淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0801200908573300
中文論文名稱 以有機膠奈米模板合成高分子之結構與性質研究
英文論文名稱 Structures and properties of polymers prepared using organogels as nano-templates
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 97
學期 1
出版年 98
研究生中文姓名 曾珅鎮
研究生英文姓名 Shen-Jhen Tseng
學號 695401439
學位類別 碩士
語文別 中文
口試日期 2008-12-12
論文頁數 94頁
口試委員 指導教授-賴偉淇
委員-鄭廖平
委員-廖文彬
中文關鍵字 自組裝  奈米纖維  DBS 
英文關鍵字 self-assembled  DBS  nanofibrils 
學科別分類
中文摘要 本研究是利用有機膠奈米模板合成高分子之結構與性質的研究,利用1,3:2,4-Dibenzylidene sorbitol(DBS)作為模板溶於styrene單體中,經由流變性質分析,證實其為一有機膠。隨後加入起始劑 Benzoyl peroxide (BPO)及交聯劑Divinyl benzene (DVB)以熱起始聚合反應合成高分子,經由AFM的結構分析鑑定可知,DBS在Polystyrene中是一3D網狀結構之奈米纖維,其平均直徑隨著DBS含量增加而增加;當加入DVB後,DBS自組裝奈米纖維其糾纏現象較未加入DVB時有增加的趨勢;DVB含量的增加對於奈米纖維直徑並無明顯的影響,。
利用GPC分析可知添加DBS合成後的高分子可些微提升其分子量。由TGA、DSC可得知DVB及DBS濃度的增加亦有助於熱裂解溫度及玻璃轉移溫度的提升。由DMA可知其機械性質亦隨著DVB及DBS濃度的增加而提升。經BET分析可知,當去除有機膠模板後,其比表面積會隨著DBS奈米纖維直徑增加而增加,但上升幅度隨濃度上升而下降;當未加入DVB時DBS分散性會較加入DVB時好,因此比表面積較大;加入DVB後,其比表面積亦會隨DVB含量增加而上升,因低濃度時模板分子較容易自聚,因此在去除模板後所得到之孔洞平均尺寸會較大,而隨著DVB濃度上升,其孔洞平均尺寸隨之下降,因此,其比表面積變化隨DVB濃度上升而上升。
英文摘要 We describe the preparation of nanostructured polymeric materials by polymerizing a monomer within a scaffold composed of self-assembled 1,3:2,4-Dibenzylidene sorbitol (DBS) nanofibrils. Here, we induce DBS nanofibrils in styrene and then thermally initiate the free-radical polymerization of the monomer. AFM results show that the DBS network consisted of nanofibrils measuring from 10 nm to 100 nm in diameter. The diameter sizes of DBS nanofibrils are slightly thicker at the higher DBS concentration. However, the sizes of DBS nanofibrils not affected by the addition of DVB. The DBS nanofibrils of PS samples with DVB are much more closely-packed and entangled than those without DVB.
By GPC analysis, we found that adding DBS in polystyrene (PS) samples can slightly increase the molecular weights. The thermal and mechanical properties of PS/DVB/DBS are higher than those of the neat PS. The DBS nanofibrils can also be subsequently extracted from the polymer leaving behind a network of nanoscale pores. The porosity of the resulting polymer has been characterized by the BET technique. Without the amounts of DVB, entangled DBS nanofibrils would cause the decrease of the surface areas of samples after washing. The surface areas of PS samples with DBS by adding DVB are found to increase with the increase of DVB contents. It is possible that a higher degree of chemical cross-linking may lead to less interconnected pores and thus gives smaller spaces for the presences of DBS nanofibrils On the other hand, the higher DBS contents or larger sizes of DBS nanofibrils both could cause the higher surface areas after washing DBS nanofibrils .
