淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0709202014051400
中文論文名稱 使用環保溶劑溶解聚甲基丙烯酸乙酯進行靜電紡絲製備次微米纖維之研究
英文論文名稱 Use of environmentally friendly solvents to dissolve poly(ethyl methacrylate) for preparing submicron fibers by electrospinning
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 李祥雲
研究生英文姓名 Hsiang-Yun Lee
學號 607400438
學位類別 碩士
語文別 中文
口試日期 2020-07-15
論文頁數 84頁
口試委員 指導教授-張朝欽
委員-鄭廖平
委員-游洋雁
中文關鍵字 靜電紡絲  聚甲基丙烯酸乙酯  環保溶劑  共溶劑  疏水性 
英文關鍵字 electrospinning  poly(ethylmethacrylate)  environmentally friendly solvents  cosolvents  hydrophobic 
學科別分類
中文摘要 傳統用來溶解疏水性高分子進行靜電紡絲製程的溶劑,如二氯甲烷、氯仿、二甲基甲醯胺、甲苯等,對環境及健康的危害性高,多數受行政院環境保護署公告列管,尋求較無害及環保的溶劑為重要課題。
本研究以環保溶劑溶解聚甲基丙烯酸乙酯(poly(ethylmethacrylate), PEMA),以靜電紡絲製備疏水性高分子次微米纖維。研究中分為以異丙醇/水共溶劑、1-甲氧基-2-丙醇溶劑溶解PEMA進行電紡實驗。異丙醇和水不能單獨溶解疏水性的高分子,研究中使用不同異丙醇/水比例的共溶劑溶解PEMA溶液,期望本研究之系統及製程能達到永續環保的特點。
配置的溶液加熱攪拌溶解並冷卻至室溫持續攪拌,選擇在連續攪拌第三天黏度穩定時作為實驗的製程,先利用ne值對濃度作圖與比黏度對濃度之對數作圖預測電紡情況,再於室溫下進行靜電紡絲實驗。研究中改變靜電紡絲製程條件,瞭解不同變因(濃度、溶劑比例、電壓、工作距離、流速等)對紡出纖維型態的影響。在適當的條件下可得完全纖維型態,纖維以掃描式電子顯微鏡觀察後計算得直徑約為0.9 μm~ 4.5 μm,對水的接觸角可大於130°,具疏水性。紡絲成品使用FTIR-ATR、TGA、DSC進行結構及熱性質分析。
英文摘要 Solvents commonly used to dissolve hydrophobic polymers for electrospinning processes are dichloromethane, chloroform, dimethylformamide, toluene, etc. They are harmful to the environment and health, thus most of them are under monitoring and inspection by Environmental Protection Administration of Taiwan. It is an important issue to search for harmless and environmentally friendly solvents.
In this study, poly(ethylmethacrylate), (PEMA) was dissolved in environmentally friendly solvent or cosolvent, such as 2-propanol/water, 1-methoxy-2-propanol to prepare submicron fibers by electrospinning. 2-Propanol and water cannot dissolve hydrophobic polymers, thus cosolvents with different ratios were used to prepare PEMA solutions. It is expected that the system and process of this study can achieve sustainable environmental protection.
The polymer solutions were heated and stirred for 6 hours, and stirred continuously at room temperature for 3 days. Then, the solutions were electrospun at room temperature. Two methods, the graph of ne value versus the concentration and the specific viscosity versus the logarithm of the concentration were employed to predict the electrospinning situation. The electrospinning process conditions (concentration, solvent ratio, voltage, working distance, flow rate, etc.) were changed to understand the influence of different variables on fiber types and diameters. Under appropriate conditions, defect-free fibers can be obtained. Fibers diameter are calculated to be about 0.9 μm~ 4.5 μm after observation through a scanning electron microscope. Electrospun fiber membranes were superb hydrophobicly with contact angles more than 130°. The structural and thermal properties were analyzed by FTIR (ATR), TGA, and DSC.
