§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0708201714461300
DOI 10.6846/TKU.2017.00249
論文名稱(中文) 應用聚偏二氟乙烯複合膜直接接觸式薄膜蒸餾於海水淡化之研究
論文名稱(英文) Using of PVDF Composite Membrane in Direct Contact Membrane Distillation for Seawater Desalination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 傅柏崴
研究生(英文) Po-Wei Fu
學號 604400142
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-28
論文頁數 103頁
口試委員 指導教授 - 鄭東文
委員 - 童國倫
委員 - 莊清榮
關鍵字(中) 直接接觸式薄膜蒸餾
聚偏二氟乙烯
平板薄膜
複合薄膜
關鍵字(英) Direct Contact Membrane Distillation
Poly(vinylidene fluoride) (PVDF)
Flat-sheet membrane
composite membrane
Tween20
第三語言關鍵字
學科別分類
中文摘要
本研究以聚偏二氟乙烯(poly(vinylidene fluoride), PVDF)膜材,並使用親水支撐層合成一平板親-疏水複合薄膜,來組裝模組進行直接接觸式薄膜蒸餾用於海水淡化之效能探討,進料分為模擬海水(3.5 wt%的NaCl水溶液)、淡水沙崙區域之海水。合成薄膜的組成為PVDF、磷酸三乙酯(Triethyl phosphate, TEP)及Tween20的混合溶液,其中共三種條件分別為20、40、60 wt%磷酸三乙酯水溶液之沉澱槽,藉由硬性沉澱槽換成軟性沉澱槽的方式來改善平板薄膜表面結構。從SEM解析得知隨著磷酸三乙酯(TEP)在沉澱槽比例的上升,其薄膜表面孔洞數量、孔徑也隨之提升,並探討其薄膜結構對蒸餾操作之影響。
    在海水前處理之部分,分為兩次過濾,ㄧ次過濾使用4 μm之親水性濾紙,二次過濾使用不同孔徑之親水性PVDF薄膜(0.1、0.2 μm),並探討不同過濾方式對薄膜蒸餾之影響。
在實驗操作部分主要是探討不同的參數對薄膜蒸餾之滲透通量及鹽阻隔率之影響,DCMD中兩側流體流動是逆流方式,其它參數包括在進料溫度(50~70 oC)、進料速度(0.4~0.8 L/min)與不同進料(純水、模擬海水、海水)。
在DCMD中其結果顯示隨著沉澱槽TEP wt%的比例增加,所製成的薄膜之通量會高於沒改質的薄膜,是由於隨著TEP在沉澱槽的比例增加薄膜表面皮層結構不易形成,且大孔洞數變多。前處理方面,使用薄膜過濾後之滲透通量皆略高於濾紙過濾。提高進料溫度能明顯增加滲透通量,但極化現象也較嚴重,而增加進料流量則對於滲透通量之提升較不顯著,但對於高溫進料操作之溫度極化現象具有較明顯改善效果。
英文摘要
This research was divided into two parts. The first part was prepared the flat-sheet composite membranes of polyvinylidene fluoride (PVDF) supported on hydrophilic polyester. The effect of triethyl phosphate (TEP) concentration on the morphology of composite membrane was investigated in this study. The thin membranes were prepared by coating mixed PVDF and Tween20. In this work, TEP was selected as solvent and prepared with 20, 40 and 60 wt% in the coagulation bath. The results indicated that the pore size of membrane surface became larger as increase in TEP concentration.
The second part was studied the performance of direct contact membrane distillation (DCMD) for seawater desalination. The artificial seawater with 3.5 wt% NaCl was compared with seawater experimentally in this study. In the pretreatment of the DCMD, the seawater was carried out 4 μm hydrophilic filter paper for filtering the fine particle and biomass. The hydrophilic PVDF film with pore size of 0.1 and 0.2 μm was used for DCMD. The effect of operation parameters, such as feed temperature (50-70 oC), flow rate (0.4-0.8 L/min) and feed on permeate flux and salt rejection was investigated. The fluid on both sides of DCMD was presented with countercurrent mode.
