§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0802201213431300
DOI 10.6846/TKU.2012.00298
論文名稱(中文) 比較過硫酸鹽與過氧化氫影響零價鐵降解三氯乙烯及零價鐵鈍化情形之研究
論文名稱(英文) Comparative study of passivation of ZVI and degradation of TCE by using S2O82- and H2O2
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 1
出版年 101
研究生(中文) 陳玉榕
研究生(英文) Yu-Jung Chen
學號 699480124
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-01-09
論文頁數 73頁
口試委員 指導教授 - 李奇旺
委員 - 陳孝行
委員 - 李柏青
關鍵字(中) 活化過硫酸鹽
Fenton
零價鐵
三氯乙烯
pH
關鍵字(英) Activated Persulfate
Fenton
ZVI
Trichlorethylene
pH
第三語言關鍵字
學科別分類
中文摘要
常見受TCE污染之地下水整治方法中,現地化學氧化法-Fenton法具有良好的處理效率,由參考文獻中得知Fenton法最主要關鍵為pH適用範圍需在pH2~4,否則易產生大量氫氧化鐵污泥,因此在整治期間常需加入大量藥劑控制pH值;且H2O2之半衰期短,故亦常需要重複添加氧化劑,導致整治成本增加。
本研究欲利用零價鐵催化兩種不同的氧化劑 ─ 過氧化氫與過硫酸鹽,分別進行TCE降解批次式瓶杯實驗與以滲透性反應牆形式進行零價鐵管柱堵塞實驗,比較不調整pH值情形下,ZVI/H2O2與ZVI/PS兩系統降解TCE之效率與零價鐵牆堵塞情形。
實驗結果顯示TCE經由ZVI/H2O2與ZVI/PS兩系統反應,經10天後兩系統降解效率相當,降解效率皆能達九成以上。以人工地下水添加相同濃度H2O2與PS氧化劑流入零價鐵層實驗中,在未調整pH值情形下,發現添加H2O2之零價鐵層較添加PS之更易造成堵塞,顯示在不調整pH值情形下,ZVI/PS較ZVI/H2O2系統更具持久且能有效去除TCE。
更進一步實驗,發現零價鐵層堵塞情形會隨PS添加濃度與pH值影響,濃度越高、pH值越低則可減少氫氧化鐵沉澱物產生,降低堵塞程度。
英文摘要
Fenton method is one of the common, in situ chemical oxidation technologies for TCE contaminated ground water. Past studies have shown that the control of pH at 2-4 to prevent Fe(OH)3(S) sludge generated was the key condition for Fenton method. Therefore, this method needs a large of amount chemical reagent to control pH during remediation period. Also, the oxidants must be repeatedly added due to the short half-life of H2O2, resulting in increasing remediation cost. 
Two kinds of oxidants which use zero value iron (ZVI) as the catalyst, hydrogen peroxide and persulfate, were compared in the study. The batch jar test of TCE degradation and ZVI column obstructive property experiment were conducted to investigate the system of ZVI/H2O2 and ZVI/PS on TCE degradation efficiency and obstructive situation of ZVI column.
The results showed that the TCE degradation efficiency of ZVI/H2O2 and ZVI/PS were similar with over 90% efficiency achieved after ten days of reaction. Without the pH control, ZVI column was more prone to be clogged in ZVI/H2O2 system than in ZVI/PS system, revealing that the latter is more persistent than the former. Furthermore, the ZVI column obstructive property is affected by persulfate concentration and pH; increasing the persulfate concentration or lowering the pH will reduce the Fe(OH)3(S) sludge generated. Overall, ZVI activated persulfate oxidation offers a persistent and effective way for remediation of TCE contamination.