論文目次 目錄
致謝 I
目錄 V
圖目錄 VII
表目錄 IX
第一章 前言 1
第二章 文獻回顧 4
2.1靜電紡絲技術 4
2.2靜電紡絲之參數 5
2.2.1溶液參數(solution parameters) 6
2.2.2操作參數(process parameters) 10
2.2.3環境參數(ambient parameters) 13
2.3靜電紡絲溶劑選擇 14
2.4研究目的 16
第三章 實驗 17
3.1實驗材料 17
3.2實驗方法及流程 19
3.3電紡設備及分析儀器 21
第四章 結果與討論 23
4.1 IPA/water共溶劑 23
4.1.1 PEMA溶液性質 23
4.1.2溶液濃度之影響 26
4.1.3共溶劑比例之影響 29
4.1.4靜電紡絲操作變因之影響 34
4.2 NPA/water共溶劑 40
4.2.1共溶劑之比較 40
4.2.2溶液濃度之影響 41
4.2.3靜電紡絲操作變因之影響 47
4.3 PM純溶劑 53
4.3.1溶劑之比較 53
4.3.2溶液濃度之影響 54
4.3.3靜電紡絲操作變因之影響 58
4.4 PEMA纖維性質分析 66
4.4.1物性分析 66
4.4.2 FTIR分析 68
4.4.3熱性質分析 71
第五章 結論 75
第六章 參考文獻 76
附錄A 79
附錄B 80
附錄C 81
附錄D 82
附錄E 83

圖目錄
圖1-1靜電紡絲示意圖 1
圖2-1不同分子量PLA溶於DMF/DCM共溶劑ne隨濃度變化圖 6
圖2-2固定25 wt%下不同重量分子量PVA纖維 7
圖2-3表面張力及黏度對PVP 4 wt%不同比例ethanol/DMF圖 9
圖2-4不同電壓下靜電紡絲的噴頭型態 11
圖2-5 PEO不同電壓-流速的操作點 12
圖2-6 PEMA膜與電紡纖維DSC圖 15
圖3-1 PEMA靜電紡絲實驗流程 20
圖4-1不同濃度PEMA溶於異丙醇/水= 8/2溶液之ne值 23
圖4-2異丙醇/水= 8/2不同濃度於室溫下攪拌第3天測得之黏度 24
圖4-3異丙醇/水= 8/2比黏度對濃度之對數作圖 25
圖4-4不同濃度PEMA溶液電紡的纖維型態 27
圖4-5電紡溶液之纖維平均直徑分布 28
圖4-6固定濃度為5.7 wt%不同溶劑比例黏度、表面張力圖 30
圖4-7電紡異丙醇/水= 7.5/2.5的5.7 wt%溶液之纖維型態 31
圖4-8電紡異丙醇/水= 7.8/2.2的5.7 wt%溶液之纖維型態 31
圖4-9電紡異丙醇/水= 8/2的5.7 wt%溶液之纖維型態 32
圖4-10電紡異丙醇/水= 8.5/1.5的5.7 wt%溶液之纖維型態 32
圖4-11電紡異丙醇/水= 9/1的5.7 wt%溶液之纖維型態 33
圖4-12電紡異丙醇/水= 9.5/0.5的5.7 wt%溶液之纖維型態 33
圖4-13電紡異丙醇/水= 8/2的5.7 wt%溶液電壓為10.5 kV之纖維型態 35
圖4-14電紡異丙醇/水= 8/2的5.7 wt%溶液電壓為13 kV之纖維型態 35
圖4-15固定濃度為5.7 wt%不同溶劑比例不同電壓之纖維直徑 36
圖4-16電紡異丙醇/水= 8/2的5.7 wt%工作距離12 cm之纖維型態 38
圖4-17電紡異丙醇/水= 8/2的5.7 wt%工作距離15 cm (13 kV)纖維型態 38
圖4-18電紡異丙醇/水= 8/2的5.7 wt%工作距離15 cm (16 kV)纖維型態 39
圖4-19電紡異丙醇/水= 8/2的5.7 wt%工作距離15 cm (19 kV)纖維型態 39
圖4-20不同濃度PEMA溶於正丙醇/水= 7.5/2.5溶液之ne值 41
圖4-21正丙醇/水= 7.5/2.5不同濃度於室溫下攪拌第3天測得之黏度 42
圖4-22電紡正丙醇/水= 7.5/2.5的5.7 wt%溶液之纖維型態 44
圖4-23電紡正丙醇/水= 7.5/2.5的6.5 wt%溶液之纖維型態 45
圖4-24電紡正丙醇/水= 7.5/2.5的7.4 wt%溶液之纖維型態 45
