§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0803201910004100
DOI 10.6846/TKU.2019.00184
論文名稱(中文) Acyl Homoserine Lactones(AHLs)抑制菌篩選及其在薄膜生物反應器控制生物阻塞之效能評估
論文名稱(英文) Screening and efficacy evaluation of Acyl Homoserine Lactones (AHLs) quenching bacteria for biofouling control in membrane bioreactors
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 1
出版年 108
研究生(中文) 朱巧芸
研究生(英文) Chiao-Yun Chu
學號 605480036
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-01-09
論文頁數 96頁
口試委員 指導教授 - 簡義杰(chienichieh@gmail.com)
委員 - 童心欣(htung@ntu.edu.tw)
委員 - 林居慶(chuchinglin.ncu@gmail.com)
關鍵字(中) 群體感應
群體感應抑制
訊息分子
薄膜阻塞
篩菌
關鍵字(英) quorum sensing
quorum quenching
N-acyl-homoserine lactones
Isolation
Quenching Bacteria
第三語言關鍵字
學科別分類
中文摘要
群體感應抑制法(Quorum Quenching ,QQ)是近年來所發展之濾膜生物阻塞控制技術之一,群體感應抑制法之原理為利用微生物分解細胞間溝通所使用的訊息分子,使微生物無法感知其群體數量大小,進而影響其分泌胞外聚合物(extra-cellular polymeric substance, EPS)之生理表現,因此得以延長濾膜使用的時程。此方法與傳統清潔手段相比之優點為能事先預防生物膜之發展與成熟,在其形成前就具有抑制效果,是一種從原理上去控制阻塞發生的手段。目前環境工程應用上主要利用能分解訊息分子Acyl homoserine lactones (AHLs)的微生物,這些分解菌由於能製造AHL-acylase或AHL-lactonase等酵素,在添加於MBR後可降低環境中AHLs的濃度,進而控制生物膜之發展。
  因此,本研究主要目的為建立AHL分解菌的群體感應抑制法,工作內容主要涵蓋四個部分:(1)AHL生物檢測方法之建立與比較;(2)AHL群體感應抑制菌(QQ菌)篩選方法測試及建立,希望從環境中篩選出更多可應用於控制MBR濾膜阻塞的QQ菌;(3)比較篩選到之QQ菌的AHLs降解能力差異;(4)應用固定化QQ菌於MBR,以評估其延緩透膜壓力的成效。
  本研究於淡水水資源回收中心活性污泥池及淡江大學校園水體中,從總計185隻菌中篩選出4隻(A9、A12、B11及D3)具快速降解C6-HSL、C8-HSL、C10-HSL、C12-HSL、3-oxo-C6-HSL、3-oxo-C8-HSL、3-oxo-C10-HSL及3-oxo-C12-HSL 之廣效菌株。此4隻菌株經以包埋固定化成QQ beads後仍保有降解AHLs的能力,後續並實際應用於MBR中,目前尚未觀察到MBR顯著的透膜壓力變化,可能是初次添加之QQ菌數量太少,建議未來提高QQ菌量再持續觀察其群體感應抑制成效。
英文摘要
Quorum quenching (QQ) is one of the biologically strategies for controlling membrane fouling. QQ directly controls the Extracellular polymeric substances (EPS), which is an important polymer causing membrane fouling. The principle of the bacterial QQ is to degrade signal molecules (e.g. acyl homoserine lactones, AHLs), so that the microorganisms can’t communicate and develop mature biofilm. This method has specificity and preventiveness, and several successful applications have been reported in the membrane bioreactor (MBR) treating wastewater.
The main objectives of this study are: (1) to establish bioassy methods forthe detection of AHLs, (2) to develop QQ bacteria screening protocol in order to isolate QQ bacteria from local environments, (3) to compare the degradation efficiency of QQ bacteria against various AHLs, (4) to apply immobilized QQ bacteria in a MBR. Through this study, the goal is to mitigate biofouling in MBR in the future.