The experimental results of DCMD showed that the membrane prepared from higher TEP concentration had a larger permeate flux because of its larger pore size on the surface. Increasing the feed temperature could significantly increase the flux, but the polarization phenomena became more serious. On the contrary, increasing feed flow rate was less significant for the increasing of the permeation flux, but the temperature polarization of the high temperature feed operation had more obvious improvement effect.
第三語言摘要
論文目次
目錄
致謝	I
目錄	V
圖目錄	IX
表目錄	XII
第一章 緒論	1
1.1前言	1
1.2薄膜分離程序	3
1.3薄膜的應用	5
1.4薄膜蒸餾	8
1.5研究目標	10
第二章 文獻回顧	13
2.1薄膜蒸餾相關研究	13
2.2薄膜蒸餾之種類	17
2.2.1 直接接觸式薄膜蒸餾	17
2.2.3 空氣掃掠式薄膜蒸餾	18
2.2.4 真空式薄膜蒸餾	18
2.3薄膜之孔隙結構及性質	18
2.4影響滲透通量的因素	21
2.5薄膜製備	23
2.6高分子成膜理論	23
2.6.1成膜理論:熱力學	24
2.6.2 成膜理論:質傳動力學	26
第三章 實驗裝置與方法	30
3.1 實驗裝置	30
3.2薄膜製備	31
3.3 模組編號	31
3.4 薄膜性質分析	32
3.4.1 薄膜的形態和表面孔洞分析	32
3.4.2 薄膜膜厚及孔隙度測試	32
3.4.3 接觸角量測	33
3.4.4 機械強度測試	33
3.5 海水前處理	33
3.5.1 海水前處理	33
3.5.2 出水品質之分析方法	34
3.6 DCMD實驗步驟	35
3.7 DCMD操作條件	37
3.8分析方法	38
3.8.1 鹽類含量之分析方法與條件	38
3.8.2 鹽類阻隔率之計算	38
3.9 流量計校正	38
3.10 實驗設備及藥品	39
3.10.1 PVDF薄膜製備	39
3.10.2 DCMD薄膜蒸餾	39
3.10.3海水前處理	40
第四章 結果與討論	50
4.1 薄膜特性與結構分析	50
4.1.1 薄膜改質(鑄於支撐層)結構	50
4.1.2薄膜有無支撐層結構	57
4.1.3薄膜之孔洞與孔隙度	60
4.1.4 薄膜之接觸角	61
4.1.5機械強度測試	61
4.2海水出水品質分析	64
4.3 DCMD薄膜蒸餾	65
4.3.1 DCMD之鹽水滲透通量	65
4.3.2 鑄膜於支撐層與玻璃板上之比較	71
4.3.3鹽水之回復性探討	73
4.3.4 不同海水前處理的影響	76
4.3.5 DCMD之海水滲透通量	78
4.3.6 海水之回復性探討	84
4.4薄膜長時間操作測試	87
4.5 DCMD系統與文獻比較	89
第五章 結論	92
參考文獻	94









 
圖目錄
圖1.1 PVDF化學結構示意圖	11
圖1.2 薄膜分離程序之分類	12
圖1.3薄膜蒸餾物流流動示意圖	12
圖2.1 薄膜蒸餾膜組之型式	27
圖2.2 高分子(非結晶型)-溶劑-非溶劑成膜相圖	28
圖2.3 Schematic representation of mass transfer occurring at the membrane/coagulant surface.	28
圖2.4 未添加和添加界面活性劑的 PVDF 薄膜分別在製膜液、相轉移過程和初生薄膜的示意圖	29
圖3.1 DCMD 模組示意圖	41
圖3.2 DCMD 模組設計示意圖(進料側)	42
圖3.3 DCMD 模組設計示意圖(冷卻水側)	43
圖3.4 DCMD experiment set up	44
圖3.5親水支撐層之SEM結構圖	45
圖3.6 親水支撐層示意圖	45
圖3.7 NaCl檢量線	46
圖3.8 進料側流量計校正曲線	46
圖3.9 冷卻水側流量計校正曲線	47
圖4.1  5000倍SEM圖之薄膜上表面	53
圖4.2  30000倍SEM圖之薄膜上表面	54
圖4.3 500倍SEM圖之薄膜截面	55
圖4.4 10000倍SEM圖之薄膜截面	56
圖4.5 5000倍SEM圖之薄膜上表面	58
圖4.6 10000倍SEM圖之薄膜上表面	59
圖4.7 T60W20於DCMD之鹽水滲透通量	68
圖4.8 鹽水於50~70℃ &0.8 L/min進料流量下DCMD之滲透通量	68
圖4.9 鹽水於50℃不同進料流量下DCMD之滲透通量	69
圖4.10 鹽水於60℃不同進料流量下DCMD之滲透通量	69
圖4.11 鹽水於70℃不同進料流量下DCMD之滲透通量	70
圖4.12 鑄膜於支撐層與玻璃板DCMD之滲透通量比較	72
圖4.13 T20W20於70℃在不同進料速率下鹽水前後純水DCMD之滲透通量	74
圖4.14 T40W20於70℃在不同進料速率下鹽水前後純水DCMD之滲透通量	74
圖4.15 T60W20於70℃在不同進料速率下鹽水前後純水DCMD之滲透通量	75
圖4.16 不同前處理對DCMD滲透通量的影響	77
圖4.17 T60W20於DCMD之海水滲透通量	81
圖4.18 海水於50~70℃ &0.8 L/min進料流量下DCMD之滲透通量	81
圖4.19 海水於50℃不同進料流量下DCMD之滲透通量	82
圖4.20 海水於60℃不同進料流量下DCMD之滲透通量	82
圖4.21 海水於70℃不同進料流量下DCMD之滲透通量	83
圖4.22 三種不同模組於70℃不同進料&不同流量下DCMD之滲透通量	83
圖4.23 T20W20於70℃在不同進料速率下海水前後純水DCMD之滲透通量	85
圖4.24 T40W20於70℃在不同進料速率下海水前後純水DCMD之滲透通量	85
圖4.25 T60W20於70℃在不同進料速率下海水前後純水DCMD之滲透通量	86
圖4.26 T60W20薄膜於50℃進行兩天DCMD之滲透通量與導電度	88
