§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0708201714561700
DOI 10.6846/TKU.2017.00250
論文名稱(中文) 金奈米棒的熱穩定性探討
論文名稱(英文) Thermal stability study of gold nanorods
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 林聖祐
研究生(英文) Sheng-You Lin
學號 604160159
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-16
論文頁數 44頁
口試委員 指導教授 - 鄧金培(jpdeng@mail.tku.edu.tw)
委員 - 鄧金培(jpdeng@mail.tku.edu.tw)
委員 - 李之釗(jjlee@nsrrc.org.tw)
委員 - 王伯昌(bcw@mail.tku.edu.tw)
關鍵字(中) 金奈米棒
熱穩定性
關鍵字(英) AuNRs
thermal stability
第三語言關鍵字
學科別分類
中文摘要
本論文主要探討金奈米棒的熱穩定性。金奈米棒會因為受熱而同時產生熔化與變形,金奈米棒的長寬比會影響其定域化表面電漿共振效應,所以在高溫下,金奈米棒的表面電漿共振吸收會發生改變。本論文採用單矽源、雙矽源在事先製備的金奈米棒表面包覆二氧化矽增強其熱穩定性;再透過水熱法進一步穩定外層二氧化矽結構,最後經由高溫爐進行高溫燒結,測試其熱穩定性,透過上述處理,可以很明顯地避免金奈米棒在高溫變形,使金奈米棒在熱穩定性被改善後,可以應用在輔助改善染料敏化太陽能電池光電轉換效率。
英文摘要
Thermal stability of gold nanorods (AuNRs) is mainly investigated in the thesis. Both the melting and deformation of AuNRs were observed at high temperatures. Localized surface plasmon resonance (LSPR) of AuNRs is determined by the aspect ratio of AuNRs. LSPR absorption will be changed at high temperatures. The surface of the prepared AuNRs is coated with silica by adding one or two silicon reagents. And the structure of outer silica was further stabilized by the hydrothermal method. Silica-coated AuNRs are calcined by high-temperature furnace to test their stability. The melting and deformation of AuNRs can be significantly prevented by the above treatments. Therefore, silica-coated AuNRs with the enhanced thermal stability could be usefully applied in improving photoelectric conversion efficiency of dye-sensitized solar cell.
第三語言摘要
論文目次
目錄

第一章、緒論	1
1.1奈米材料	1
1.2奈米材料性質	2
1.3定域化表面電漿共振	3
1.4表面增強拉曼散射	4
1.5奈米粒子熱穩定性	5
1.6研究動機與目的	6
第二章、實驗	7
2.1實驗藥品	7
2.2實驗儀器	8
2.3金奈米棒合成	9
2.4金奈米立方體合成	10
2.5單矽源包覆二氧化矽	11
2.6雙矽源包覆二氧化矽	11
2.7透過水熱法穩定二氧化矽	12
2.8金奈米棒熱穩定分析	12

第三章、結果與討論	13
3.1金奈米棒的合成與分析	13
3.2在500 ℃燒結AuNRs	14
3.3在450 ℃燒結AuNRs	16
3.4在375 ℃燒結AuNRs	18
3.5金奈米立方體	20
3.6在500 ℃燒結AuNCs	22
3.7包覆二氧化矽改善熱穩定性	23
3.8雙矽源包覆SiO2 (NaOH-APTES-TEOS)	27
3.9雙矽源包覆SiO2 (APTES-HCl-Na2SiO3)	28
3.10雙矽源包覆SiO2 (APTES-NaOH-TEOS)	29
3.11 APTES-NaOH-TEOS燒結測試	31
3.12 APTES-NaOH-TEOS水熱	32
3.13 APTES-NaOH-TEOS水熱後燒結測試	34
第四章、結論	38
第五章、參考資料	40


