淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0803201310103900
中文論文名稱 焚化飛灰以機械研磨技術進行鉛穩定及改良膠體膠結性作為水泥掺料之研究
英文論文名稱 Preparation of Cement Admixture with MSWI Ash by Mechanical Milling Technology for Pb Stabilization and Cementitious Modification
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系博士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 陳政綱
研究生英文姓名 Cheng-Gang Chen
學號 896480026
學位類別 博士
語文別 中文
口試日期 2013-01-21
論文頁數 208頁
口試委員 指導教授-高思懷
委員-楊萬發
委員-曾迪華
委員-駱尚廉
委員-魏玉麟
中文關鍵字 焚化飛灰  機械研磨  氯離子穩定  無機膠體 
英文關鍵字 MSWI fly ash  Mechanical milling  Stabilize chloride ion  Inorganic gel 
學科別分類
中文摘要 都市垃圾焚化飛灰經過水萃處理程序之後,可去除大量的溶解性的鹽類,對
於後續再利用之產品的穩定性有相當顯著之成效。而水萃後的飛灰經由機械研磨
處理程序後,顯示出相當低的重金屬溶出效果,證明具有穩定重金屬的效果。而
研磨後的水萃反應灰(研磨灰)在取代部分市售水泥製成水泥漿體後,顯示具有卜
作嵐性質。本研究利用機械研磨使焚化飛灰的物理與化學性質同時轉變,降低重
金屬移動性,搭配鹼活化促進無機膠體的產生,掺配於市售水泥,達到無害化及
資源化之目標。
實驗以水、不同濃度之磷酸(0.002 M、0.2 M PO4
3-)、不同濃度之氫氧化鈉(1M、
5M)為鹼液,研磨時間設定為0.5、1、24、96 小時,水泥漿體養護時間為0.35、
0.38、0.45、0.55,漿體養護時間為1、3、7、28 天。以ICP、粒徑分析儀、比表
面積儀、壓汞分析儀、X 光繞射儀、核磁共振儀等進行分析。
焚化飛灰經研磨96 小時後發生無晶序化,使重金屬溶出降至接近儀器偵測極
限。加入研磨飛灰的水泥漿體其膠體孔隙與毛細孔隙含量比純水泥漿體高出許
多,形成的漿體較緻密,以NMR 分析後發現C-S-H 聚合度提升,抗壓強度與市
售水泥相比顯著提升,由此可證明長時間研磨的焚化飛灰有助於加強水化反應與
促進卜作嵐反應的進行。
當以0.2 M 磷酸研磨液進行研磨時,研磨時間小於1 小時即產生許多磷酸鈣
結晶 (HAp, TCP, TTCP),然而可解離的磷酸鈣化合物及過多的PO4
3-殘留,將消
耗水泥中的氫氧化鈣,經96 小時研磨後,降低水泥強度的效果大於研磨提升水泥
強度的效果,導致漿體抗壓強度較市售水泥漿體為低。以0.002 M 磷酸進行時,
由於研磨灰中產生大量的TTCP,遇水解離成HAp 與氫氧化鈣,然而長時間研磨
所產生的卜作嵐反應造成7 天與28 天抗壓強度仍大於OPC。
以不同偏高嶺土調配比進行研磨活化時(1 M 氫氧化鈉、24 小時),發現鹼液
濃度的不足,未能將矽酸鹽溶出。研磨活化所產生的化合物可進行離子交換反應,
達到穩定重金屬的效果。然而當鹼液濃度提高時(5 M 氫氧化鈉),則變成由活化膠
體與重金屬離子進行接合,由於鍵結強度較弱,研磨造成溶出僅略為增加,此外,
高濃度氫氧化鈉則會對水化反應造成負面的影響。
利用5 M 氫氧化鈉搭配煆燒淨水污泥進行研磨活化,水萃反應灰調配量較高
時,會產生穩定的氯離子結晶,調配量較低時,則產生膠體型態以物理穩定機制
結合氯離子,加入水泥漿體卻使得穩定性較差,可知活化粉形成結構較弱的膠體
反而不利於水泥早期反應結合氯離子。以水為研磨液時,產生許多類似Friedel’s
salt 結構,因而有顯著的化學穩定性能,在7 天齡期中水泥漿體即有相當優良的
氯離子穩定效果。以無機膠體形態掺配於水泥中,其氯離子的穩定型態和反應過
程和傳統水泥大不相同。
英文摘要 This study used mechanical milling to change physical and chemical properties of
municipal solid waste incinerator (MSWI) fly ash. The mobility of heavy metals would be
reduced by mechanical milling and the amount of inorganic gelwould be also promoted by
alkali activation of the MSWI fly ash. After mechanical milling and alkali activation
processes, the MSWI fly ash can achieve the aim of detoxification and recovery, and can
be a good substitute of Type I ordinary Portland cement (OPC).
The crystal structure of MSWI fly ash was destroyed and became the amorphous
phase after milling 96 h. At the same time, the leaching concentration of the heavy metals
of milled fly ash could be decreased below the detection limit. The paste which partial
substituted the OPC by the milled fly ash would increase the amount of gel pores and
middle-size pores, and led the paste to become denser than OPC paste. The results of the
nuclear magnetic resonance Spectrometer (NMR) test indicated that the milled fly ash
can not only increase the amount of C-S-H gel which is caused by the higher hydration
reaction, but also can accelerate the pozzolanic reaction. Based on these results, the
compressive strength of the paste could rise up in all of the curing times.
By 0.2 M PO4
3- of milling solution and 1 h milling time, the calcium phosphate of
hydroxyapatite (HAp), tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP)
would be produced. However, the dissolution of calcium phosphate compounds and
excessive PO4
3- remained in the milled ash, which made the calcium hydroxide of paste be
consumed. This result indicate that the milled fly ash by PO4
3- caused the negative impact
of the compressive strength of the milled fly ash paste greater than the positive impact,
and led the compressive strength lower than the OPC paste.