Activated sludge from Tamsui wastewater treatment plant and water samples from Tamkang University were collected as source for screening QQ bacteria. Among total of 185 bacteria screened, 4 isolates were capable of rapidly quenching various AHLs. After quorum quenching bacteria were entrapped in beads, the ability to removal AHLs was still observed. These QQ beads were further applied in MBR while no apparent transmembrane pressure difference was found. It was speculated that this result was due to low concentration of QQ bacteria applied in the reactor. Therefore, current results suggest to increase total amount of QQ bacteria in MBR and to evaluate the impact of QQ effect on membrane fouling control in the future.
第三語言摘要
論文目次
第一章	研究緣起	1
1.1	研究緣起	1
1.2	研究目的	3
第二章	文獻回顧	4
2.1	MBR薄膜生物處理系統	4
2.1.1	MBR薄膜生物處理系統之原理及特性	4
2.1.2	MBR薄膜生物處理系統之優點及面臨問題	5
2.1.3	濾膜阻塞之問題	6
2.1.4	濾膜之阻塞控制方法	7
2.2	Quorum Sensing群體感應機制	12
2.2.1	QS訊息分子	12
2.2.2	AHL偵測分析方法	14
2.3 Quorum Quenching	16
2.3.1	群體感應抑制原理	16
2.3.2	群體感應抑制之應用	17
2.4	固定化方法於廢水中之應用	19
2.4.1	固定化包埋法	19
2.4.2	固定化方法之比較	20
2.4.3	海藻酸鈉	21
2.4.4 聚乙烯醇 (PVA)	22
2.4.5聚乙烯醇(PVA)–硫酸鈉固定化法	22
第三章	實驗方法	24
3.1	AHL生物分析法	26
3.1.1	X-gal bioassay檢測法	26
3.1.2	Luminescence Beta-glo生物檢測法	27
3.2	AHL降解菌篩菌方法	28
3.2.1	AHL- Quenching Strains 96孔盤篩選方法	28
3.2.2	Enrichment Culture篩選方法	30
3.3	批次降解測試實驗	32
3.4	AHL降解菌酵素分析	34
3.4.1	QQ酵素菌熱處理測試	34
3.4.2	酵素胞內胞外測試	36
3.5 降解菌菌種鑑定	39
3.5.1 16S rDNA鑑定	39
3.6 微生物固定化方法	41
3.6.1 PVA包埋法	41
3.7 MBR薄膜生物反應器	42
3.7.1 MBR配製圖	42
3.7.2	MBR操作參數	44
3.7.3	MBR反應器之人工廢水	45
第四章	實驗結果	46
4.1	AHL生物分析法	46
4.1.1	AHLs檢測法	47
4.1.2	X-gal bioassay檢測法	47
4.1.3	Luminescence Beta-glo生物檢測法	51
4.2	AHL降解菌篩菌	56
4.2.1	AHL Quenching Strains 96孔盤篩選法	56
4.2.2	Enrichment Culture篩選	61
4.2.3	降解能力之最後測試	63
4.3	批次降解測試實驗	65
4.3.1	AHLs濃度降解變化	66
4.3.2	菌懸液濃度吸光值(OD600 )變化	75
4.3.3	批次實驗pH變化	75
4.4	QQ酵素性降解分析	77
4.4.1 QQ酵素熱處理測試	77
4.4.2	酵素胞內胞外測試	78
4.5 降解菌菌種鑑定	80
4.5.1 16S rDNA鑑定	80
4.6	MBR薄膜生物反應器	82
4.6.1包埋固定化QQ beads	82
4.6.2菌株包埋固定於QQ beads後之降解能力	83
4.6.3 MBR之壓力變化	84
第五章	結論與建議	86
5.1	結論	86
5.2	建議	87
第六章	附錄	88
批次降解實驗濃度數值	88
批次降解實驗pH變化	91
Reference	92

 
圖目錄
圖2- 1 革蘭氏陰性菌 Pseudomonas aeruginosa生物膜形成的過程	6
圖2- 2 群體感應誘導物質的種類與結構	13
圖2- 3革蘭氏陰性菌常見之群體感應誘導物質的種類與結構	14