第三語言摘要
論文目次
目錄
目錄	I
圖目錄	IV
表目錄	VI
第一章 緒論	1
1.1 研究背景	1
1.2 研究目的	3
第二章 文獻回顧	4
2.1 土壤與地下水污染	4
2.1.1 三氯乙烯用途與污染源介紹	5
2.1.2 三氯乙烯特性與法規規範	6
2.2 土壤與地下水污染整治簡介	8
2.2.1 現地整治技術之原理與種類	9
2.2.2 滲透性反應牆	13
2.2.3 零價鐵去除TCE反應機制	15
2.2.4 強氧化劑去除污染物之反應機制與氧化電位	18
2.2.5 氧化劑比較與限制	20
2.2.6 ZVI的鈍化	22
2.2.7 超音波結合相關程序之應用	24
2.3 零價鐵/氧化劑系統降解TCE之影響因子	25
2.3.1 TCE溶解度	25
2.3.2 ZVI濃度與表面積	25
2.3.3 氧化劑及其濃度	26
2.3.4 氧化劑半生期	26
2.3.5 pH值	27
2.3.6 流速	28
2.3.7 水力傳導係數	29
2.3.8 溫度	30
2.3.9 天然氧化劑需求量	31
2.3.10 其他離子影響	31
第三章 實驗材料與方法	32
3.1 實驗流程	32
3.2 實驗材料	33
3.2.1 實驗藥品	33
3.2.2 實驗藥品製備	34
3.2.3 實驗器材	36
3.3 實驗分析方法	37
3.3.1 三氯乙烯(TCE)分析方法	37
3.3.2 過硫酸鹽(persulfate)分析方法	38
3.3.3 過氧化氫(H2O2)分析方法	39
3.3.4 水中pH值測量方法	39
3.3.5 石英砂孔隙率試驗	40
3.4 實驗步驟	40
3.4.1 TCE降解實驗	41
3.4.2 零價鐵堵塞實驗	44
3.4.3 超音波活化過硫酸鹽降解TCE實驗	45
第四章 結果與討論	47
4.1 TCE 去除效率	47
4.1.1 零價鐵活化氧化劑降解TCE試驗	47
4.1.2 超音波活化硫酸鹽降解TCE試驗	51
4.2 不同氧化劑對零價鐵層之阻塞現象	53
4.3 pH值變化	58
4.3.1 零價鐵活化氧化劑反應之pH值變化	58
4.3.2 不同濃度零價鐵活化氧化劑反應之pH值變化	60
4.3.3 超音波震動下零價鐵活化氧化劑反應之pH值變化	62
第五章 結論與建議	65
5.1 結論	65
5.2 建議	66
參考文獻	68
附件一、台灣地區地下水污染(含氯有機物)列管場址資料表[10]	0

 
圖目錄
Figure 1 滲透性反應牆整治原理[17]	14
Figure 2 在缺氧的ZVI/H2O系統中鹵化物還原脫氯反應[24]。	17
Figure 3 水流滲流示意圖[54]	30
Figure 4 本研究實驗流程圖	32
Figure 5 TCE檢量線	37
Figure 6 Persulfate檢量線	38
Figure 7 H2O2檢量線	39
Figure 8 TCE降解實驗裝置	42
Figure 9 零價鐵/石英砂系統阻塞實驗裝置	45
Figure 10 超音波催化PS/H2O2降解TCE實驗裝置	46
Figure 11 TCE地下水空白水樣分別添加PS、H2O2、ZVI與時間之降解關係圖。	48
Figure 12含零價鐵水樣添加不同濃度氧化劑H2O2下時間與TCE之降解關係圖	49
Figure 13含零價鐵水樣添加不同濃度氧化劑 PS下時間與TCE之降解關係圖	50
Figure 14 各種實驗條件下1小時內時間與TCE濃度關係圖。	51
Figure 15各種實驗條件於超音波震動下1小時內時間與TCE濃度關係圖。	52
Figure 16 各種水樣通過石英砂管柱孔隙阻塞阻力變化圖。	55
Figure 17 以DI water與Ground water通過零價鐵/石英砂層管柱孔隙阻塞阻力變化圖。 (實驗條件:HL=0.5m,25℃)	56
Figure 18 以不同水樣通過零價鐵/石英砂管柱孔隙阻塞阻力變化圖。	57
Figure 19 不同PS濃度通過零價鐵/石英砂管柱孔隙阻塞阻力變化圖。	58
Figure 20 模擬受TCE污染之人工地下水添加不同氧化劑PS、H2O2與零價鐵下時間與pH關係圖。	59
Figure 21 模擬受TCE污染之人工地下水在添加不同氧化劑PS、H2O2與不同濃度零價鐵下時間與pH關係圖。	61
Figure 22 模擬超音波震動下受TCE污染之人工地下水添加不同氧化劑PS、H2O2與零價鐵(60分鐘內)之pH值變化	62
Figure 23 模擬受TCE污染之人工地下水添加不同氧化劑PS、H2O2與零價鐵於60分鐘內之pH值變化	63
Figure 24 超音波震動下時間與pH關係圖	64
Figure 25 超音波震動下添加不同氧化劑濃度之時間與pH關係圖。	64


 
表目錄
Table 1 TCE物化特性	7
Table 2 三氯乙烯半衰期	7
Table 3 常見之TCE污染整治處理技術(研究者自行整理)	11
Table 4 台灣地區已實際運用土壤及地下水污染整治技術彙整[17]	13
Table 5 現地化學氧化技術比較	22
Table 6 台灣地區已實際運用土壤及地下水污染整治技術彙整	29
Table 7 人工地下水配方與濃度	35
Table 8 石英砂孔隙率	40
Table 9 各水樣實驗條件	43
參考文獻
參考文獻