The milled fly ash with 0.002 M PO4
3- would produce a lot of TTCP when it partial
substituted OPC paste, which the TTCP would react with water to produce HAp and
calcium hydroxide. In addition, the effect of the pozzolanic reaction premature generated
by 96 h of milling time still appears and the compressive strength of the milled fly ash
paste after 7 days and 28 days of curing also higher than the OPC paste.
The effect of metakaolin and washed fly ash on a different mixing ratio by
mechanical milling activation (1 M NaOH , 24 h) was evaluated. The results show 1 M
NaOH of milling solution was lack of alkali concentration, thus it could not dissolute the
silicate of metakaolin. The compounds produced by metakaolin after mechanical milling
activation could conduct an ions exchange of heavy metal and achieve the stabilization of
heavy metal. When the alkali concentration increased to 5 M, heavy metal would bond
with the activated gel. Due to the bonding strength is weak, so the leaching concentration
of heavy metal was slightly increased. In addition, the high concentration of sodium
hydroxide would cause significant negative influence on the hydration reaction.
The milling activation was conducted in 5M of NaOH with the water treatment plant
sludge after calcination. The results show that the stabilized chloride crystallization would
be increased when the amount of the extracted fly ash was increased. Nevertheless, when
the amount of the extracted fly ash was decreased, the type of the bound with chloride ion
was the physical stability mechanism, which would lead to poor stability of the paste.
From above statement, the milled activated fly ash would form a gel of weak structure for
binding with chloride ion and was not conducive to stabilize chloride for the paste in the
early curing time. When the water was the milling solution, it would generate many
similar Friedel’s salt structure which caused the effect of observably chemical stability.
The excellent of the effect of stabilize chloride ion for the paste would be appeared after 7
days of curing. The stabilization and reaction mechanism of chloride ion in the inorganic
gel is difference with traditional cement evidently.
論文目次 第一章 前言 1
1-1 研究緣起 1
1-2 研究架構 3
第二章 文獻回顧 5
2-1 焚化飛灰之介紹 5
2-1-1 焚化飛灰基本特性 5
2-1-1-1 物理組成 5
2-1-1-2 化學組成 6
2-1-2 焚化飛灰一般常見處理/處置方法 8
2-1-3 資源再生利用技術 11
2-2 機械力化學反應之介紹 13
2-2-1 機械合金技術之介紹 13
2-2-1-1 機械合金原理 14
2-2-1-2 機械合金之發展 16
2-2-2 機械化學反應之介紹 18
2-2-2-1 機械化學反應產生之原理 18
2-2-2-2 機械化學反應運作之過程 20
2-2-3 機械化學反應之應用 21
2-2-3-1 利用機械化學法製作高活性無晶序粉體 22
2-2-3-2 利用機械化學法提高水泥化學活性 22
2-2-3-3 機械化學於環境工程上的應用 24
2-3 水泥水化反應與化學反應原理 26
2-3-1 水泥熟料礦物的水化 26
2-3-1-1 C3S之水化 30
2-3-1-2 C2S之水化 32
2-3-1-3 C3A之水化 33
2-3-1-4 C4AF之水化 37
2-3-2 波特蘭水泥之凝結與硬化過程 37
2-3-2-1 凝結與硬化對結構的改變 41
2-3-2-2 水化程度與強度之關係 48
2-3-2-3 卜作嵐反應 52
2-3-3 水泥與氯離子的反應 53
2-3-3-1 水泥結合氯離子之反應機制 54
2-3-3-2 氯離子穩定能力之影響因子 59
2-4 磷酸穩定重金屬 64
2-4-1 添加磷酸穩定重金屬之原理 64
2-4-2 磷酸與鈣離子之反應 65
2-5 無機聚合材料 67
2-5-1 無機聚合材料之聚合原理 67
2-5-2 無機聚合材料之發展與應用 70
2-5-2-1 原料-以含鈣化合物為主 70
2-5-2-2 C-S-H無機膠體的結構特性 72
2-5-2-3 C-S-H無機膠體成型的影響 73
2-5-2-4 無機聚合物於廢棄物資源再利用和處理的應用 73
第三章 研究方法 75
3-1 研究內容 75
3-2 實驗內容與步驟 78
3-2-1 焚化飛灰經由機械化學穩定處理對水泥漿體之影響 78