圖2- 4 AHL信息通報菌株Agrobacterium tumefaciens A136	15
圖3- 1 本研究主要實驗流程	25
圖3- 2 篩選污水降解菌的基本流程圖	29
圖3- 3 批次降解測試實驗基本流程	33
圖3- 4 16S rDNA鑑定的基本流程	39
圖3- 5本實驗中MBR之配製圖	42
圖3- 6 操作運行中之薄膜生物反應器	43
圖4-1 培養於含X-gal之LB培養基之A136	46
圖4-2  X-gal生物檢測法之檢量線 (1)	48
圖4-3  X-gal生物檢測法之檢量線 (2)	48
圖4-4  X-gal生物檢測法之檢量線 (3)	49
圖4-5 在X-gal bioassay分析法之偵測結果(1)	49
圖4-6 在X-gal bioassay分析法之偵測結果(2)	50
圖4-7 在Luminescence冷光儀分析法之檢量線(1)	51
圖4-8 在Luminescence冷光儀分析法之檢量線(2)	53
圖4-9 在Luminescence冷光儀分析法之檢量線(3)	54
圖4-10淡水水資源回收中心活性污泥池,第一次篩選結果	57
圖4-11淡水水資源回收中心活性污泥池,第二次篩選結果	58
圖4-12淡水水資源回收中心活性污泥池,第三次篩選結果	59
圖4- 13 淡江大學的校園水樣,第一次篩選結果	60
圖4- 14 淡江大學的校園水樣,第二次篩選結果	60
圖4- 15  Enrichment culture篩選菌株於2 mM C8-HSL降解情形	61
圖4- 16  Enrichment culture篩選菌株降解C8-HSL之結果	62
圖4-17 降解菌之降解能力最後測試結果	64
圖4-18 降解菌在C6-HSL中,批次降解測試之降解變化圖	66
圖4- 19 降解菌在C8-HSL中,批次降解測試之降解變化圖	67
圖4- 20 降解菌在C10-HSL中,批次降解測試之降解變化圖	68
圖4- 21 降解菌在C12-HSL中,批次降解測試之降解變化圖	69
圖4- 22 降解菌在oxo-C6-HSL中,批次降解測試之降解變化圖	70
圖4- 23 降解菌在oxo-C8-HSL中,批次降解測試之降解變化圖	71
圖4- 24 降解菌在oxo-C10-HSL中,批次降解測試之降解變化圖	72
圖4- 25 降解菌在oxo-C12-HSL中,批次降解測試之降解變化圖	73
圖4- 26 批次降解實驗起始及結束時之pH值變化(1)	76
圖4- 27 批次降解實驗起始及結束時之pH值變化(2)	76
圖4-28  C8-HSL之QQ菌酵素熱處理測試結果。	77
圖4- 29  AHLs 之QQ菌酵素類型評估	78
圖4- 30  PVA-alginate QQ beads	82
圖4- 31  QQ菌及以包埋法製成QQbeads後之降解能力測試	83
圖4- 32  MBR之透膜壓力變化	84

 
表目錄
表2- 1 比較不同固定化方法之原理、材料及特色	21
表3- 1  Luria-Bertani (LB)洋菜培養基成分	26
表3- 2  Enrichment medium ① 	31
表3- 3  Enrichment medium ② 	31
表3- 4  Enrichment medium ③ 	31
表3- 5  Enrichment medium ④ 	31
表3- 6 本實驗使用之PCR Primer	39
表3- 7本實驗PCR之反應溫度及時間	40
表3- 8  MBR之操作相關參數	44
表3- 9  MBR之人工廢水組成配比	45
表4- 1  4隻降解QQ菌於8種AHLs中的降解情形	74
表4- 2  AHLs批次降解實驗起始菌懸液吸光值(OD600)	75
表4- 3  AHLs 之QQ菌酵素類型推估	79
表4- 4  4隻降解菌之16S rDNA鑑定結果	80
表4- 5  PVA-alginate QQ beads隨機挑選20顆之平均直徑	82
表6- 1 批次降解實驗中C6-HSL詳細濃度數值	88
表6- 2 批次降解實驗中C8-HSL詳細濃度數值	88
表6- 3 批次降解實驗中C10-HSL詳細濃度數值	88
表6- 4 批次降解實驗中C12-HSL詳細濃度數值	89
表6- 5 批次降解實驗中oxo-C6-HSL詳細濃度數值	89
表6- 6 批次降解實驗中oxo-C8-HSL詳細濃度數值	89
表6- 7 批次降解實驗中oxo-C10-HSL詳細濃度數值	90
表6- 8 批次降解實驗中oxo-C12-HSL詳細濃度數值	90
表6- 9  AHLs批次降解實驗起始及結束之pH值變化	91
參考文獻
1. Calderón, K., B. Rodelas, N. Cabirol, J. González-López and A. Noyola (2011). "Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment." Bioresource Technology 102(7): 4618-4627.