圖4-25電紡正丙醇/水= 7.5/2.5的9.1 wt%溶液之纖維型態 46
圖4-26電紡正丙醇/水= 7.5/2.5的10.7 wt%溶液之纖維型態 46
圖4-27電紡正丙醇/水= 8/2的6.5 wt%溶液之纖維型態 46
圖4-28電紡正丙醇/水= 7.5/2.5的6.5 wt%溶液電壓為13 kV之纖維型態 48
圖4-29電紡正丙醇/水= 7.5/2.5的6.5 wt%溶液電壓為16 kV之纖維型態 48
圖4-30電紡正丙醇/水= 7.5/2.5的6.5 wt%溶液電壓為19 kV之纖維型態 49
圖4-31電紡正丙醇/水= 7.5/2.5的6.5 wt%溶液電壓為22 kV之纖維型態 49
圖4-32正丙醇/水= 7.5/2.5不同濃度不同電壓之纖維直徑 50
圖4-33電紡正丙醇/水= 7.5/2.5的10.7 wt%工作距離為12 cm之纖維型態 52
圖4-34電紡正丙醇/水= 7.5/2.5的10.7 wt%工作距離為15 cm之纖維型態 52
圖4-35不同濃度PEMA溶於1-甲氧基-2-丙醇溶液之ne值 54
圖4-36電紡1-甲氧基-2-丙醇的10 wt%溶液之纖維型態 56
圖4-37電紡1-甲氧基-2-丙醇的12 wt%溶液之纖維型態 56
圖4-38電紡1-甲氧基-2-丙醇的13.5 wt%溶液之纖維型態 56
圖4-39電紡1-甲氧基-2-丙醇的15 wt%溶液之纖維型態 57
圖4-40電紡1-甲氧基-2-丙醇的15 wt%溶液電壓為13 kV之纖維型態 59
圖4-41電紡1-甲氧基-2-丙醇的15 wt%溶液電壓為16 kV之纖維型態 59
圖4-42電紡1-甲氧基-2-丙醇的15 wt%溶液電壓為19 kV之纖維型態 60
圖4-43電紡1-甲氧基-2-丙醇的15 wt%工作距離為18 cm之纖維型態 62
圖4-44電紡1-甲氧基-2-丙醇的15 wt%工作距離為20 cm之纖維型態 62
圖4-45電紡1-甲氧基-2-丙醇的15 wt%流速為0.1 ml/min 22 kV之纖維型態 64
圖4-46電紡1-甲氧基-2-丙醇的15 wt%流速為0.15 ml/min 22 kV之纖維型態 64
圖4-47電紡1-甲氧基-2-丙醇的15 wt%流速為0.15 ml/min 28 kV之纖維型態 65
圖4-48電紡1-甲氧基-2-丙醇的15 wt% 3分鐘之纖維型態 67
圖4-49電紡1-甲氧基-2-丙醇的15 wt% 20分鐘之纖維型態 67
圖4-50 PEMA粉粒與溶劑比例異丙醇/水= 8/2纖維之FTIR-ATR光譜圖 69
圖4-51 PEMA粉粒與不同溶劑紡絲纖維之FTIR-ATR光譜圖 70
圖4-52 PEMA粉粒與溶劑比例異丙醇/水= 8/2纖維DSC一次升溫分析圖 72
圖4-53 PEMA粉粒與溶劑比例異丙醇/水= 8/2纖維DSC二次升溫分析圖 72
圖4-54 PEMA粉粒與不同溶劑紡絲纖維DSC一次升溫分析圖 73
圖B-1異丙醇/水= 8/2不同濃度於室溫下攪拌5天測得之黏度 80
圖E-1 PEMA粉粒及紡絲纖維之熱重損失圖 83
圖E-2 PEMA粉粒及紡絲纖維之熱重損失微分圖 84

表目錄
表1-1靜電紡絲之應用 2
表1-2標準大氣壓下溶劑性質表 3
表2-1利用不同經驗法預測PEMA於有機溶劑的溶解度 14
表2-2高分子及不同溶劑之溶解度參數 16
表3-1標準大氣壓下溶劑物性表 18
表3-2正丙醇、異丙醇與水形成的二元共沸物 18
表4-1異丙醇/水= 8/2不同濃度之纖維直徑、接觸角 26
表4-2濃度5.7 wt%不同溶劑比例之溶液性質、纖維直徑、接觸角 30
表4-3異丙醇/水= 8/2的5.7 wt%不同電壓之纖維直徑、接觸角 34
表4-4異丙醇/水= 8/2的5.7 wt%不同工作距離之纖維直徑、接觸角 37
表4-5異丙醇/水和正丙醇/水5.7 wt%不同溶劑比例下第3天之黏度 40
表4-6正丙醇/水= 7.5/2.5不同濃度之纖維直徑、接觸角 44
表4-7正丙醇/水= 7.5/2.5的6.5 wt%不同電壓之纖維直徑、接觸角 47