1.	Yeh, T. Y.; Kao, C. M.; Lee, M. S., Field investigation at a chlorinated ethylene contaminated site. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 2006, 10, (4), 207-215.
2.	Moran, M. J.; Zogorski, J. S.; Squillace, P. J., Chlorinated solvents in groundwater of the United States. Environmental Science and Technology 2007, 41, (1), 74-81.
3.	Gotpagar, J. K.; Grulke, E. A.; Bhattacharyya, D., Reductive dehalogenation of trichloroethylene: Kinetic models and experimental verification. Journal of Hazardous Materials 1998, 62, (3), 243-264.
4.	Huang, K. C.; Hoag, G. E.; Chheda, P.; Woody, B. A.; Dobbs, G. M., Chemical oxidation of trichloroethylene with potassium permanganate in a porous medium. Advances in Environmental Research 2002, 7, (1), 217-229.
5.	TEPA 土壤及地下水污染法. 
6.	Thiruvenkatachari, R.; Vigneswaran, S.; Naidu, R., Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry 2008, 14, (2), 145-156.
7.	Liang, C.; Wang, Z.-S.; Bruell, C. J., Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 2007, 66, (1), 106-113.
8.	GHS MSDS. http://ghs.cla.gov.tw/CHT/intro/MSDS.aspx?casno=79-01-6 (2011, Jan. 10), 
9.	Superfund, E. Contaminated Media, Human Health, and Environmental Effects. http://www.epa.gov/superfund/health/index.htm (2011, Jan. 10), 
10.	TEPA 土壤及地下水污染整治網. http://sgw.epa.gov.tw/public/index.asp (12), 
11.	Elliott, D. W.; Zhang, W. X., Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science and Technology 2001, 35, (24), 4922-4926.
12.	McElroy, B.; Keith, A.; Glasgow, J.; Dasappa, S., The use of zero-valent iron injection to remediate groundwater: Results of a pilot test at the Marshall Space Flight Center. Remediation Journal 2003, 13, (2), 145-153.
13.	Rights, 台. A. f. H. 與毒為伍,人不如土聲援台灣RCA廠罹癌工人展開跨國職災求償行動. http://www.tahr.org.tw/site/case/rca/index.htm (03.07), 
14.	楊金鐘, 土壤受到有機物污染怎麼辦. SCIENCE MONTHLY (科學月刊) 1998, 341.
15.	行政院環保署 安全飲用水手冊. http://xn--ruqr4so3k1qprvmlqmlmf0nz.xn--kpry57d/ch/DocList.aspx?unit=14&clsone=529&clstwo=226&clsthree=0&busin=235&path=14370 (2011, Jan.18), 
16.	Registry, A. f. T. S. a. D. CERCLA Priority List of Hazardous Substances. http://www.atsdr.cdc.gov/cercla/07list.html (2011, Jan. 10), 
17.	高雄市環保局 土壤及地下水污染整治介紹. http://depweb.ksepb.gov.tw/2/soil/p2.html (2011, Jan. 10), 
18.	席行正; 賴美君, 淺談土壤污染與整治復育技術. 南區毒災應變諮詢中心簡訊 2004, p 7.