3-2-2 焚化飛灰以磷酸搭配研磨對重金屬穩定與水泥漿體之影響 83
3-2-3 利用研磨搭配鹼活化改質焚化飛灰提升水化膠體 88
3-2-4 改質焚化飛灰提升水化膠體對氯離子結合情況之探討 92
3-3 分析方法與檢測項目 96
3-3-1 焚化飛灰經由機械化學穩定處理對水泥漿體之影響 96
3-3-2 焚化飛灰以磷酸搭配研磨對重金屬穩定與水泥漿體之影響 103
3-3-3 利用研磨搭配鹼活化改質焚化飛灰提升水化膠體 106
3-3-4 改質焚化飛灰提升水化膠體對氯離子結合情況之探討 109
第四章 結果與討論 116
4-1 焚化飛灰基本物化性質 116
4-2 焚化飛灰經由機械化學穩定處理對水泥漿體之影響 120
4-2-1 研磨96小時對水萃灰粉體性質所造成之變化 120
4-2-2 研磨灰取代市售水泥對水泥漿體微結構之影響 126
4-2-3 研磨灰取代市售水泥對水泥漿體工程性之影響 134
4-2-4 小結 137
4-3 焚化飛灰以磷酸搭配研磨對重金屬穩定與水泥漿體之影響 138
4-3-1 短時間研磨與長時間研磨對研磨水萃反應灰所造成的差異 138
4-3-2 以磷酸為研磨液對研磨水萃反應灰所造成的影響 143
4-3-3 經磷酸研磨後的研磨水萃反應灰取代部分市售水泥對水泥漿體造成之影響
148
4-3-4 小結 160
4-4 利用研磨搭配鹼活化改質焚化飛灰提升水化膠體 161
4-4-1 不同偏高嶺土調配百分比所產製的活化粉之分析 161
4-4-2 不同鹼液濃度對研磨活化粉之影響 168
4-4-3 活化粉掺配於水泥漿體後對水泥漿體之影響 171
4-4-4 小結 176
4-5 改質焚化飛灰提升水化膠體對氯離子結合情況之探討 177
4-5-1 不同煆燒淨水污泥調配百分比對氯離子移動性之探討 177
4-5-2 不同鹼液濃度對研磨活化過程中氯鹽分佈之情況 185
4-5-3 小結 189
第五章 結論與建議 190
5-1 結論 190
5-2 建議 193
參考文獻 195
圖目錄
Fig. 1- 1 本研究之架構圖 4
Fig. 2- 1焚化飛灰在兩種分散劑之下所測得的顆粒分佈圖 6
Fig. 2- 2焚化飛灰水洗前SEM圖 10
Fig. 2- 3焚化飛灰水洗後SEM圖 11
Fig. 2- 4機械合金法之原理 16
Fig. 2- 5機械合金的粉末粒徑與球磨時間之曲線圖 16
Fig. 2- 6於不同Ca(OH)2和Al2O3濃度之下的結晶產物 35
Fig. 2- 7水化初期(在初始的數小時或數天)的反應情況 38
Fig. 2- 8波特蘭水泥於不同水化時間之下的放熱速率曲線 41
Fig. 2- 9波特蘭水泥於水化過程中各種水化物的相對含量 42
Fig. 2- 10以CaO-SiO2-H2O系統圖描述水泥在25 oC之下之水化產物 45
Fig. 2- 11波特蘭水泥水化過程中,漿體溶液的pH值變化與C-S-H型態之關係圖 46
Fig. 2- 12純水泥熟料礦物之養護齡期對強度發展之趨勢 50
Fig. 2- 13以壓汞分析儀進行水泥漿體的孔隙特性分析 51
Fig. 2- 14 CaO-CaCl2-H2O三元系統相圖 57
Fig. 3- 1 本研究之研究流程圖 77
Fig. 3- 2「焚化飛灰經由機械化學穩定處理對水泥漿體之影響」之實驗流程圖 82
Fig. 3- 3 「焚化飛灰以磷酸搭配研磨對重金屬穩定與水泥漿體之影響」之實驗流程圖 87
Fig. 3- 4 「利用研磨搭配鹼活化改質焚化飛灰提升水化膠體」之實驗流程圖 91
Fig. 3- 5 「改質焚化飛灰提升水化膠體對氯離子結合情況之探討」之實驗流程圖 95
Fig. 3- 6 氯離子分佈關係圖 114
Fig. 3- 7 以活化粉取代市售水泥所製成之水泥漿體的氯離子分佈關係 115
Fig. 4- 1水萃灰(EA)與96小時研磨灰(MEA)與市售水泥(OPC)之粒徑分布圖 122
Fig. 4- 2經研磨處理前與研磨處理後的顯微結構(a)水萃灰、(b)96小時研磨灰 123
Fig. 4- 3水萃灰(EA)與96小時研磨灰(MEA)的XRD分析結果 124
Fig. 4- 4 OPC-EA 10%、OPC-MEA 10%、OPC三種水泥漿體 (W/B=0.38) 於 (a)養護28天、(b)養護7天之下的XRD分析結果 129
Fig. 4- 5 OPC-EA 10%、OPC-MEA 10%、OPC三種水泥漿體 (W/B=0.38) 於養護28天之29Si MAS-NMR分析結果 131
Fig. 4- 6 OPC-EA 10%、OPC-MEA 5%、OPC-EA 5%、OPC四種水泥漿體(W/B=0.38) 於養護28天之MIP分析結果 132
Fig. 4- 7 OPC-EA 10%、OPC-MEA 5%、OPC-EA 5%、OPC四種水泥漿體(W/B=0.38) 於養護28天內部膠體孔隙(<10 nm)與中毛細孔隙(10-100 nm)含量變化情況 133
Fig. 4- 8 OPC-EA 10%、OPC-MEA 5%、OPC三種取代比例之水泥漿體在不同養護時間、三種水膠比(a) 0.38、(b) 0.45、(c) 0.55之抗壓強度分析 136
Fig. 4- 9 以水為研磨液,水萃反應灰於不同研磨時間之下的粉體粒徑分布圖 (a):體積分佈;(b):累計體積分佈 140
Fig. 4- 10 以不同磷酸濃度為研磨液,於不同研磨時間下的研磨水萃反應灰之鉛的溶出率 144
Fig. 4- 11 以不同磷酸濃度為研磨液,研磨1小時後之XRD圖 146
Fig. 4- 12 不同磷酸研磨液濃度於研磨時間0.5小時、1小時、96小時之研磨水萃反應灰,取代10%市售水泥後製作水泥漿體,(a):養護齡期為7天、(b):養護齡期為28天之抗壓強度變化 149
Fig. 4- 13 不同磷酸研磨液濃度於研磨時間96小時研磨水萃反應灰,取代10%市售水泥之28天水泥漿體的TG/DTA分析((a):TG圖、(b):DTA圖) 150
Fig. 4- 14 不同原料配比進行研磨活化之活化粉XRD分析 166
Fig. 4- 15 不同原料配比進行研磨活化的活化粉之TCLP溶出液鉛濃度與粉體鉛溶出率 167
Fig. 4- 16 在高嶺土調配比50%之下,不同鹼液濃度所產製的活化粉之XRD分析 170
Fig. 4- 17 不同原料配比進行研磨活化的活化粉取代10%市售水泥製成漿體養護28天之抗壓強度 173
Fig. 4- 18 不同調配比活化粉取代10%市售水泥製成漿體養護28天之膠體含量分析 174
Fig. 4- 19以不同鹼液濃度活化後之活化粉取代10%市售水泥製成漿體養護28天之抗壓強度 175
Fig. 4- 20 不同煆燒淨水污泥調配百分比之氯離子分佈情況 181
Fig. 4- 21 不同煆燒淨水污泥調配百分比之活化粉XRD分析 182
Fig. 4- 22 不同煆燒淨水污泥調配百分比之活化粉FTIR分析 184
Fig. 4- 23 (a)70S/30A-5、(b) 70S/30A-1、(C) 70S-30A-0的氯離子分佈情況 187
Fig. 4- 24 不同鹼液濃度之活化粉XRD分析 188


表目錄
Table 2- 1機械合金的特色 17
Table 2- 2機械合金發展的重要里程碑 18
Table 2- 3本文所使用之水泥化學符號簡稱 28
Table 2- 4波特蘭水泥主要成分及說明 28