2. Chang, S., T. A. Waite, A. I. Schäfer, and A. G. Fane, “Adsorption of trace steroid estrogens to hydrophobic hollow fiber membranes,” Desalination, Vol. 146, pp. 381-386(2002).
3. Cheong, W.-S., C.-H. Lee, Y.-H. Moon, H.-S. Oh, S.-R. Kim, S. H. Lee, C.-H. Lee and J.-K. Lee (2013). "Isolation and Identification of Indigenous Quorum Quenching Bacteria, Pseudomonas sp. 1A1, for Biofouling Control in MBR." Industrial & Engineering Chemistry Research 52(31): 10554-10560.
4. Davey, M. E. and A. O'Toole G (2000). "Microbial biofilms: from ecology to molecular genetics." Microbiol Mol Biol Rev 64(4): 847-867..
5. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton and E. P. Greenberg (1998). "The involvement of cell-to-cell signals in the development of a bacterial biofilm." Science 280 (5361):295-298.
6. Derlon, N., M. Peter-Varbanets, A. Scheidegger, W. Pronk and E. Morgenroth (2012). "Predation influences the structure of biofilm developed on ultrafiltration membranes." Water Research 46(10): 3323-3333.
7. Doolittle, M. M., J. J. Cooney and D. E. Caldwell (1996). "Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes." Journal of Industrial Microbiology 16(6): 331-341.
8. Elias, S. and E. Banin (2012). "Multi-species biofilms: living with friendly neighbors." FEMS Microbiology Reviews 36(5): 990-1004.
9. Fuqua, C. and S. C. Winans (1996). "Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes." Journal of Bacteriology 178(2): 435-440.
10. Guezennec, J., J. M. Herry, A. Kouzayha, E. Bachere, M. W. Mittelman and M. N. Bellon Fontaine (2012). "Exopolysaccharides from unusual marine environments inhibit early stages of biofouling." International Biodeterioration & Biodegradation 66(1): 1-7.
11. Hassan, Christie M. , and Nikolaos A.	Peppas. 2000. 'Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods', Advances in Polymer Science, 153: 37-65.
12. Herrera-Robledo, M., C. Arenas, J. M. Morgan-Sagastume, V. Castaño and A. Noyola (2011). "Chitosan/albumin/CaCO3 as mimics for membrane bioreactor fouling: Genesis of structural mineralized-EPS-building blocks and cake layer compressibility." Chemosphere 84(2): 191-198.
13. Idris, Ani, Nor Azimah Mohd Zain, and Mohd Suardi Suhaimi. 2008. 'Immobilization of Baker's yeast invertase in PVA–alginate matrix using innovative immobilization technique', Process Biochemistry, 43: 331-38.
14. Jiang, W., S. Xia, J. Liang, Z. Zhang and S. W. Hermanowicz (2013). "Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors." Water Research 47(1): 187-196.
15. Judd, S. (2008). "The status of membrane bioreactor technology." Trends in Biotechnology 26(2): 109-116.
16. Kato, N., T. Morohoshi, T. Nozawa, H. Matsumoto and T. Ikeda (2006). "Control of Gram-Negative Bacterial Quorum Sensing with CyclodextrinImmobilized Cellulose Ether Gel." Journal of inclusion phenomena and macrocyclic chemistry 56(1): 55-59.
17. Kim, J.-H., D.-C. Choi, K.-M. Yeon, S.-R. Kim and C.-H. Lee (2011). "Enzyme-Immobilized Nanofiltration Membrane To Mitigate Biofouling Based on Quorum Quenching." Environmental Science & Technology 45(4): 1601-1607.