19.	Lu, M. C.; Anotai, J.; Chyan, J. M.; Ting, W. P., Effect of chloride Ions on the dechlorination of hexachlorobenzene in the presence of zero-valent iron. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 2006, 10, (4), 226-230.
20.	林佩雲; 林正皓; 黃智; 鍾裕仁 可行性評估對ISCO整治策略研擬之功能. http://setsg.ev.ncu.edu.tw/news%20letter/epnews12-1-1.html 
21.	黃世傑; 吳雪蘋; 陳鴻泉; 呂文賢, 地下水中TCE污染-生物整治方法在台灣應用經驗. 社團法人台灣土壤及地下水環境保護協會簡訊(TASGEP Newsletter) 2010, p 7.
22.	Group, I. T. a. R. C. W.; Team, I. S. C. O. W., Technical and Regulatory Guidance for In Situ Chemical
Oxidation of Contaminated Soil and Groundwater. Interstate Technology & Regulatory Council (ITRC)
2005.
23.	EPA , U. S. Evaluation of Groundwater Extraction Remedies: Phase II, vol.1, Summary Report, . (2011, Jan.10), 
24.	Matheson, L. J.; Tratnyek, P. G., Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology 1994, 28, (12), 2045-2053.
25.	Chen, G.; Hoag, G. E.; Chedda, P.; Nadim, F.; Woody, B. A.; Dobbs, G. M., The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. Journal of Hazardous Materials 2001, 87, (1-3), 171-186.
26.	Huling, S. G.; Pivetz, B. E. In Situ Chemical Oxdation(EPA/600/R-06/072). http://nepis.epa.gov/Adobe/PDF/2000ZXNC.PDF 
27.	Nyer, E. K.; Vance, D., Hydrogen peroxide treatment: The good, the bad, the ugly. Ground Water Monitoring and Remediation 1999, 19, (3), 54-57.
28.	USEPA How To Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites: A Guide For Corrective Action Plan Reviewers. http://www.epa.gov/oust/pubs/tums.htm 
29.	Team, T. I. T. R. C. I. S. C. O. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater; 2005.
30.	Waldemer, R. H.; Tratnyek, P. G.; Johnson, R. L.; Nurmi, J. T., Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environmental Science and Technology 2007, 41, (3), 1010-1015.
31.	Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbk, H.; Siegrist, R. L.; Bjerg, P. L., In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Critical Reviews in Environmental Science and Technology 2010, 40, (1), 55-91.
32.	EPA, How To Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites: A Guide For Corrective Action Plan Reviewers. In May 2004; p 6.
33.	王朝網絡 化學鈍化. http://tc.wangchao.net.cn/baike/detail_17886.html  http://tc.wangchao.net.cn/zhidao/detail_2724246.html 
34.	Luo, H.; Jin, S.; Fallgren, P. H.; Colberg, P. J. S.; Johnson, P. A., Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation. Chemical Engineering Journal 2010, 160, (1), 185-189.
35.	Tamara, M. L.; Butler, E. C., Effects of Iron Purity and Groundwater Characteristics on Rates and Products in the Degradation of Carbon Tetrachloride by Iron Metal. Environmental Science and Technology 2004, 38, (6), 1866-1876.
36.	Tratnyek, P. G.; Scherer, M. M.; Deng, B.; Hu, S., Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Research 2001, 35, (18), 4435-4443.
37.	Farrell, J.; Kason, M.; Melitas, N.; Li, T., Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environmental Science and Technology 2000, 34, (3), 514-521.
38.	Huang, Y. H.; Zhang, T. C., Kinetics of nitrate reduction by iron at near neutral pH. Journal of Environmental Engineering 2002, 128, (7), 604-611.
39.	Phillips, D. H.; Gu, B.; Watson, D. B.; Roh, Y.; Liang, L.; Lee, S. Y., Performance evaluation of a zerovalent iron reactive barrier: Mineralogical characteristics. Environmental Science and Technology 2000, 34, (19), 4169-4176.