Table 2- 5各類型波特蘭水之各項要求 29
Table 2- 6 C3S各個反應階段的反應情況之描述 31
Table 2- 7幾種主要鋁酸鈣水化物整理 34
Table 2- 8波特蘭水泥中C3A與CaSO4水化反應之後產物 37
Table 2- 9常見的幾種水化物的反應熱 42
Table 2- 10常見Tobermorite之種類 47
Table 2- 11C-S-H漿體的各種結構的命名 48
Table 2- 12浸泡於鈉離子濃度550 mmol/L溶液中,白水泥與CaCl2結合之情況 62
Table 2- 13不同鈣/磷比之下所形成的磷酸鈣鹽之種類 66
Table 3- 1本階段之水泥漿體製作取代配比 81
Table 3- 2本階段各項樣品與實驗條件之對照表 85
Table 3- 3 本階段各項樣品與實驗條件之對照表(a)不同調配百分比、(b)不同氫氧化鈉濃度 90
Table 3- 4 本階段各項樣品與實驗條件之對照表(a)不同調配百分比、(b)不同氫氧化鈉濃度 94
Table 3- 5 矽酸鹽四面體之聚合單體之結構 102
Table 3- 6 固態物質中常見的IR訊號 108
Table 4- 1 近3年鍋爐灰(BA)、反應灰(RA)、水萃反應灰(ERA)、市售水泥之一般元素分析 118
Table 4- 2 近3年鍋爐灰(BA)、反應灰(RA)、水萃反應灰(ERA)、市售水泥(OPC)之重金屬成份分析 118
Table 4- 3 近3年鍋爐灰(BA)、反應灰(RA)、水萃反應灰(ERA)之TCLP試驗結果 119
Table 4- 4 鍋爐灰(BA)、反應灰(RA)、水萃反應灰(ERA)之物理性質分析 119
Table 4- 5不同研磨時間之下的研磨灰的比表面積 124
Table 4- 6水萃灰、攪拌灰、研磨灰、市售水泥之重金屬成份 125
Table 4- 7攪拌灰、研磨灰TCLP結果 125
Table 4- 8 OPC-EA 10%、OPC-MEA 10%、OPC三種水泥漿體 (W/B=0.38) 於養護7天和28天的XRD分析中氫氧化鈣特徵峰半高寬積分結果 130
Table 4- 9不同取代條件之下,4種水膠比對漿體凝結時間之變化 137
Table 4- 10 以不同磷酸濃度為研磨液、不同研磨時間之下研磨水萃反應灰之TCLP結果 142
Table 4- 11 以XRD分析不同磷酸濃度為研磨液與不同研磨時間之研磨水萃反應灰中所含的主要結晶成分 147
Table 4- 12 不同磷酸研磨液濃度於研磨時間96 小時之研磨水萃反應灰,取代10%市售水泥之7天、28天水泥漿體內部氫氧化鈣的含量及其變化計算值 155
Table 4- 13不同原料配比進行研磨活化的活化粉之活化度 166
Table 4- 14 在高嶺土調配比50%之下,不同鹼液濃度所產製的活化粉之TCLP結果 170
Table 4- 15 結合氯離子和自由氯離子佔原料的百分比 181
Table 4- 16 不同煆燒淨水污泥調配百分比取代市售水泥之水泥漿體的氯離子分佈及相對抗壓強度分析 184
Table 4- 17 不同鹼液濃度之活化粉取代市售水泥之水泥漿體的氯離子分佈及相對抗壓強度分析 188
參考文獻 Bankowski, P., Zou, L. and Hodges, R. (2004). Reduction of metal leaching in brown coal fly ash using geopolymers. Journal of Hazardous Materials 114(1–3), 59-67.
Barberon, F., Baroghel-Bouny, V., Zanni, H., Bresson, B., d'Espinose de la Caillerie, J.-B., Malosse, L. and Gan, Z. (2005). Interactions between chloride and cement-paste materials. Magnetic Resonance Imaging 23(2), 267-272.
Beaudoin, J. J., Ramachandran, V. S. and Feldman, R. F. (1990). Interaction of chloride and C-S-H. Cement and Concrete Research 20(6), 875-883.
Bertolini, L., Carsana, M., Cassago, D., Quadrio Curzio, A. and Collepardi, M. (2004). MSWI ashes as mineral additions in concrete. Cement and Concrete Research 34(10), 1899-1906.
Birnin-Yauri, U. A., Glasser, F. P. (1998). Friedel’s salt, Ca2Al(OH)6(Cl,OH)‧2H2O: its solid solutions and their role in chloride binding. Cement and Concrete Research 28(12), 1713-1723.
Bournonville, B., Nzihou, A., Sharrock, P. and Depelsenaire, G. (2004). Stabilisation of heavy metal containing dusts by reaction with phosphoric acid: study of the reactivity of fly ash. Journal of Hazardous Materials 116(1-2), 65-74.
Brown, P., Bothe Jr, J. (2004). The system CaO-Al2O3-CaCl2-H2O at 23±2 °C and the mechanisms of chloride binding in concrete. Cement and Concrete Research 34(9), 1549-1553.
Brown, P. W. (1999). Hydration behavior of calcium phosphates is analogous to hydration behavior of calcium silicates. Cement and Concrete Research 29(8), 1167-1171.
Buchwald, A., Hilbig, H. and Kaps, C. (2007). Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. Journal of Materials Science 42(9), 3024-3032.
Chan, C. C. Y., Kirk, D. W. and Marsh, H. (2000). The behaviour of Al in MSW incinerator fly ash during thermal treatment. Journal of Hazardous Materials 76(1), 103-111.
