Available Information”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, pp. 2527 – 2538, Nov. 2001
[8] M. J. Akhtar, and A.S. Omar, “Reconstructing Permittivity Profiles Using Integral Transforms and Improved Renormalization Techniques”, IEEE Transactions on Microwave Theory and Techniques, Vol. 48, pp.1385 - 1393, Aug. 2000
[9] M. M. Ney, A. M. Smith, and S. S. Stuchly, “A Solution of electromagnetic Imaging Using Pseudoinverse Transformation,“ IEEE Trans. Med. Imag., Vol. MI-3, pp. 155-162, Dec. 1984
[10] A. G. Ramm, “Uniqueness Result for Inverse Problem of Geophysics: I, ” Inverse Problems, vol. 6, pp. 635-641, Aug.1990.
[11] R. F. Harrington, “Field Computation by Moment Methods,” New York: Macmillan, 1968.
[12] G. W. Hohmann, “Electromagnetic Scattering by Conductors in the Earth near a Line Source of Current,” Geophysics, vol. 36, pp. 101-131, Feb. 1971.
[13] T. J. Cui, and W. C. Chew, “Novel Diffraction Tomographic Algorithm for Imaging Two-Dimensional Targets Buried under a Lossy Earth,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, pp. 2033-2041, Feb. 2000.
[14] T. J. Cui, and W. C. Chew, “Diffraction Tomographic Algorithm for the Detection of Three-Dimensional Objects Buried in a Lossy Half-Space”, IEEE Transactions on Antennas and Propagation, Vol. 50, No. 1, pp. 42-49, Jan. 2002.
[15] T. J. Cui, W. C. Chew, A. A. Aydiner, and Y. H. Zhang, “Fast-Forward Solvers for the Low-Frequency Detection of Buried Dielectric Objects,” IEEE Transactions on Geoscience and Remote Sensing, vol. 17, pp. 308-314, May 2003.
[16] S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic Detection of Dielectric Scatterers using Phaseless Synthetic and Real Data and the Memetic Algorithm”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 12 pp. 2745-2753, Dec. 2003.
[17] F. Soldovieri, R. Persico,, “Reconstruction of an Embedded Slab from Multifrequency Scattered Field Data under the Distorted Born Approximation,” IEEE Transactions on Antennas Propagat., vol.52, pp. 2348-2356, Sept. 2004.
[18] S. Bonnard, P. Vincent, and M. Saillard, “Inverse Obstacle Scattering for Homogeneous Dielectric Cylinders Using a Boundary Finite-Element Method”, IEEE Transactions on Antennas and Propagation, Vol. 48, No. 3, pp. 393-400, march 2000.
[19] T. A. Maniatis, K. S. Nikita, and N. K. Uzunoglu, “Two-Dimensional Dielectric Profile Reconstruction Based on Spectral-Domain Moment Method and Nonlinear Optimization”, IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, Nov. 2000.
[20] V. A. Mikhnev and P. Vainikainen, “Two-Step Inverse Scattering Method for One-Dimensional Permittivity Profiles”, IEEE Transactions on Antennas and Propagation, Vol. 48, No. 2, pp. 1831-1840, Feb. 2000.
[21] W. Rieger, A. Buchau, C. Huber, G. Lehner, and W. M. Rucker, “A New Approach to the 2D Inverse Electromagnetic Medium Scattering Problem: Reconstruction of Anisotropic Objects”, IEEE Transactions on Magnetics, Vol. 36, No. 4, pp. 1106-1109, July 2000.
[22] S. Caorsi, A. Costa, and M. Pastorino, “Microwave Imaging Within the Second-Order Born Approximation: Stochastic Optimization by a Genetic Algorithm”, IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, pp. 22-31, Jan. 2001.
[23] S. Caorsi, A. Massa, and M. Pastorino, “A Computational Technique Based on a Real-Coded Genetic Algorithm for Microwave Imaging Purposes”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, pp. 1697-1708, July 2000.
[24] S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved Microwave Imaging Procedure for Nondestructive Evaluations of Two-Dimensional Structures”, IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, pp. 1386-1397, June 2004.
[25] M. Pastorino, A. Massa, and S. Caorsi, “A Microwave Inverse Scattering Technique for Image Reconstruction Based on a Genetic Algorithm”, IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 3, pp. 573-578, June 2000.