圖目錄
圖3.1 AuNRs的UV-Vis光譜圖	13
圖3.2 AuNRs的TEM影像圖	14
圖3.3 500 ℃燒結溫度程序與時間對照圖	15
圖3.4 在500 ℃燒結後,AuNRs的TEM影像	16
圖3.5 450 ℃燒結溫度程序與時間對照圖	17
圖3.6 在450 ℃燒結後,AuNRs的TEM影像	18
圖3.7 375 ℃燒結溫度程序與時間對照圖	19
圖3.8 在375 ℃燒結後,AuNRs的TEM圖	20
圖3.9 AuNCs的UV-Vis光譜圖	21
圖3.10 AuNCs的TEM圖	21
圖3.11 在500 ℃燒結後,AuNCs的TEM影像	22
圖3.12 在AuNRs中加入不同體積 (A) 2.5 (B) 3.5 (C) 4 (D) 5 μL TEOS的TEM圖	24
圖3.13 在AuNRs中加入不同體積 (A) 30 (B) 50 (C) 100 μL NaOH (0.1 M)後,再加入5 μL TEOS的TEM圖	26
圖3.14加入 (A) 2 μL APTES、3μL TEOS (B) 1 μL APTES、4μL TEOS (C) 2 μL APTES、4 μL TEOS的TEM圖	28
圖3.15 加入1.5 μL APTES,再加入 (A) 5 (B) 8 (C) 10 μL HCl (0.1 M)最後加入3 μL Na2SiO3	29
圖3.16 分別加入 (A) 15 μL APTES和45 μL TEOS (B) 30 μL APTES和30 μL TEOS (C) 30 μL APTES和15 μL TEOS的TEM圖	30
圖3.17 加入15 μL APTES和45 μL TEOS後,所得AuNCs@SiO2的TEM圖	31
圖3.18 AuNCs@SiO2在 (A) 375 (B) 450 (C) 500 ℃高溫燒結	32
圖3.19 AuNCs包覆SiO2與水熱後UV光譜圖	33
圖3.20 AuNCs@SiO2水熱後TEM圖	33
圖3.21 AuNRs包覆SiO2與水熱後UV光譜圖	34
圖3.22 AuNRs@SiO2水熱後TEM圖	34
圖3.23 AuNCs@SiO2在375 ℃燒結後的TEM圖	35
圖3.24 AuNCs@SiO2在450 ℃燒結後的TEM圖	35
圖3.25 AuNCs@SiO2在500 ℃燒結後的TEM圖	36
圖3.26 AuNRs@SiO2在450 ℃燒結後的TEM圖	36
圖3.27 AuNRs@SiO2在500 ℃燒結後的TEM圖	37
參考文獻
1.   Farady, M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Phil. Trans. R. Soc. Lond. 1857, 147, 145-181
2.   Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science, 2006, 311, 622-627
3.   Hashmi, A. S. K.; Hutchings, G. J. Gold catalyst. Angew. Chem., Int. Ed. 2006, 45, 7896-7936
4.  Niemeyer, C. M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chem., Int. Ed. 2001, 40, 4128-4158
5.   Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L. M.;F. de Abajo, J. G. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev., 2008, 37, 1792–1805
6.  Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B, 1999, 103, 8410-8426
7.  Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. d. Phys., 1908, 330(3), 377-445
8.   Gans, R. Über die Form ultramikroskopischer Goldteilchen. Ann. d. Phys., 1912, 342 (5), 881-900
9.   Buffat, Ph.; Borel, J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A, 1976, 13, 2287-2298
10.  Inasawa, S.; Sugiyama, M.; Yamaguchi, Y. Laser-Induced Shape Transformation of Gold Nanoparticles below the Melting Point-The Effect of Surface Melting. J. Phys. Chem. B, 2005, 109, 3104-3111
11.  Chen,Y.-S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers. Nano Lett., 2011, 11, 348–354
12.  Zhanga, K.; Qingb, J.; Gaoa, H.; Jia, J.; Liu, B. Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis. Talanta, 2017, 162, 52-56
13.  Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods. ACS Nano, 2014, 8 (8), 8392-8406
14.  Zarick, H. F.; Erwin, W. R.; Boulesbaa, A.; Hurd, O. K.; Webb, J. A.; Puretzky, A. A.; Geohegan, D. B.; Bardhan, R. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures. ACS Photonics, 2016, 3, 385−394
15.  Dong, H.; Wu, Z.-X.; El-Shafeim, A.; Xia, B.; Xi, J.; Ning, S.-Y.; Jiaoa, B.; Houa, X. Ag-encapsulated Au plasmonic nanorods for enhanced dye sensitized solar cell. J. Mater. Chem. A, 2015, 3, 4659-4668