論文目次 總目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅶ
表目錄 XI

目錄
第一章 緒論……………………………………………………….……1
1-1 前言 …………………………………………………….……. 1
1-2 研究目的…………………………………………………….…2
第二章 文獻回顧與理論基礎……………………………………….….4
2-1 奈米模板合成技術…………………………………………….…4
2-1-1 分子拓印技術………………………………………………4
2-1-2 膠體晶體模板技術…………………………………………. 6
2-1-3 微胞模板技術………………………………………………..8
2-1-4 液晶模板技術………………………………………………10
2-1-5 凝膠模板技術. ……………………………………………..12
2-2有機凝膠的介紹…………………………………………………18
2-2-1 凝膠……………………..…………………………………..18
2-2-2 DBS有機膠……………………….………………………19
2-2-3 DBS有機膠文獻回顧……………………….……………22
第三章 實驗……………………………………………………………28
3-1 實驗藥品………………………………………………………...28
3-2 實驗設備………………………………………………………...29
3-3 實驗流程 ……………………………………………………….33
3-3-1 DBS/styrene有機膠製備…………….…..……………….33
3-3-2 DBS有機膠模板合成高分子………….…..……………..34
3-4 儀器原理………………………………………………………...36
3-4-1 流變儀……………...………………………………….......36
3-4-2 原子力顯微鏡(Atomic Force Microscopy)……………….38
3-4-3 凝膠滲透層析儀(Gel Permeation Chromatography)…......40
3-4-4 微差掃描熱分析儀(Differential Scanning Calorimeter)..40
3-4-5 熱重量損失分析儀(Thermo Gravimetric Analysis)……..41
3-4-6 X射線繞射儀(X-ray diffractometer)……………….……..41
3-4-7 比表面積分析儀 (Surface Area Analyzer)…………...…..41
3-4-8 動態機械分析儀(Dynamic Mechanical Analyzer)…...…..43
3-5 儀器分析方法…………………………………………………...43
3-5-1 流變儀...…………………………………………………...43
3-5-2 原子力顯微鏡(Atomic Force Microscopy)..……………….43
3-5-3 凝膠滲透層析儀(Gel Permeation Chromatography)..……..44
3-5-4 微差掃描熱分析儀(Differential Scanning Calorimeter)..44
3-5-5 熱重量損失分析儀(Thermo Gravimetric Analysis)……..45
3-5-6 X射線繞射儀(X-ray diffractometer)…….……..…………..45
3-5-7 比表面積分析儀 (Surface Area Analyzer)...……..………..45
3-5-8 動態機械分析儀(Dynamic Mechanical Analyzer) .……….46
3-6分析流程圖………………………………………………………47
3-6-1 DBS/Styrene 有機凝膠分析流程…………………………47
3-6-2 多孔性高分子製備流程…………………………………...48
3-6-3 PS/DBS/DVB 高分子分析流程……………….…………..49
第四章 結果與討論……………………………………………………50
4-1 DBS有機膠流變性質……………………………………………50
4-2以DBS有機膠奈米模板合成高分子之合成分析……………..52
4-2-1 轉化率分析………………….…………….………………..52
4-2-2 GPC分子量分析……………….…………………………..54
4-3以DBS有機膠奈米模板合成高分子之結構分析……………...54
4-4以DBS有機膠奈米模板合成高分子之性質分析………………57