Chang, M. B., Huang, C. K., Wu, H. T., Lin, J. J. and Chang, S. H. (2000). Characteristics of heavy metals on particles with different sizes from municipal solid waste incineration. Journal of Hazardous Materials 79(3), 229-239.
Chen, Q. Y., Hills, C. D., Tyrer, M., Slipper, I., Shen, H. G. and Brough, A. (2007). Characterisation of products of tricalcium silicate hydration in the presence of heavy metals. Journal of Hazardous Materials 147(3), 817-825.
Chen, W.-S., Chang, F.-C., Shen, Y.-H., Tsai, M.-S. and Ko, C.-H. (2012). Removal of chloride from MSWI fly ash. Journal of Hazardous Materials 237–238(0), 116-120.
Chen, Y. L. (2007). The Study of the MSWI fly ash Recovery as a Cement Substitute. M.D., Tamkang University.
Cherem da Cunha, A. L., Goncalves, J. P., Buchler, P. M. and Dweck, J. (2008). Effect of metakaolin pozzolanic activity in the early stages of cement type II paste and mortar hydration. Journal of Thermal Analysis and Calorimetry 92(1), 115-119.
Chiang, K.-Y., Hu, Y.-H. (2010). Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Management 30(5), 831-838.
Chiang, K.-Y., Tsai, C.-C. and Wang, K.-S. (2009). Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods. Waste Management 29(1), 277-284.
Choi, D., Kumta, P. N. (2007). Mechano-chemical synthesis and characterization of nanostructured β-TCP powder. Materials Science and Engineering: C 27(3), 377-381.
Chow, L. C. (1991). Development of self-setting calcium phosphate cements. Journal of the Ceramic Society of Japan. International ed. 99(10), 927-936.
Chow, L. C., Markovic, M., Frukhtbeyn, S. A. and Takagi, S. (2005). Hydrolysis of tetracalcium phosphate under a near-constant-composition condition—effects of pH and particle size. Biomaterials 26(4), 393-401.
Colangelo, F., Cioffi, R., Montagnaro, F. and Santoro, L. (2012). Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Management 32(6), 1179-1185.
Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M. and Fairbairn, E. M. R. (2008). Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cement and Concrete Composites 30(5), 410-418.
Crannell, B. S., Eighmy, T. T., Krzanowski, J. E., Eusden, J. D., Shaw, E. L. and Francis, C. A. (2000). Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Management 20(2-3), 135-148.
Csizmadia, J., Balazs, G. and Tamas, F. D. (2001). Chloride ion binding capacity of aluminoferrites. Cement and Concrete Research 31(4), 577-588.
Czernin, W. (1962). Cement Chemistry and Physics for Civil Engineers. New York, Chemical Publishing.
De Silva, P. S., Glasser, F. P. (1992a). The hydration behaviour of metakaolin-Ca(OH)2-sulphate binder. 9th International Congress on the Chemistry of Cement. IV: 672-677.
De Silva, P. S., Glasser, F. P. (1992b). Pozzolanic activation of metakaolin. Advances in Cement Research 4, 167-178.
Delagrave, A., Marchand, J., Ollivier, J.-P., Julien, S. and Hazrati, K. (1997). Chloride binding capacity of various hydrated cement paste systems. Advanced Cement Based Materials 6(1), 28-35.
Derie, R. (1996). A new way to stabilize fly ash from municipal incinerators. Waste Management 16(8), 711-716.
Dhir, R. K., El-Mohr, M. A. K. and Dyer, T. D. (1996). Chloride binding in GGBS concrete. Cement and Concrete Research 26(12), 1767-1773.
Ehtesham Hussain, S., Rasheeduzzafar and Al-Gahtani, A. S. (1994). Influence of sulfates on chloride binding in cements. Cement and Concrete Research 24(1), 8-24.
Eighmy, T. T., Crannell, B. S., Butler, L. G., Cartledge, F. K., Emery, E. F., Oblas, D., Krzanowski, J. E., Eusden, J. D., Shaw, E. L. and Francis, C. A. (1997). Heavy Metal Stabilization in Municipal Solid Waste Combustion Dry Scrubber Residue Using Soluble Phosphate. Environ. Sci. Technol. 31(11), 3330-3338.
Filio, J. M., Perucho, R. V., Saito, F., Hanada, M. and Ito, Y. (1996). Mechanosynthesis of tricalcium aluminum hydrate by mixed grinding. Materials Science Forum 225-227(PART 1), 503-508.
Filio, J. M., Sugiyama, S., Kasai, E. and F., S. (1993). Effect of Dry Mixed Grinding of Talc, Kaolinite and Gibbsite on Preparation of Cordierite Ceramics. Journal of Chemical Engineering of Japan 26(5), 565-569.
Gaffet, E., Harmelin, M. (1990). Crystal-amorphous phase transition induced by ball-milling in silicon. Journal of the Less Common Metals 157(2), 201-222.
Garcia Lodeiro, I., Fernandez-Jimenez, A., Palomo, A. and Macphee, D. E. (2010). Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research 40(1), 27-32.
Geiker, M., Nielsen, E. P. and Herfort, D. (2007). Prediction of chloride ingress and binding in cement paste. Materials and Structures 40(4), 405-417.
Geysen, D., Imbrechts, K., Vandecasteele, C., Jaspers, M. and Wauters, G. (2004). Immobilization of lead and zinc in scrubber residues from MSW combustion using soluble phosphates. Waste Management 24(5), 471-481.
Gilardoni, S., Fermo, P., Cariati, F., Gianelle, V., Pitea, D., Collina, E. and Lasagni, M. (2004). MSWI Fly Ash Particle Analysis by Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy. Environ. Sci. Technol. 38(24), 6669-6675.
Glass, G. K., Buenfeld, N. R. (1997). The presentation of the chloride threshold level for corrosion of steel in concrete. Corrosion Science 39(5), 1001-1013.
Glass, G. K., Buenfeld, N. R. (2000). The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corrosion Science 42(2), 329-344.