圖4.27 DCMD滲透側經換算後之導電度與鹽阻隔率	88
圖4.28 T60W20於DCMD與其他論文之滲透通量比較	90

 
表目錄
表1.1 不同操作程序之驅動力分類 [Cheryan, 1998]	11
表3.1 製膜液組成與製備條件	48
表3.2 親水支撐層性質說明	48
表3.3 Characteristic of membrane module	49
表4.1 PVDF薄膜物性分析	63
表4.2 PVDF 薄膜拉伸強度分析	63
表4.3 DCMD results compared with references	91
參考文獻
1.	Altena, F. W, Smolders, C. A., “Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of solvent  and a nonsolvent”, Macromolecules, 15, 1491, (1982)
2.	Ashoor, B. B., Mansour, S., Giwa, A., Dufour, V., & Hasan, S. W.,  “Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review”, Desalination, 398, 222-246, (2016)
3.	Bonyadi, S.,Chung, T., “Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach”, Journal of Membrane Science, 331, 66-74, (2009)
4.	Boom, R. M. and BoomgaardT.V., Smolders, C. A., “Mass transfer and thermodynamics during immersion precipitation for two-polymer system: Evaluation with the system PES-PVP-NMP-water”, Journal of Membrane Science, 90, 231, (1994)
5.	Bonyadi, S., Chung, T. S., “Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membrane”, Journal of Membrane Science, 306, 134-146, (2007)
6.	Bonyadi, S., Chung, T. S., “ Highly porous and macrovoid-free PVDF hollow fiber membrane for membrane distillation by solvent-dope solution co-extrusion approach”, Journal of Membrane Science, 331, 66-74, (2009)
7.	Bilad, M. R., Guillen-Burrieza, E., Mavukkandy, M. O., Al Marzooqi, F. A., & Arafat, H. A., “Shrinkage, defect and membrane distillation performance of composite PVDF membranes”, Desalination, 376, 62-72, (2015)
8.	Cheng, L. P., “Effect of temperature on the formation of microporous PVDF membranes by precipitation from 1-octanol/DMF/PVDF and water/DMF/PVDF systems”, Macromolecules, 32(20), 6668-6674, (1999)
9.	Cath, T. Y., Adams, V. D.,Childress, A. E., “Experimental study of desalination using direct contact membrane distillation: A new approach to flux enhancement”, Journal of Membrane Science, 228, 5-16, (2004)
10.	Cerneaux, S., Strużyńska, I., Kujawski, W. M., Persin, M., Larbot, A., “Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes”, Journal of Membrane Science, 337, 55-60, (2009)
11.	Cheng, T., Yeh, H., Wu, J., “Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module”, Journal of Membrane Science, 158, 223-234, (1999) 
12.	Cheryan, M., Ultrafiltration and Microfiltration Handbook, 2nd ed., Technomic Publishing Inc., Pennsylvania, (1998)
13.	Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Separation Science and Technology, 20, 393-402, (1985)
14.	Criscuoli, A., Carnevale, M. C., Drioli, E., “Evaluation of energy requirements in membrane distillation”, Chemical Engineering and Processing: Process Intensification, 47, 1098-1105, (2008) 
15.	De Souza, N. P., Basu, O. D., “Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment”, Journal of Membrane Science, 436, 28-35, (2013)