4-4-1 DSC分析…………………………………….……………..57
4-4-2 TGA 分析………………………………………………….65
4-4-3 DMA分析…………………….……………………………72
4-4-4 XRD與BET分析.…………………………………………75
4-4-4-1 XRD分析…………………….…………………………75
4-4-4-2 BET分析……….……………………………………….77
第五章 結論……………………………………………………………86
第六章 參考文獻………………………………………………………89












圖目錄
Fig 1-1 研究流程示意圖………………………………………………..3
Fig 2-1 分子拓印技術示意圖…………………………………………..5
Fig 2-2 膠體晶體模板技術PS多孔洞高分子…………………………7
Fig 2-3 界面活性劑結構示意圖………………………………………...8
Fig 2-4 微胞外觀形狀變化圖…………………………………………...9
Fig 2-5 a.微胞 & b.逆微胞 示意圖…………………………………10
Fig 2-6 液晶模板技術示意圖……………………………………….....11
Fig 2-7 液晶模板技術所得之聚丙烯胺( Polyacrylamide)結構圖…....12
Fig 2-8 有機膠構造的形成…………………………………………….13
Fig 2-9 AOT/Isooctane/water系統加入對-氯酚之有機膠AFM圖... ...14
Fig 2-10 凝膠排列形成奈米纖維示意圖……………………………...14
Fig 2-11 0.2M AOT /Chorophenol/DVB凝膠AFM結構分析圖. …....15
Fig 2-12 0.2M AOT /Chorophenol/DVB凝膠模板去除後之AFM結構分析圖…………………………………………………………………..16
Fig 2-13 0.2M AOT /Chorophenol/DVB凝膠模板去除後之TEM圖...17
Fig 2-14 DBS 結構示意圖……………………………………………..19
Fig 2-15 DBS/THF/Benzene,TEM結構圖…………………………….20
Fig 2-16 DBS/PPG所形成之凝膠化合物TEM圖……………………...21
Fig 2-17 DBS vs 不同基材形成之有機膠流變圖…………………..23
Fig 2-18 DBS vs 不同基材形成之有機膠流變圖…………………..24
Fig 3-1 DBS有機膠…………………………………………………….33
Fig 3-2 DBS有機膠分析流程圖……………………………………….47
Fig 3-3多孔性高分子製備流程圖……………………………………..48
Fig 3-4 PS/DBS/DVB樣品分析流程圖………………………………..49
Fig 4-1 1 wt% DBS/Styrene 有機膠流變性質圖……………………...51
Fig 4-2 不同含量DBS/Styrene 有機膠流變性質圖…………………51
Fig 4-3 DBS/ Styrene有機膠之濃度關係圖……..………………….52
Fig 4-4 PS DBS(1wt%)-DVB(0wt%)AFM結構分析圖…………55
Fig 4-5 PS DBS(2wt%)-DVB(0wt%)AFM結構分析圖………..56
Fig 4-6 PS DBS(1wt%)-DVB(5wt%)AFM結構分析圖……….56
Fig 4-7 PS DBS(1wt%)-DVB(15wt%)AFM結構分析圖……….57
Fig 4-8 PS/DBS/DVB DSC數據圖………………...………….……..59
Fig 4-9 PS/DBS/DVB DSC熱分析圖…………………………..…....60
Fig 4-10 PS/DBS/DVB DSC熱分析圖…………………………..…..61
Fig 4-11 PS/DBS/DVB DSC熱分析圖…………………………..…...62
Fig 4-12 PS/DBS/DVB DSC熱分析圖…………………………..…..63
Fig 4-13 PS/DBS/DVB DSC熱分析圖…………………………..…..64
Fig 4-14 PS/DBS/DVB TGA數據圖………………...………….……66
Fig 4-15 PS/DBS/DVB TGA熱分析圖…………………………..…..67
Fig 4-16 PS/DBS/DVB TGA熱分析圖…………………………..…..68
