參考文獻 |
1. http://www.doh.gov.tw/CHT2006/DM/SEARCH_RESULT.aspx
2. Leo HL, Simon HA, Dasi LP, Yoganathan AP: Effect of hinge gap width on the microflow structures in 27-mm bileaflet mechanical heart valves. The Journal of Heart Valve Disease 15: 800-808, 2006.
3. Simon HA, Dasi LP, Leo H-L, Yoganathan AP: Spatio-temporal Flow Analysis in Bileaflet Heart Valve Hinge Regions: Potential Analysis for Blood Element Damage. Annals of Biomedical Engineering 35: 1333-1346, 2007.
4. Hammond G.L., Geha A.S., Kopf G.S., and Hashim S.W.. Biological versus mechanical valves. J. Thorac Cardiovasc Surg. Vol.93, 182-198, 1987.
5. Toshimasa Tokuno. Cavitation Inception of Deceleration Surfaces. Ph. D. Thesis, University of Rice, 1978.
6. Bokros JC, LaGrange LD, Schoen FJ: Control of structure of carbon for use in bioengineering, in Walker PL (ed), Chemistry and Physics of Carbon. New York: Marcel Dekker, 103-171, 1972.
7. Garrsion LA, Lamson TC, Deutsch S, Geselowitz DB, Gaumond RP, Tarbell JM: An in-vitro investigation of prosthetic heart valve cavitation in blood. J Heart Valve Dis 3: S8-S24, 1994.
8. Klepetko W, Moritz A: Leaflet fracture in Edwards Duromedics bileaflet valves. J Thorac Cardiovasc Surg 97: 90-94, 1989.
9. Kafesjian R, Wieting DW, Ely J, Chahine G, Frederik G, Watson R: Characterization of the cavitation potential of pyrolytic carbon, in Bodman E (ed), Surgery for Heart Valve Disease. London: ICR Publications, 509-516, 1990.
10. Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Del Gaudio C, Balducci A, Grigioni M: 3-D simulation of St. Jude Medical bileaflet valve opening process: fluid-structure interaction study and experiment validation. J Heart Valve Dis 13: 804-813, 2004.
11. Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP: Characterization of hemodynamic forces induced by mechanical heart valves: Renolds vs. viscous stresses. Annals of Biomedical Engineering 36: 276-297, 2008.
12. Dumont K, Stijnen JMA, Vierendeels J, Van De Vosse FN, Verdonck PR: Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in Fluent. Computer Methods in Biomechanics and Biomedical Engineering 7: 139-146, 2004.
13. Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP: Vorticity dynamics of a bileaflet mechanical heart vlave in an axisymmetric aorta. Phys. Fluids 19: 067105, 2007.
14. Choi CR, kim CN: Numerical Analysis on the Hemodynamics and Leaflet Dynamics in a Bileaflet Mechanical Heart Valve Using a Fluid-Structure Interaction Method. ASAIO Journal 55: 428-437, 2009.
15. Bang JS, Yoo SM, Kim CN: Characteristics of Pulsatile Blood Flow Through the Curved Bileaflet Mechanical Heart Valve Installed in Two Different Types of Blood Vessels: Velocity and Pressure of Blood Flow. ASAIO Journal 52: 234-242, 2006.
16. Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A: Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. Journal of Biomechanics 41: 2539-2550, 2008.
17. Ge L, Sotiropoulos F: A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries. Journal of Computational Physics 225: 1782-1809, 2007.
18. Dumont K, Vierendeels J, Verdonck PR: Feasibility study of the dynamic mesh model in Fluent for fluid-structure interaction of a heart valve, in Brebbia CA, Arnez ZM, Solina F, Stankovski V (ed), Simulations in Biomedicine V. Advances in Computational Bioengineering. Boston: WIT Press, Southampton, 169-176, 2003.
19. Vierendeels J, Dumont K, Dick E, Verdonck PR: Stabilization of a fluid-structure coupling procedure for rigid body motion. Proceeding of the 33rd AIAA Fluid Dynamics Conference and Exhibit 3720, 2003.
20. Li CP, Chen SF, Lo CW, Lu PC. Turbulence characteristics downstream of a new trileaflet mechanical heart vakve. ASAIO J. 2011;57:188-96.
21. D. C. Wilcox. Multiscale model for turbulent flows. American Institute of Aeronautics Journal 26(11): 1311-20, 1988.
22. S. V. Patankar, D. B. Spalding , “ A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows ”, Int. J. Heat Transfer, vol.15, pp.1787-1806, 1972.
23. Bellhouse BJ, Talbot L. The fluid mechanics of the aortic valve. J Fluid Mech. 1969;35:721-35.
24. Lu PC, Liu JS, Huang RH, Lo CW, Lai HC, Hwang NHC. The closing behavior of mechanical aortic heart valve prostheses. ASAIO J. 2004;50:294-300.
25. Li CP, Lu PC. Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve. J Artif Organs. 2012;online first.
|