16.	Devi, S., Ray, P., Singh, K., Singh, P. S., “Preparation and characterization of highly micro-porous PVDF membranes for desalination of saline water through vacuum membrane distillation”, Desalination, 346, 9-18, (2014)
17.	Deyin, C., Guohua, D., Jun, W., Hua, F., Lin, Z., Zhaokun, L., “Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation”, Separation Purification and Technology, 101, 1-10, (2012)
18.	Di Profio, G., Ji, X., Curcio, E., Drioli, E., “Submerged hollow fiber ultrafiltration as seawater pretreatment in the logic of integrated membrane desalination systems”, Desalination, 269, 128-135, (2011) 
19.	Dumée, L. F., Gray, S., Duke, M., Sears, K., Schütz, J., & Finn, N., “ The role of membrane surface energy on direct contact membrane distillation performance”, Desalination, 323, 22-30, (2013)
20.	El-Abbassi, A., Hafidi, A., Khayet, M., García-Payo, M. C., “Integrated direct contact membrane distillation for olive mill wastewater treatment”, Desalination, 323, 31-38, (2013) 
21.	Feng, C., Shi, B., Li, G., Wu, Y., “Preliminary research on microporous membrane from F2.4 for membrane distillation”, Separation and Purification Technology, 39, 221-228, (2004) 
22.	Findley, M. E., Tanna, V. V., Rao, Y. B. and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes”, AIChE Journal, 15, 483-489, (1969)
23.	Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967)
24.	Fan, H., & Peng, Y., “Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes”,  Chemical engineering science, 79, 94-102, (2012)
25.	Gryta, M., Tomaszewska, M., Grzechulska, J., Morawski, A. W., “Membrane distillation of NaCl solution containing natural organic matter”, Journal of Membrane Science, 181, 279-287, (2001) 
26.	Hausmann, A., Sanciolo, P., Vasiljevic, T., Weeks, M., Duke, M., “Integration of membrane distillation into heat paths of industrial processes”, Chemical Engineering Journal, 211–212, 378-387, (2012) 
27.	He, F., Sirkar, K. K., Gilron, J., “Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation”, Journal of Membrane Science, 345, 53-58, (2009) 
28.	He, K., Hwang, H. J., Woo, M. W., Moon, I. S., “Production of drinking water from saline water by direct contact membrane distillation (DCMD)”, Journal of Industrial and Engineering Chemistry, 17, 41-48, (2011) 
29.	Hou, D., Dai, G., Wang, J., Fan, H., Zhang, L., Luan, Z., “Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation”, Separation and Purification Technology, 101, 1-10, (2012) 
30.	Hsu, S. T., Cheng, K. T., Chiou, J. S., “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279-287, (2002) 
31.	Hou, D., Fan, H., Jiang, Q., Wang, J., & Zhang, X., “Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation”, Separation and Purification Technology, 135, 211-222, (2014)