Fig 4-17 PS/DBS/DVB TGA熱分析圖…………………………..…..69
Fig 4-18 PS/DBS/DVB TGA熱分析圖…………………………..…..70
Fig 4-19 PS/DBS/DVB TGA熱分析圖…………………………..…..71
Fig 4-20 PS/DBS/DVB Tan δ與溫度關係圖………………………...73
Fig 4-21 PS/DBS/DVB Tan δ與溫度關係圖………………………...74
Fig 4-22 PS/DBS/DVB 樣品儲存模數(E’)與溫度關係圖………….74
Fig 4-23 PS/DBS/DVB 樣品儲存模數(E’)與溫度關係圖………….75
Fig 4-24 DBS XRD圖形………..………..………..…………….....76
Fig 4-25 PolyStyrene XRD圖形………..………..………..……….76
Fig 4-26 DBS模板去除後 XRD圖形………..………..………..…..77
Fig 4-27 DVB 變化之示意圖………………....………..……………79
Fig 4-28 DBS 變化之示意圖……………….....………..……………79
Fig 4-29 PS/DBS & PS 吸脫附曲線………..………..…………….80
Fig 4-30 PS/DBS/DVB BET 數據圖……………….………..………80
Fig 4-31 PS/DBS/DVB 樣品吸附曲線圖………..………………......81
Fig 4-32 PS/DBS/DVB 樣品吸附曲線圖………..………………......82
Fig 4-33 PS/DBS/DVB 樣品吸附曲線圖………..………………......83
Fig 4-34 PS/DBS/DVB 樣品吸附曲線圖………..………………......84
Fig 4-35 PS/DBS/DVB 樣品吸附曲線圖………..………………......85

















表目錄
表3-1 DBS/Styrene 配方表………..……………….…………….........33
表3-2樣品成分表………..………..………..…………….....................35
表4-1轉化率(%)與時間的關係.………..………..…………….............53
表4-2 PS/DBS分子量分析表.………..………..…………….............54
表4-3 DBS奈米纖維直徑表.………..………..……………...............55
表4-4 分子量& Tg數據表.………..………..……………....................58
表4-5 樣品玻璃轉移溫度表.………..………..…………….................60
表4-6 樣品玻璃轉移溫度表.………..………..…………….................61
表4-7 樣品玻璃轉移溫度表.………..………..…………….................62
表4-8 樣品玻璃轉移溫度表.………..………..…………….................63
表4-9 樣品玻璃轉移溫度表.………..………..…………….................64
表4-10 樣品裂解溫度表.……..………..…………….........................67
表4-11 樣品裂解溫度表.………..………..…………….......................68
表4-12樣品裂解溫度表.………..………..……………........................69
表4-13 樣品裂解溫度表.………..………..…………….......................70
表4-14 樣品裂解溫度表.………..………..…………….......................71
表4-15 樣品DMA分析表.………..………..……………....................73
表4-16 樣品比表面積數據表.………..………..……………...............81
表4-17 樣品比表面積數據表.………..………..……………...............82
表4-18 樣品比表面積數據表.………..………..……………...............83
表4-19 樣品比表面積數據表.………..………..……………...............84
表4-20 樣品比表面積數據表.………..………..……………...............85