40.	Jin, S.; Fallgren, P. H.; Morris, J. M.; Edgar, E. S., Degradation of trichloroethene in water by electron supplementation. Chemical Engineering Journal 2008, 140, (1-3), 642-645.
41.	Collings, A. F.; Farmer, A. D.; Gwan, P. B.; Pintos, A. P. S.; Leo, C. J., Processing contaminated soils and sediments by high power ultrasound. Minerals Engineering 2006, 19, (5), 450-453.
42.	Rashid, M. M.; Sato, C., Photolysis, sonolysis, and photosonolysis of trichloroethane (TCA), trichloroethylene (TCE), and tetrachloroethylene (PCE) without catalyst. Water, Air, and Soil Pollution 2011, 216, (1-4), 429-440.
43.	Tsai, T. T.; Kao, C. M.; Yeh, T. Y.; Liang, S. H.; Chien, H. Y., Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater. Journal of Hazardous Materials 2009, 161, (1), 111-119.
44.	Liang, C.; Lee, I. L., In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination - A proof of concept study. Journal of Contaminant Hydrology 2008, 100, (3-4), 91-100.
45.	Su, C.; Puls, R. W., Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products. Environmental Science and Technology 1999, 33, (1), 163-168.
46.	Johnson, R. L.; Tratnyek, P. G.; Johnson, R. O., Persulfate persistence under thermal activation conditions. Environmental Science and Technology 2008, 42, (24), 9350-9356.
47.	Sra, K. S.; Thomson, N. R.; Barker, J. F., Persistence of persulfate in uncontaminated aquifer materials. Environmental Science and Technology 2010, 44, (8), 3098-3104.
48.	Banerjee, M.; Konar, R. S., Comment on the paper “polymerization of acrylonitrile initiated by K2S2O8-Fe(II) redox system”. Journal of Polymer Science: Polymer Chemistry Edition 1984, 22, (5), 1193-1195.
49.	EPA, U. S. Completed North American Innovative Remediation Technology Demonstraction Projects; Washington, D.C., 1996.
50.	Chen, L.; Liu, F.; Liu, Y.; Dong, H.; Colberg, P. J. S., Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier. Journal of Hazardous Materials 188, (1-3), 110-115.
51.	Lee, Y.; Lee, W., Degradation of trichloroethylene by Fe(II) chelated with cross-linked chitosan in a modified Fenton reaction. Journal of Hazardous Materials 2010, 178, (1-3), 187-193.
52.	Xu, X. R.; Li, X. Z., Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and Purification Technology 2010, 72, (1), 105-111.
53.	陳蓁怡. 以不同方式活化過硫酸鈉處理染整廢水之研究. 淡江大學水資源工程學系碩士班碩士論文
Taipei, 2010.
54.	單信瑜 台灣地下水資源使用與水質現況. http://www.cv.nctu.edu.tw/~wwwadm/chinese/teacher/Ppt-pdf/teacher13_shan/gwater_doc.pdf 
55.	Mackay, D. M.; Roberts, P. V.; Cherry, J. A., Transport of organic contaminants in groundwater: Distribution and fate of chemicals in sand and gravel aquifers. Environmental Science and Technology 1985, 19, (5), 384-392.
56.	Powell, R. M.; Puls, R. W.; Hightower, S. K.; Sabatini, D. A., Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation. Environmental Science and Technology 1995, 29, (8), 1913-1922.
57.	Kao, C. M.; Chen, S. C.; Su, M. C., Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere 2001, 44, (5), 925-934.
58.	Katsoyiannis, I. A.; Werner Althoff, H.; Bartel, H.; Jekel, M., The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides. Water Research 2006, 40, (19), 3646-3652.
59.	Yang, G. C. C.; Tu, H. C.; Hung, C. H., Stability of nanoiron slurries and their transport in the subsurface environment. Separation and Purification Technology 2007, 58, (1), 166-172.
60.	Huang, K. C.; Couttenye, R. A.; Hoag, G. E., Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 2002, 49, (4), 413-420.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信