[26] M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction Algorithms for Electromagnetic Imaging”, IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 3 pp. 692-699, June 2004.
[27] S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of Buried Inhomogeneous Elliptic Cylinders by a Memetic Algorithm”, IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, pp. 2787-2884, Oct. 2003.
[28] Y. S. Chung, C. Cheon, and S. Y. Hahn, “Reconstruction of Dielectric Cylinders Using FDTD and Topology Optimization Technique”, IEEE Transactions on Magnetics, Vol. 36, No. 4, pp. 956-959, July 2000.
[29] T. Isernia, L. Crocco, and M. D’Urso, “New Tools and Series for Forward and Inverse Scattering Problems in Lossy Media”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 1, No. 4, pp.327-331, Oct. 2004.
[30] T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen , “Inverse Scattering of Two-Dimensional Dielectric Objects Buried in a Lossy Earth Using the Distorted Born Iterative Method”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 2, pp. 339-346, Feb. 2001.
[31] T. J. Cui, W. C. Chew, X. X. Yin, and W. Hong , “Study of Resolution and Super Resolution in Electromagnetic Imaging for Half-Space Problems”, IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, p.p. 1398-1411, June 2004.
[32] J. Ma, W. C. Chew, C. C. Lu, and J. Song, “Image Reconstruction from TE Scattering Data Using Equation of Strong Permittivity Fluctuation”, IEEE Transactions on Antennas and Propagation, Vol. 48, No. 6, pp. 860-867, June 2000.
[33] Y. Yu, T. Yu, and L. Carin, “Three-Dimensional Inverse Scattering of a Dielectric Target Embedded in a Lossy Half-Space”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 5, pp. 957-973, May 2004.
[34] E. Bermani, S. Caorsi, and M. Raffetto, “Microwave Detection and Dielectric Characterization of Cylindrical Objects from Amplitude-Only Data by Means of Neural Networks”, IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, pp. 1309-1314, Sept. 2002.
[35] S. Caorsi and P. Gamba, “Electromagnetic Detection of Dielectric Cylinders by a Neural Network Approach”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, pp. 820-827, March 1999.
[36] W. Wang and S. Zhang, “Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies,” IEEE Trans. Antennas Propagat., Vol. AP-40, pp. 1292-1296, Nov. 1992.
[37] C. C. Chiu and C. J. Lin, " Image Reconstruction of Buried Dielectric Cylinders by TE wave Illumination," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 2, pp. 243-245, Feb. 2002.
[38] C. C. Chiu and C. J. Lin, “Image Reconstruction of Buried Uniaxial Dielectric ylinders," Electromagnetics, vol. 22, No. 2, pp. 97-112, Feb. 2002.
[39] C. C. Chiu and P. T. Liu, “Image Reconstruction of a Complex Cylinder Illuminated by TE Waves,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 1921-1927, Oct. 1996.
[40] C. C. Chiu and R. H. Yang, “Electromagnetic Imaging for Complex Cylindrical Objects,” IEEE Transactions on Medical Imaging, vol. 14, pp. 752-756, Dec. 1995.
[41] C. C. Chiu and R. H. Yang, "Inverse Scattering of Biaxial Cylinders," Microwave and Optical Technology Letters, vol. 9, pp. 292-302, Aug. 1995.
[42] C. C. Chiu and R. H. Yang, "Electromagnetic Imaging for Complex Cylindrical Objects," IEEE Transactions on Medical Imaging, vol. 14, pp. 752-756, Dec. 1995.
[43] A. Ishimaru, “Electromagnetic Wave Propagation, Radiation and Scattering,” Englewood Cliffs, NJ: Prentice-Hall,1991
[44] J. H. Richmond, “Scattering by a Dielectric Cylinder of Arbitrary Cross Section Shape,” IEEE Trans. Antennas Propagat. Vol. 13, pp. 334-341, May 1965.
[45] J. H. Richmond, “TE-Wave Scattering by a Dielectric Cylinder of Arbitrary Cross-Session Shape,” IEEE Trans. Antennas Propagat., Vol. 14, pp. 460-464, July 1966.
[46] M. J. Hagmann, O. P. Gandh, and C. H. Durney, “Upper Bound on Cell Size for Moment-Method Solutions,” IEEE Trans. Microwave Theory Tech., vol. 25, pp. 831-832, Oct. 1977.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信