Goni, S., Guerrero, A. (2003). Accelerated carbonation of Friedel's salt in calcium aluminate cement paste. Cement and Concrete Research 33(1), 21-26.
Guerrero, A., Goni, S. and Allegro, V. R. (2009). Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: Synergy of chloride and sulphate ions. Journal of Hazardous Materials 165(1–3), 903-908.
Guo, X., Shi, H., Chen, L. and Dick, W. A. (2010). Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. Journal of Hazardous Materials 173(1–3), 480-486.
Gutteridge, W. A. (1979). On the dissolution of the interstitial phases in Portland cement. Cement and Concrete Research 9(3), 319-324.
Haque, M. N., Kayyali, O. A. (1995). Free and water soluble chloride in concrete. Cement and Concrete Research 25(3), 531-542.
Ibanez, R., Andres, A., Viguri, J. R., Ortiz, I. and Irabien, J. A. (2000). Characterisation and management of incinerator wastes. Journal of Hazardous Materials 79(3), 215-227.
Isaia, G. C., Gastaldini, A. L. G. and Moraes, R. (2003). Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and Concrete Composites 25(1), 69-76.
Jain, J. A., Neithalath, N. (2010). Chloride transport in fly ash and glass powder modified concretes – Influence of test methods on microstructure. Cement and Concrete Composites 32(2), 148-156.
Jones, M. R., Macphee, D. E., Chudek, J. A., Hunter, G., Lannegrand, R., Talero, R. and Scrimgeour, S. N. (2003). Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel's salt. Cement and Concrete Research 33(2), 177-182.
Justnes, H., Dahl, P. A., Ronin, V., Jonasson, J. E. and Elfgren, L. (2007). Microstructure and performance of energetically modified cement (EMC) with high filler content. Cement & Concrete Composites 29(7), 533-541.
Justnes, H., Elfgren, L. and Ronin, V. (2005). Mechanism for performance of energetically modified cement versus corresponding blended cement. Cement and Concrete Research 35(2), 315-323.
Justnes, H., Meland, I., Bjoergum, J. O., Krane, J. and Skjetne, T. (1990). NMR - A powerful tool in cement and concrete research. Advances in Cement Research 3(11), 105-113.
Katsioti, M., Gkanis, D., Pipilikaki, P., Sakellariou, A., Papathanasiou, A., Teas, C., Chaniotakis, E., Moundoulas, P. and Moropoulou, A. (2009). Study of the substitution of limestone filler with pozzolanic additives in mortars. Construction and Building Materials 23(5), 1960-1965.
Kayyali, O. A., Haque, M. N. (1995). The Cl - /OH- ratio in chloride-contaminated concrete — a most important criterion. Magazine of Concrete Research 47(172), 235-242.
Kiattikomol, K., Jaturapitakkul, C., Songpiriyakij, S. and Chutubtim, S. (2001). A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cement & Concrete Composites 23(4-5), 335-343.
Kikuchi, R. (2001). Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resources, Conservation and Recycling 31(2), 137-147.
Kirby, C. S., Donald Rimstidt, J. (1994). Interaction of municipal solid waste ash with water. Environmental Science and Technology 28(3), 443-451.
Kobylecki, R. P., Ohira, K., Ito, I., Fujiwara, N. and Horio, M. (2001). Dioxin and fly ash free incineration by ash pelletization and reburning. Environmental Science and Technology 35(21), 4313-4319.
Lampris, C., Stegemann, J. A. and Cheeseman, C. R. (2009). Solidification/stabilisation of air pollution control residues using Portland cement: Physical properties and chloride leaching. Waste Management 29(3), 1067-1075.
Lancellotti, I., Kamseu, E., Michelazzi, M., Barbieri, L., Corradi, A. and Leonelli, C. (2010). Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Management 30(4), 673-679.
Laperche, V., Traina, S. J., Gaddam, P. and Logan, T. J. (1996). Chemical and Mineralogical Characterizations of Pb in a Contaminated Soil: Reactions with Synthetic Apatite. Environ. Sci. Technol. 30(11), 3321-3326.
Lee, W. K. W., van Deventer, J. S. J. (2002). The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 211(2–3), 115-126.
Li, M. G., Sun, C. J., Gau, S. H. and Chuang, C. J. (2010). Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash. Journal of Hazardous Materials 174(1–3), 586-591.
Liu, C., Gai, W., Pan, S. and Liu, Z. (2003). The exothermal behavior in the hydration process of calcium phosphate cement. Biomaterials 24(18), 2995-3003.
Luke, K., Glasser, F. P. (1987). Selective dissolution of hydrated blast furnace slag cements. Cement and Concrete Research 17(2), 273-282.
Luping, T., Nilsson, L.-O. (1993). Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cement and Concrete Research 23(2), 247-253.
Ma, Q. Y., Traina, S. J., Logan, T. J. and Ryan, J. A. (1993). In situ lead immobilization by apatite. Environmental Science & Technology 27(9), 1803-1810.
MacKenzie, K. J. D., Smith, M. E. and Wong, A. (2007). A multinuclear MAS NMR study of calcium-containing aluminosilicate inorganic polymers. Journal of Materials Chemistry 17, 5090-5096.
Manera, M., Vennesland, O. and Bertolini, L. (2008). Chloride threshold for rebar corrosion in concrete with addition of silica fume. Corrosion Science 50(2), 554-560.
Mangialardi, T. (2003). Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials 98(1-3), 225-240.
Matsuya, S., Takagi, S. and Chow, L. C. (2000). Effect of mixing ratio and pH on the reaction between Ca4(PO4)2O and CaHPO4. Journal of Materials Science: Materials in Medicine 11(5), 305-311.
Mehta, K. P. (1997). Durability - critical issues for the future. Concrete International 19(7), 27-32.
Mi, G., Saito, F. and Hanada, M. (1997). Mechanochemical synthesis of tobermorite by wet grinding in a planetary ball mill. Powder Technology 93(1), 77-81.