參考文獻 1. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
2. Hamley, I. W.; Nanotechnology 2003, 14, 39.
3. Krausch, R.; Magerale, R. Adv Mater 2002, 14, 1579.
4. Lazzari, M.; Lopez-Quintela, M. A. Adv Mater 2003, 15, 1583.
5. Hamley, I. W. Angrew Chem Int Ed 2003, 42, 1692.
6. Segalman, R. A. Mater Sci Eng 2005, 48, 191.
7. Sellergren, B.; Lepisto, M; Mosbach, K. J Am Chem Soc 1988, 110, 5853.
8. Wulff, G.; Schauhoff, S. J Org Chem 1991, 56, 395.
9. Menger, F. M.; Tsuno, T. J Am Chem Soc 1990, 112, 6723.
10. Gan, L. M.; Chew, C. H. Colloid Surf A 1997, 123, 681.
11. Beginn, U. Adv Mater 1998, 10, 1391.
12. Gin, D. L.; Gu, W. Q. Adv Mater 2001, 13, 1407.
13. Hentze, H. P.; Antonietti, M. Curr Opin Solid State Mat Sci 2001, 5, 343.
14. Zhu, X. X.; Banana, K.; Yen, R. Macromolecules 1997, 30, 3031.
15. Zhu,X.X.; Banana,K.;Liu, H. Y.; Krause, M.; Yang, M. Macromolecules 1999, 32, 277.
16. Palani Raj, W. R.; Sasthav, M.; Cheung, H. M. Langmuir 1991, 7, 2586.
17. Pavel, F. M.; Mackay, R. A. Langmuir 2000, 16, 8568.
18. Sapp, S. A.; Elliott, C. M. Chem Mater 2003, 15, 1237.
19. Lin, J. M.; Uchiyama, K.; Hobo, T. Chromatographia 1998, 47, 625.
20. Mayes, A. G.; Anderson, L. I.; Mosbach, K. Biochem 1994, 222, 483.
21. Klein, J. U.; Whitcombe, M. J.; Mulholland, F.; Vulfuson, E. N. Angew Chem, Int Ed Engl 1999, 38, 2057
22. Cheong, S. H.; Rachkov, A. E.; Park, J. K.; Yano, K.; Karube, I. J Polym Sci A Polym Chem 1998, 36, 1725.
23. M. Antonietti,Current Opinion in Solid State and Materials Science 2001, 5,343–353
24. G. Wulff, W.;Vesper, E.R. ;Grobe, A. Sarhan, Makromol. Chem 1977., 178, 2799
25. R. Arshady ;K. Mosbach, Makromol.Chem 1981., 182,687-692
26. Sellergren, B. Angew Chem, Int Ed Engl 2000, 39, 6
27. Takeuchi, T.; Haginaka, J. J Chromatogr B 1999, 728, 1.
28. Vallano, P. T.; Remcho, V. T. J Chromatogr B 2000, 887, 125.
29. Ramstrom, O.; Ansell, R. J. Chirality 1998, 10, 195.
30. Yano, K.; Karube, I. Trends Anal Chem 1999, 18, 199.
31. Xia YN.;Gates B.; Yin YD.; Lu Y. Adv Mater 2000,12(10):693–713
32. Velev OD.; Lenhoff AM. Curr Opin Colloid Interface Sci 2000,5(1–2):56–63.
33. Park SH.; Xia YN. Chem. Mater 1998;10(7):1745–7
34. Gates B.;Yin YD.; Xia YN. Chem Mater 1999;11(10):2827–36.
35. Johnson SA.; Ollivier PJ.; Mallouk TE. Science 1999;283(5404):963–5.
36. Jiang P.; Hwang KS.; Mittleman DM.; Bertone JF.; Colvin VL. J Am Chem Soc 1999;121(50):11630–7.
37. Zhu, X. X.; Banana, K.; Yen, R. Macromolecules 1997, 30, 3031.

38. Zhu, X. X.; Banana, K.; Liu, H. Y.; Krause, M.; Yang, M. Macromolecules 1999, 32, 277.
39. Cooper, A. I.; Holmes, A. B.; Adv Mater 1999, 11, 1270.
40. Imhof, A.; Pine, D. J. Adv Mater 1998, 10, 697.
41. Strom P.; Anderson DM. Langmuir 1992;8(2):691–709.
42. Laversanne R. Macromolecules 1992;25(1):489–91.
43. Antonietti M.; Caruso RA.; Go¨ltner CG.; Weißenberger M. Macromolecules 1999;32(5):1383–9.
44. Antonietti M.; Go¨ltner CG.;Hentze H-P. Langmuir 1998;14(10):2670–6.
45. Geiger, C.; Stanescu, M.; Chen, L.; Whitten, D. G. Langmire 1999, 15, 2241.
46. Duncan, D. C.; Whitten, D. G. Langmire 2000, 16, 6445.
47. Bauer, T.; Thomann, R.; Mulhaupt, R. Macromolecules 1998, 31, 7651.
48. Terech, P.; Weiss, R. G. Chem Rev 1997, 97, 3133.
49. Abdallah, D. J.; Weiss, R. G. Adv Mater 2000, 12, 1237.
50. B. Simmons;S. Li;V.T. John;G. L. McPherson;C. Taylor.; D. K. Schwartz;K. Maskos, Langmuir 2005, 21, 11484-11489
51. Simmons, B.A.;Taylor, C.E.; Landis, F.A.;John, V.T.; McPherson, G.L.; Schwartz, D.K.;Moore, R. J. Am. Chem. Soc. 2001, 123, 2414-2421