表4-8正丙醇/水= 7.5/2.5的10.7 wt%不同工作距離之纖維直徑、接觸角 51
表4-9不同溶劑 10 wt%第3天之黏度、表面張力 53
表4-10 1-甲氧基-2-丙醇不同濃度之纖維直徑、接觸角 55
表4-11 1-甲氧基-2-丙醇的15 wt%不同電壓之纖維直徑、接觸角 58
表4-12 1-甲氧基-2-丙醇的15 wt%不同工作距離之纖維直徑、接觸角 61
表4-13 1-甲氧基-2-丙醇的15 wt%不同流速之纖維直徑、接觸角 63
表4-14 1-甲氧基-2-丙醇不同紡絲時間之纖維直徑、接觸角 66
表4-15 PEMA粉粒與溶劑比例異丙醇/水= 8/2纖維DSC數據分析 74
表4-16 PEMA粉粒與不同溶劑紡絲纖維DSC數據分析 74
表A-1靜電紡絲不銹鋼針規格 79
表E-1高分子原料及紡絲纖維之熱重損失數據 84

參考文獻 [1] Frenot, A., & Chronakis, I. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion In Colloid & Interface Science, 8(1), 64-75.
[2] Huang, Z., Zhang, Y., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science And Technology, 63(15), 2223-2253.
[3] Reneker, D., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216-223.
[4] Formhals, A. (1934). Method and apparatus for the production of fibers. US patent, 1,975,504.
[5] Formhals, A. (1939). Method and apparatus for the production of fibers. US patent, 2,160,962.
[6] Formhals, A. (1940). Method and apparatus for the production of fibers. US patent, 2,187,306.
[7] Formhals, A. (1943). Method and apparatus for the production of fibers. US patent, 2,323,025.
[8] Formhals, A. (1944). Method and apparatus for the production of fibers. US patent, 2,349,950.
[9] 丁嘉展(2010)。電紡成形條件對紡絲之形貌與直徑之影響。國立交通大學機械工程學系碩士論文,新竹市。
[10] Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel?. Advanced Materials, 16(14), 1151-1170.
[11] Karakaş, H. Electrospinning of nanofibers and their applications. 2BFuntex MDT ‘Electrospinning’, 65.
[12] Yu, M., Dong, R., Yan, X., Yu, G., You, M., Ning, X., & Long, Y. (2017). Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromolecular Materials And Engineering, 302(7), 1700002.
[13] Bhardwaj, N., & Kundu, S. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347.