Mizutani, S., van der Sloot, H. A. and Sakai, S.-i. (2000). Evaluation of treatment of gas cleaning residues from MSWI with chemical agents. Waste Management 20(2–3), 233-240.
Mizutani, S., Yoshida, T., Sakai, S.-i. and Takatsuki, H. (1996). Release of metals from MSW I fly ash and availability in alkali condition. Waste Management 16(5-6), 537-544.
Montinaro, S., Concas, A., Pisu, M. and Cao, G. (2007). Remediation of heavy metals contaminated soils by ball milling. Chemosphere 67(4), 631-639.
Mulder, E. (1996). Pre-Treatment of MSWI fly ash for useful application. Waste Management 16(1-3), 181-184.
Nagataki, S., Otsuki, N., Wee, T.-H. and Nakashita, K. (1993). Condensation of Chloride Ion in Hardened Cement Matrix Materials and on Embedded Steel Bars. ACI Materials Journal 90(4), 323-332.
Nielsen, E. P., Herfort, D. and Geiker, M. R. (2005). Binding of chloride and alkalis in Portland cement systems. Cement and Concrete Research 35(1), 117-123.
Nomura, Y., Fujiwara, K., Takada, M., Nakai, S. and Hosomi, M. (2008). Lead immobilization in mechanochemical fly ash recycling. Journal of Material Cycles and Waste Management 10(1), 14-18.
Nomura, Y., Nakai, S. and Hosomi, M. (2005). Elucidation of Degradation Mechanism of Dioxins during Mechanochemical Treatment. Environ. Sci. Technol. 39(10), 3799-3804.
Nomura, Y., Okada, T., Nakai, S. and Hosomi, M. (2006). Inhibition of Heavy Metal Elution from Fly Ashes by Mechanochemical Treatment and Cementation. KAGAKU KOGAKU RONBUNSHU 32(2), 196-199.
Park, Y. J. (2009). Stabilization of a chlorine-rich fly ash by colloidal silica solution. Journal of Hazardous Materials 162(2-3), 819-822.
Pipilikaki, P., Beazi-Katsioti, M. (2009). The assessment of porosity and pore size distribution of limestone Portland cement pastes. Construction and Building Materials 23(5), 1966-1970.
Polettini, A., Pomi, R., Sirini, P. and Testa, F. (2001). Properties of Portland cement -- stabilised MSWI fly ashes. Journal of Hazardous Materials 88(1), 123-138.
Provis, J. L., Yong, C. Z., Duxson, P. and van Deventer, J. S. J. (2009). Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 336(1–3), 57-63.
Pruckner, F., Gjorv, O. E. (2004). Effect of CaCl2 and NaCl additions on concrete corrosivity. Cement and Concrete Research 34(7), 1209-1217.
Qian, G., Zhang, H., Zhang, X. and Chui, P.-C. (2005). Modification of MSW fly ash by anionic chelating surfactant. Journal of Hazardous Materials 121(1–3), 251-258.
Ramachandran, V. S. (1971). Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride. Materiaux et Construction 4(1), 3-12.
Reddy, B., Glass, G. K., Lim, P. J. and Buenfeld, N. R. (2002). On the corrosion risk presented by chloride bound in concrete. Cement and Concrete Composites 24(1), 1-5.
Richardson, I. G. (1999). The nature of C-S-H in hardened cements. Cement and Concrete Research 29(8), 1131-1147.
Richardson, I. G. (2004). Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cement and Concrete Research 34(9), 1733-1777.
Rowles, M., O'Connor, B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry 13(5), 1161-1165.
Sabir, B. B., Wild, S. and Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites 23(6), 441-454.
Saikia, N., Kato, S. and Kojima, T. (2007). Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Management 27(9), 1178-1189.
Sandberg, P. (1999). Studies of chloride binding in concrete exposed in a marine environment. Cement and Concrete Research 29(4), 473-477.
Spence, R. D. (1993). Chemistry and Microstructure of Solidified Waste Forms. Florida, Lewis Publishers.
Stegemann, J. A., Schneider, J., Baetz, B. W. and Murphy, K. L. (1995). Lysimeter washing of MSW incinerator bottom ash. Waste Management & Research 13(2), 149-165.
Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science 46(1–2), 1-184.
Suryanarayana, C., Ivanov, E. and Boldyrev, V. V. (2001). The science and technology of mechanical alloying. Materials Science and Engineering: A 304–306(0), 151-158.
Suryavanshi, A. K., Narayan Swamy, R. (1996). Stability of Friedel's salt in carbonated concrete structural elements. Cement and Concrete Research 26(5), 729-741.
Suryavanshi, A. K., Scantlebury, J. D. and Lyon, S. B. (1995). The binding of chloride ions by sulphate resistant portland cement. Cement and Concrete Research 25(3), 581-592.
Suryavanshi, A. K., Scantlebury, J. D. and Lyon, S. B. (1998). Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride. Cement and Concrete Composites 20(4), 263-281.
Tanaka, Y., Zhang, Q. and Saito, F. (2004). Mechanochemical dechlorination of chlorinated compounds. Journal of Materials Science 39(16-17), 5497-5501.
Taylor, H. F. W. (1997). Cement Chemistry. London, Thomas Telford.
Taylor, W. H. (1977). Concrete Technology and Practice. New York, McGraw-Hill.
Temuujin, J., van Riessen, A. and Williams, R. (2009a). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials 167(1–3), 82-88.
Temuujin, J., Williams, R. P. and van Riessen, A. (2009b). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology 209(12–13), 5276-5280.
Thipse, S. S., Schoenitz, M. and Dreizin, E. L. (2002). Morphology and composition of the fly ash particles produced in incineration of municipal solid waste. Fuel Processing Technology 75(3), 173-184.
Tritthart, J. (1989). Chloride binding in cement II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding. Cement and Concrete Research 19(5), 683-691.
Ubbriaco, P., Calabrese, D. (1998). Solidification and stabilization of cement paste containing fly ash from municipal solid waste. Thermochimica Acta 321(1-2), 143-150.