52. Grace Tan.;Mohit Singh.;Jibao He.;Vijay T. John ;Gary L. McPherson , Langmuir 2005, 21, 9322-9326
53. Gankema, H.; Hempenius, M. A.; Moller, M. Recl Trav Pays-Bas 1994, 113, 241.
54. Gankema, H.; Hempenius, M. A.; Moller, M.; Johannson, G.; Percrc, V. Macromol Symp 1996, 102, 381.
55. Gu, W.; Lu, L.; Chapman, G. B.; Weiss, R. G. Chem Commun 1997, 21, 543.
56. Aoki, K.; Kudo, M.; Tamaoki, N. Org Lett 2004, 6, 4009.
57. George, M.; Weiss, R. G. Chem Mater 2003, 15, 2879.
58. Tan, G.; Singh, M.; He, J.; John, V. T.; McPherson, G. L. Langmuir 2005, 21, 9322.
59. 王冠斐、賴山強,膠體中的物理簡介,物理雙月刊廿三卷四期,2001, 8,482
60. 朱育平、顧雪蓉編,凝膠化學,北京,化學工業出版社,2004
61. Yamasaki, S.; Ohashi, Y.; Tsutsumi, H.; Tsujii, K. Bull Chem Soc Jpn 1995, 68, 146.
62. Watase, M.; Nakatami, Y.; Itagaki, H. J Phys Chem B 1999, 102, 2366.
63. Thierry, C.;Straupe, B.;Lotz, J.;C.Wittmann, Polym. Commun.1990, 31, 299.
64. Watase, M.; Itagaki, H. Bull Chem Soc Jpn 1998, 71, 1457.
65. Sterzynski, T.; Lambla, M.; Crozier, H. Adv Polym Tech 1994, 13, 25.
66. Angyal, S. J.; Lawler, J. V. J Am Chem Soc 1944, 66, 837.
67. Nahir, T. M.; Qiu, Y. J.; Williams, J. L. Electroanalysis 1994, 6, 972.
68. Fernandez, J. A. United states patent 1980, 4187072.
69. Kato, T.; Kondo, G.; Hanabusa, K.; Kutsuna, T.; Ukon, M. United states patent 2000, 6074710.
70. Bhatt, D.; Rizvi, R.; Galleguillos, R. United states patent 2000, 6132704.
71. Isogawa, H.; Anraku, H.; United states patent 1996, 5510237.
72. Ishiwatari, T.; Tsushima, K. United states patent 1996, 5554649.
73. Kasat, R. B.; Lee, W.; McMarthy, D. R.; Telyan, N. G. United states patent 1996, 5490979.
74. Roehl, E. L.; Tan, H. B. United states patent 1979, 4154816.
75. Meunir, M. J.; An Chim Phys 1891, 22, 412.
76. Schamper, T.; Jabloc, M.; Randhawa, M, H,; Senatore, A.; Warren, J. D. J Am Chem Soc 1986, 37, 225.
77. Kobayashi, T.; Hasegawa, H.; Hashimoto, T. Hihon Reoroji Gakkaishi 1989, 17, 155.
78. Mercurio, D. J.; Khan, S. A.; Spontak, R. J. Acta 2001, 40, 38.
79. Fahrlander, M.; Fuchs, K.; Friedrich, C. J Rheol 2000, 1103.
80. Smith, J. M.; Katsoulis, D. E. J Mater Chem 1995, 5, 1899.
81. Ilzhoefer, J. R.; Broom, B. C.; Nepa, S. M.; Vogler, E. A.; Khan, S. A.; Spontak, R. J. J Phys Chem 1995, 12, 69.
82. Ilzhoefer, J. R.; Spontak, R. J. Langmuir 1995, 11, 3288.
83. Debra J. Mercurio and Richard J. Spontak, J. Phys. Chem. B 2001, 105, 2091-2098
84. Shepard, T. A.; Delsorbo, C. R.; Louth, R. M.; Walborn, J. L.; Norman, D. A.; Harvey, N. G.; Spontak, R. J. J Polym Sci B Polym Phys 1997, 35, 2617.
85. Wilder, E. A.; Braunfeld, M. B.; Jinnai, H.; Hall, C. K.; Agard, D. A.; Spontak, R. J. J Phys Chem 2003, 107, 11633.
86. Wilder, E. A.; Hall, C. K.; Khan, S. A.; Spontak, R. J. Langmuir 2003, 19, 6004.

87. Wilder, E. A.; Spontak, R. J.; Hall, C. K. Molecular Physics 2003, 101, 3017.
88. Wilder, E. A.; Hall, C. K, and Spontak, R. J. Journal of Colloid and Interface Science 267 (2003) 509–518
89. C. W. Macosko, “Rheology: Principles, Measurements and Application ”, VCH, 1994.
90. G.ODIAN, “Principles of Polymerization, 4th Edition” , Wiley Inter-Science, P 287
91. L.H.SPERLING, “Introduction to Physical Polymer Science, 4th Edition”, Wiley Inter-Science, P 398
92. Albert Ho.; Jason Chang.; Wei-Kuo Chin and H. T. Hsieh, Journal of Polymer Research 2006, 13: 285-291
93. Sang Eun Shim.; Sunhye Yang.; Hyejeon Jung.; Soonja Choe., Macromolecular Research 2004, Vol. 12, No. 2, 233-239
94. X. X. Zhu;K. Banana; H. Y. Liu; M. Krause, and M. Yang, Macromolecules 1999, 32, 277-281
95. 新型高分子奈米複合材料之製備與分析,2009高分子研討會
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-01-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-01-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信