32.	Hou, D., Wang, J., Sun, X., Ji, Z., & Luan, Z., “Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation”, Journal of membrane science, 405, 185-200, (2012)
33.	Ji, Z., Wang, J., Hou, D., Yin, Z., Luan, Z., “Effect of microwave irradiation on vacuum membrane distillation”, Journal of Membrane Science, 429, 473-479, (2013) 
34.	Kamide, K., “ Thermodynamics of polymer solutions phase equilibria and critical phenomena”, Elsevier, (1990)
35.	Krivorot, M., Kushmaro, A., Oren, Y., Gilron, J., “Factors affecting biofilm formation and biofouling in membrane distillation of seawater”, Journal of Membrane Science, 376, 15-24, (2011) 
36.	Kharraz, J. A., Bilad, M. R., & Arafat, H. A., “Flux stabilization in membrane distillation desalination of seawater and brine using corrugated PVDF membranes”, Journal of Membrane Science, 495, 404-414, (2015)
37.	Lawson, K. W., Lloyd, D. R., “Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997).
38.	Lin, F. C., Wang, D. M., Lai, J. Y., “Asymmetric TPX Membranes with High Gas Flux”, Journal of Membrane Science, 110, 25, (1996)
39.	Lin, D. J., Chang, C. L., Chen, T. C., & Cheng, L. P., “ Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system”, Desalination, 145(1-3), 25-29, (2002)
40.	Lin, D. J., Chang, H. H., Chen, T. C., Lee, Y. C., & Cheng, L. P., “ Formation of porous poly (vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system”, European polymer journal, 42(7), 1581-1594, (2006)
41.	Liu, F., Hashim, N. A., Liu, Y., Abed, M. M., & Li, K., “Progress in the production and modification of PVDF membranes”, Journal of membrane science, 375(1), 1-27, (2011)
42.	Mercier-Bonin, M., Lagane, C., Fonade, C., “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: Case of a ceramic flat sheet membrane”, Journal of Membrane Science, 180, 93-102, (2000). 
43.	Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensification, 64, 31-35, (1968)
44.	Mulder, M., Basic Principles of Membrane Technology, 2nd edn, Kluwer Academic Publishers, London, (1991)
45.	Manawi, Y. M., Khraisheh, M., Fard, A. K., Benyahia, F., & Adham, S., “Effect of operational parameters on distillate flux in direct contact membrane distillation (DCMD): Comparison between experimental and model predicted performance”, Desalination, 336, 110-120, (2014)
46.	Peng, W., May May, T., Tai-Shung, C., “Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance”, Water Research, 45, 5489-5500, (2011)
47.	Phattaranawik, J., Jiraratananon, R., Fane, A. G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, Journal of Membrane Science, 215, 75-85, (2003).
48.	Phattaranawik, J., Jiraratananon, R., Fane, A. G., “Heat transport and membrane distillation coefficients in direct contact membrane distillation”, Journal of Membrane Science, 212, 177-193, (2003). 