18. Kim, S.-R., H.-S. Oh, S.-J. Jo, K.-M. Yeon, C.-H. Lee, D.-J. Lim, C.-H. Lee and J.-K. Lee. “Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects, ” Environmental science and technology, Vol. 47, No. 2, pp. 836-842 (2013).
19. Le-Clech, P., A. Fane, G. Leslie and A. Childress (2005). "MBR focus: the operators' perspective." Filtration & Separation 42(5): 20-23.
20. Lee, S. H., S. Lee, K. Lee, C. H. Nahm, H. Kwon, H.-S. Oh, Y.-J. Won, K.-H. Choo, C.-H. Lee and P.-K. Park (2016). "More Efficient Medium Design for Enhanced Biofouling Control in a Membrane Bioreactor: Quorum Quenching Bacteria Entrapping Hollow Cylinder." Environmental Science & Technology 50(16): 8596-8604
21. Leroy, C., C. Delbarre, F. Ghillebaert, C. Compere and D. Combes (2008). "Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium." Biofouling 24(1): 11-22.
22. Li, Y. H., P. C. Lau, N. Tang, G. Svensater, R. P. Ellen and D. G. Cvitkovitch (2002). "Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans." J Bacteriol 184(22): 6333-6342.
23. Long, Zhong-er, Yunhong Huang, Zhaoling Cai, Wei Cong, and Fan Ouyang. 2004. 'Immobilization of Acidithiobacillus ferrooxidans by a PVA–boric acid method for ferrous sulphate oxidation', Process Biochemistry, 39: 2129-33.
24. Malaeb, L., P. Le-Clech, J. S. Vrouwenvelder, G. M. Ayoub and P. E. Saikaly (2013). "Do biological-based strategies hold promise to biofouling control in MBRs?" Water Res 47(15): 5447-5463.
25. Mansouri, J., S. Harrisson and V. Chen (2010). "Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities." Journal of Materials Chemistry 20(22): 4567-4586.
26. Muthukumaran, S., S. Kentish, S. Lalchandani, M. Ashokkumar, R. Mawson, G. W. Stevens and F. Grieser (2005). "The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes." Ultrasonics Sonochemistry 12(1–2): 29-35.
27. N., T. Morohoshi, T. Nozawa, H. Matsumoto and T. Ikeda (2006). "Control of Gram-Negative Bacterial Quorum Sensing with CyclodextrinImmobilized Cellulose Ether Gel." Journal of inclusion phenomena and macrocyclic chemistry 56(1): 55-59.
28. Nakayama, J., Y. Uemura, K. Nishiguchi, N. Yoshimura, Y. Igarashi and K. Sonomoto (2009). "Ambuic Acid Inhibits the Biosynthesis of Cyclic Peptide Quormones in Gram-Positive Bacteria." Antimicrobial Agents and Chemotherapy 53 (2): 580-586.
29. Nicolaisen, B., “Developments in membrane technology for water treatment,” Desalination, Vol. 153, No. 1-3, pp. 355–360(2002).
30. Nunes, M. A., H. Vila-Real, P. C. Fernandes, and M. H. Ribeiro. 2010. 'Immobilization of naringinase in PVA-alginate matrix using an innovative technique', Appl Biochem Biotechnol, 160: 2129-47.
31. Oh, H.-S., K.-M. Yeon, C.-S. Yang, S.-R. Kim, C.-H. Lee, S. Y. Park, J. Y. Han and J.-K. Lee (2012). "Control of Membrane Biofouling in MBR for Wastewater Treatment by Quorum Quenching Bacteria Encapsulated in Microporous Membrane." Environmental Science & Technology 46(9): 4877-4884.
32. O'Toole, G. A. and R. Kolter (1998). "Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development." Mol Microbiol 30(2): 295-304.
33. Pasmore, M., P. Todd, S. Smith, D. Baker, J. Silverstein, D. Coons and C. N. Bowman (2001). "Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling." Journal of Membrane Science 194(1): 15-32.