Uchida, T., Itoh, I. and Harada, K. (1996). Immobilization of heavy metals contained in incinerator fly ash by application of soluble phosphate—Treatment and disposal cost reduction by combined use of “High Specific Surface Area Lime”. Waste Management 16(5–6), 475-481.
van der Sloot, H. A., Kosson, D. S. and Hjelmar, O. (2001). Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Management 21(8), 753-765.
Viallis, H., Faucon, P., Petit, J. C. and Nonat, A. (1999). Interaction between Salts (NaCl, CsCl) and Calcium Silicate Hydrates (C−S−H). The Journal of Physical Chemistry B 103(25), 5212-5219.
Viehland, D., Li, J.-F., Yuan, L.-J. and Xu, Z. (1996). Mesostructure of Calcium Silicate Hydrate (C-S-H) Gels in Portland Cement Paste: Short-Range Ordering, Nanocrystallinity, and Local Compositional Order. Journal of the American Ceramic Society 79(7), 1731-1744.
Vizcayno, C., de Gutierrez, R. M., Castello, R., Rodriguez, E. and Guerrero, C. E. (2010). Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Applied Clay Science 49(4), 405-413.
Wang, K.-S., Lin, K.-L. and Huang, Z.-Q. (2001). Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement. Cement and Concrete Research 31(1), 97-103.
Wang, Y. M., Chen, T. C., Yeh, K. J. and Shue, M. F. (2001). Stabilization of an elevated heavy metal contaminated site. Journal of Hazardous Materials 88(1), 63-74.
Wiles, C. C. (1996). Municipal solid waste combustion ash: State-of-the-knowledge. Journal of Hazardous Materials 47(1-3), 325-344.
Yip, C. K., Provis, J. L., Lukey, G. C. and van Deventer, J. S. J. (2008). Carbonate mineral addition to metakaolin-based geopolymers. Cement and Concrete Composites 30(10), 979-985.
Yu, H., Sheikholeslami, R. and Doherty, W. O. S. (2002). Mechanisms, thermodynamics and kinetics of composite fouling of calcium oxalate and amorphous silica in sugar mill evaporators--A preliminary study. Chemical Engineering Science 57(11), 1969-1978.
Yuan, Q., Shi, C., De Schutter, G., Audenaert, K. and Deng, D. (2009). Chloride binding of cement-based materials subjected to external chloride environment – A review. Construction and Building Materials 23(1), 1-13.
Yvon, J., Antenucci, D., Jdid, E.-A., Lorenzi, G., Dutre, V., Leclerq, D., Nielsen, P. and Veschkens, M. (2006). Long-term stability in landfills of Municipal Solid Waste Incineration fly ashes solidified/stabilized by hydraulic binders. Journal of Geochemical Exploration 90, 143-155.
Zeng, Q., Li, K., Fen-chong, T. and Dangla, P. (2012). Pore structure characterization of cement pastes blended with high-volume fly-ash. Cement and Concrete Research 42(1), 194-204.
Zhang, P., Ryan, J. A. and Yang, J. (1998). In Vitro Soil Pb Solubility in the Presence of Hydroxyapatite. Environmental Science & Technology 32(18), 2763-2768.
Zhao, Y., Song, L. and Li, G. (2002). Chemical stabilization of MSW incinerator fly ashes. Journal of Hazardous Materials 95(1-2), 47-63.
Zhu, F., Takaoka, M., Shiota, K., Oshita, K. and Kitajima, Y. (2008). Chloride Chemical Form in Various Types of Fly Ash. Environ. Sci. Technol. 42(11), 3932-3937.
Zhu, Q., Jiang, L., Chen, Y., Xu, J. and Mo, L. (2012). Effect of chloride salt type on chloride binding behavior of concrete. Construction and Building Materials 37, 512-517.
Zibara, H., Hooton, R. D., Thomas, M. D. A. and Stanish, K. (2008). Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures. Cement and Concrete Research 38(3), 422-426.
何常溢 (2008),焚化飛灰再生輕質骨材之研究,碩士,中興大學。
李冷、曾憲濱 (1993),粉碎機械化學在材料開發中的應用,武漢工業大學學報 15(1),23-26。
杜昭良 (2000),機械化學合金法合成過渡金屬硫化物之結構研究,碩士,逢甲大學。
林永揚 (2007),水庫淤泥混合焚化飛灰燒製輕質骨材,碩,東海大學。
林東燦 (2006),污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究,碩士,中央大學。
施惠生,闞黎黎 (2008),焚化飛灰作復合膠凝組分資源化利用的安全性,環境工程 26(4)。
孫常榮、高思懷、陳政綱、李昶松、吳欣慧、蘇文亮、李孟翰、王雅慧、黃承鈞 (2009),利用機械冶金技術製作「水泥-飛灰複合粉」作為水泥掺配料之研究,台北,行政院國家科學委員會。
徐國華 (2004),機械化學合成Cu-S與CuFeS2粉體之結構研究,碩士,逢甲大學。
張瑜文 (2008),水庫淤泥應用於無機聚合膠結材,碩士,成功大學。
莊家榮 (2006),濕式研磨對MSWI飛灰特性影響之研究,碩士,淡江大學。
許楠鋒 (1999),機械合金法合成具寬廣過冷液態區鈦基非晶質合金粉末之研究,碩士,海洋大學。
黃兆龍 (2005),簡編混凝土性質與行為,台北,詹氏書局。
黃彥為 (2008),高能球磨飛灰內重金屬在高溫環境下穩定之研究,淡江大學。
黃國城 (2008),無機聚合包裹中空球無細混凝土之工程性質,碩士, 成功大學。
楊南如 (2003),C-S-H 凝膠及其研究方法,硅酸鹽通報 22(2),7。
萬永敏、張少明、劉新、劉亞雲 (1998),用機械力化學原理提高水泥混合材掺量,南京化工大學學報 20(2),66-68。
趙洪義 (2007),水泥工藝外加劑技術,北京,化學工業出版社。
龔人俠 (1977),水泥工業叢書 第一輯 水泥化學概論,台北,臺灣區水泥工業同業公會。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-03-11公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-03-11起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信