49.	Prince, J. A., Anbharasi, V., Shanmugasundaram, T. S., Singh, G., “Preparation and characterization of novel triple layer hydrophilic–hydrophobic composite membrane for desalination using air gap membrane distillation”, Separation and Purification Technology, 118, 598-603, (2013). 
50.	Prince, J. A., Singh, G., Rana, D., Matsuura, T., Anbharasi, V., Shanmugasundaram, T. S., “Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation”, Journal of Membrane Science, 397–398, 80-86, (2012). 
51.	Safavi, M., Mohammadi, T., “High-salinity water desalination using VMD”, Chemical Engineering Journal, 149, 191-195, (2009). 
52.	Schofield, R. W., Fane, A. G., Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, 33, 299-313, (1987). 
53.	Simone, S., Figoli, A., Criscuoli, A., Carnevale, M. C., Rosselli, A., Drioli, E., “Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD” Journal of Membrane Science, 364, 219-232, (2010). 
54.	Smolders, K., Franken, A. C. M., “Terminology for membrane distillation”, Desalination, 72, 249-262, (1989). 
55.	Summers, E. K., Arafat, H. A., & Lienhard, J. H., “ Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations”, Desalination, 290, 54-66, (2012)
56.	Shirazi, M. M. A., Kargari, A., & Tabatabaei, M., “Evaluation of commercial PTFE membranes in desalination by direct contact membrane distillation”, Chemical Engineering and Processing: Process Intensification, 76, 16-25, (2014)
57.	Tao, Z,. Yongyi, Y., Ruili, X., Yurong, W., “Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation”, Journal of Membrane Science, 453, 402-408, (2014)
58.	Tomaszewska, M., Gryta, M., Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994). 
59.	Tompa, H., “Polymer solutions”, Butterworths, (1956).
60.	Van der Waal, M. J., Racz, I. G., “Mass transfer in corrugated-plate membrane modules. I. hyperfiltration experiments”, Journal of Membrane Science, 40, 243-260, (1989). 
61.	Yang, X., Wang, R., Fane, A. G., “Novel designs for improving the performance of hollow fiber membrane distillation modules”, Journal of Membrane Science, 384, 52-62, (2011). 
62.	Yang, C., Li, X. M., Gilron, J., Kong, D. F., Yin, Y., Oren, Y., ... & He, T., “ CF 4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation”, Journal of Membrane Science, 456, 155-161, (2014)
63.	Zeman, L., Tkacik, G., “Thermodynamic analysis of a membrane-forming system water/n-methyl-2-pyrrolidone/polysulfone”, Journal of Membrane Science, 36, 119-140, (1988).
64.	Zsirai, T., Aerts, P., Judd, S., “Reproducibility and applicability of the flux step test for a hollow fibre membrane bioreactor”, Separation and Purification Technology, 107, 144-149, (2013).
65.	Zuo, J., Bonyadi, S., & Chung, T. S., “Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation”, Journal of Membrane Science, 497, 239-247, (2016)
66.	張旭賢, “多孔型聚偏二氟乙烯薄膜固定離胺酸與己二胺”, 淡江大學化學工程與材料工程研究所碩士論文, (2005).
67.	陳勝昌, “以非溶劑誘導相轉移法製備多孔型薄膜”, 淡江大學化學工程與材料工程研究所碩士論文, (2013).
68.	葉國麟, “真空式與直接接觸式薄膜蒸餾於海水淡化之比較”, 淡江大學化學工程與材料工程研究所碩士論文, (2012).
69.	歐陽興, “薄膜蒸餾用平板型聚偏二氟乙烯薄膜之製備”, 淡江大學化學工程與材料工程研究所碩士論文, (2014).
70.	邱士恩, “聚偏二氟乙烯複合薄膜應用於海水淡化之研究”, 淡江大學化學工程與材料工程研究所碩士論文, (2015)
71.	陶靖雯, “聚偏二氟乙烯複合薄膜應用於直接接觸式薄膜蒸餾之研究”, 淡江大學化學工程與材料工程研究所碩士論文, (2016)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信