34. Pham, DinhVan andLeuTho Bach. 2014. ‘Immobilized Bacteria by Using PVA (Polyvinyl Alcohol) Crosslinked with Sodium Sulfate’. International Journal of Science and Engineering 7(1):41–47.
35. Rosenberger, S., F. P. Helmus and A. Drews (2016). "Addition of Particles for Fouling Minimization in Membrane Bioreactors – Permeability Performance, Fluid Dynamics, and Rheology." Chemie Ingenieur Technik 88(1-2): 29-38
36. Sutherland, I. W., K. A. Hughes, L. C. Skillman and K. Tait (2004). "The interaction of phage and biofilms." FEMS Microbiology Letters 232(1): 1-6.
37. Takei, Takayuki, Kaoru Ikeda, Hiroyuki Ijima, and Koei Kawakami. 2011. 'Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization', Process Biochemistry, 46: 566-71.
38. Takei, Takayuki, Kaoru Ikeda, Hiroyuki Ijima, Masahiro Yoshida, and Koei Kawakami. 2012. 'A comparison of sodium sulfate, sodium phosphate, and boric acid for preparation of immobilized Pseudomonas putida F1 in poly(vinyl alcohol) beads', Polymer Bulletin, 69: 363-73.
39. Wang, W., T. Morohoshi, T. Ikeda and L. Chen (2008). "Inhibition of Lux quorum-sensing system by synthetic N-acyl-L-homoserine lactone analogous." Acta Biochimica et Biophysica Sinica 40(12): 1023-1028.
40. Weerasekara, N. A., K. H. Choo and C. H. Lee (2014). "Hybridization of physical cleaning and quorum quenching to minimize membrane biofouling and energy consumption in a membrane bioreactor." Water Res 67: 1-10.
41. Williams, P., K. Winzer, W. C. Chan and M. Cámara (2007). "Look who's talking: communication and quorum sensing in the bacterial world." Philosophical Transactions of the Royal Society B: Biological Sciences 362(1483): 1119-1134.
42. Xiong, Y. and Y. Liu (2010). "Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling." Applied Microbiology and Biotechnology 86(3): 825-837.
43. Yates, Edwin A., BodoPhilipp, SteveAtkinson, Siri RamChhabra, R. ElizabethSockett, MorrisGoldner, YvesDessaux, MiguelCa, HarrySmith, andPaulWilliams. 2002. ‘Lactones Undergo Lactonolysis in a PH-, Temperature-, and Acyl Chain Length-Dependent Manner during Growth Of’. Society 70(10):5635–46.
44. Yeon, K.-M., C.-H. Lee and J. Kim (2009). "Magnetic Enzyme arrier for Effective Biofouling Control in the Membrane Bioreactor Based on Enzymatic Quorum Quenching." Environmental Science & Technology 43(19): 7403-7409.
45. Yeon, K.-M., W.-S. Cheong, H.-S. Oh, W.-N. Lee, B.-K. Hwang, C.-H. Lee, H. Beyenal and Z. Lewandowski (2009). "Quorum Sensing: A New Biofouling Control Paradigm in a Membrane Bioreactor for Advanced Wastewater Treatment." Environmental Science & Technology 43(2): 380-385.
46. Zain, Nor Azimah Mohd, Mohd Suardi Suhaimi, and Ani Idris. 2011. 'Development and modification of PVA–alginate as a suitable immobilization matrix', Process Biochemistry, 46: 2122-29.
47. 范姜仁茂, 莊連春, 曾迪華, 廖述良, 游勝傑 and 梁德明 (2009). "薄膜生物反應器(MBR)於廢水處理之技術評析." 工業污染防治 109: 49-96
48. 游惠宋 (2009). "薄膜生物處理技術於廢水處理之應用". 中工高雄會刊第17卷第2期:62-68.
49. 秦力,2006,固定化微球製備技術及相關性能研究,重慶大學,碩士學位論文。
50. 陳功,2007,重複利用細胞固定化載体體的研製,陜西科技大學,碩士學位論文
51. 吳建榮,2006,PVA/SA複合水凝膠粒的製備及藥物緩釋規律的研究,四川大學碩士論文。
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信