[14] 張慧怡(2019)。使用異丙醇與水進行靜電紡絲製備疏水型聚甲基丙烯酸甲酯與聚醋酸乙烯酯混摻之高分子次微米纖維。淡江大學化學工程與材料工程學系碩士論文,新北市。
[15] Li, L., Jiang, Z., Li, M., Li, R., & Fang, T. (2014). Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Adv., 4(95), 52973-52985.
[16] Bedi, J., Lester, D., Fang, Y., Turner, J., Zhou, J., & Alfadul, S. et al. (2013). Electrospinning of poly(methyl methacrylate) nanofibers in a pump-free process. Journal Of Polymer Engineering, 33(5), 453-461.
[17] Gómez-Tejedor, J., Overberghe, N., Rico, P., & Ribelles, J. (2011). Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. European Polymer Journal, 47(2), 119-129.
[18] Papadopoulou, S., Tsioptsias, C., Pavlou, A., Kaderides, K., Sotiriou, S., & Panayiotou, C. (2011). Superhydrophobic surfaces from hydrophobic or hydrophilic polymers via nanophase separation or electrospinning/electrospraying. Colloids And Surfaces A: Physicochemical And Engineering Aspects, 387(1-3), 71-78.
[19] Terra, I., Sanfelice, R., Valente, G., & Correa, D. (2017). Optical sensor based on fluorescent PMMA/PFO electrospun nanofibers for monitoring volatile organic compounds. Journal Of Applied Polymer Science, 135(14), 46128.
[20] Rayleigh, L. (1882). On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, And Dublin Philosophical Magazine And Journal Of Science, 14(87), 184-186.
[21] Zeleny, J. (1917). Instability of Electrified Liquid Surfaces. Physical Review, 10(1), 1-6.
[22] Taylor, G. (1964). Disintegration Of Water Drops In An Electric Field. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 280, 383-397.
[23] 許銘軒(2014)。靜電紡絲奈米纖維技術探討及其應用。台北科技大學化學工程學系碩士論文,台北市。
[24] Reneker, D., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216-223.
[25] Fong, H., Chun, I., & Reneker, D. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.
[26] Shenoy, S., Bates, W., Frisch, H., & Wnek, G. (2005). Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer, 46(10), 3372-3384.
[27] Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4), 493-497.
[28] Li, Z., & Wang, C. (2013). One-dimensional nanostructures. Heidelberg: Springer.
[29] Gupta, P., Elkins, C., Long, T., & Wilkes, G. (2005). Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 46(13), 4799-4810.
[30] McKee, M., Wilkes, G., Colby, R., & Long, T. (2004). Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules, 37(5), 1760-1767.
[31] Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal Of Polymer Science Part B: Polymer Physics, 42(20), 3721-3726.
[32] Zheng, J., Zhang, K., Jiang, J., Wang, X., Li, W., & Liu, Y. et al. (2018). Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write. AIP Advances, 8(1), 015122.
[33] Gu, S., & Ren, J. (2005). Process Optimization and Empirical Modeling for Electrospun Poly(D,L-lactide) Fibers using Response Surface Methodology. Macromolecular Materials And Engineering, 290(11), 1097-1105.
[34] Yan, X., Gevelber, M., Yu, J., & Rutledge, G. (2006). Characterization of Electrospinning Fiber Diameter Distributions and Process Dynamics for Development of Real-Time Control. MRS Proceedings, 948.
[35] Lindvig, T., Michelsen, M., & Kontogeorgis, G. (2002). A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria, 203(1-2), 247-260.
[36] Kenawy, E., Layman, J., Watkins, J., Bowlin, G., Matthews, J., Simpson, D., & Wnek, G. (2003). Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials, 24(6), 907-913.
[37] Sim, L., Majid, S., & Arof, A. (2012). FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vibrational Spectroscopy, 58, 57-66.
[38] Casasola, R., Thomas, N., & Georgiadou, S. (2016). Electrospinning of poly(lactic acid): Theoretical approach for the solvent selection to produce defect‐free nanofibers. Journal Of Polymer Science Part B: Polymer Physics, 54(15), 1483-1498.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2023-06-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2023-06-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信