16.  Zarick, J. F.; Hurd, O.; Webb, J. A.; Hungerford, C.; Erwin, W. R.; Bardhan, R. Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures. ACS Photonics, 2014, 1, 806−811
17.  Otto, A. Excitation of surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 1968, 216, 398-410
18.  Kretschmann, E. The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys., 1976, 241, 313-324.
19.  Stöber, W.; Fink, A. Controlled Growth of Monodiperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci., 1968, 26, 62-69
20.  Chen, Y.-S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; Sokolov, K.; Emelianov, S. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express, 2010, 18 (9), 8867-8878
21.  Hinman, J. G.; Eller, J. R.; Lin, W.; Li, J.; Murphy, C. J. Oxidation State of Capping Agent Affects Spatial Reactivity on Gold Nanorods. J. Am. Chem. Soc., 2017, 139, 9851-9854
22.  Burrows, N. D.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Lin, W.; Li, J.; Dennison, J. M.; Hinman, J. G.; Murphy, C. J. Anisotropic Nanoparticles and Anisotropic Surface Chemistry. J. Phys. Chem. Lett., 2016, 7, 632-641



23.  Kobayashi, Y.; Inose, H.; Nakagawa, T.; Gonda, K.; Takeda, M.; Ohuchi, N.; Kasuya, A. Control of shell thickness in silica-coating of Au nanoparticles and their X-rayimaging properties. J. Colloid Interface Sci., 2011, 358, 329-333
24.  Burrows, N. D.; Lin, W.; Hinman, J. G.; Dennison, J. M.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Li, J.; Murphy, C. J. Surface Chemistry of Gold Nanorods. Langmuir, 2016, 32, 9905−9921
25.  Niu, C.-X.; Song, Q.-W.; He, G.; Na, N.; Ouyang, J. Near-Infrared-Fluorescent Probes for Bioapplications Based on Silica-Coated Gold Nanobipyramids with Distance-Dependent Plasmon-Enhanced Fluorescence. Anal. Chem., 2016, 88, 11062−11069
26.  Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. Synthesis of Nanosized Gold-Silica Core-Shell Particles. Langmuir, 1996, 12, 4329-4335
27.  Wang, D.-S.; Li, Y.-D. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Adv. Mater., 2011, 23, 1044–1060
28.  Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Anal. Chem., 2007, 79 (11), 4215-4221





29.  Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical Absorption Spectra of Nanocrystal Gold Molecules. J. Phys. Chem. B, 1997, 101 (19), 3706-3712
30.  El-Sayed, M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Acc. Chem. Res., 2001, 34 (4), 257-267
31.  Zarick, H. F.; Boulesbaa, A.; Talbert, E. M.; Puretzky, A.; Geohegan, D.; Bardhan, R. Ultrafast Excited-State Dynamics in Shape- and Composition-Controlled Gold–Silver Bimetallic Nanostructures. J. Phys. Chem. C, 2017, 121 (8), 4540–4547
32.  Li, H,-Q.; Kang, J.-M.; Yang, J.-H.; Wu, B. Distance Dependence of Fluorescence Enhancement in Au Nanoparticle@Mesoporous Silica@Europium Complex. J. Phys. Chem. C, 2016, 120 (30), 16907–16912
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信