淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0708201211592000
中文論文名稱 吸附去除水中銻之研究
英文論文名稱 Removal of antimony from water by adsorption process
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 徐嘉欣
研究生英文姓名 Chia-Hsin Hsu
學號 699480538
學位類別 碩士
語文別 中文
口試日期 2012-07-13
論文頁數 59頁
口試委員 指導教授-康世芳
委員-王根樹
委員-李柏青
中文關鍵字 吸附  粒狀氫氧化鐵  等溫吸附模式    競爭離子 
英文關鍵字 Antimony  granular ferric hydroxide  adsorption  Freundlich isotherm  competitive anions 
學科別分類 學科別應用科學環境工程
中文摘要 吸附法為淨水程序中去除重金屬常見方法之一,本研究以吸附去除水中銻,吸附操作參數為吸附劑種類(粒狀活性碳、粒狀氫氧化鐵、錳砂)、接觸時間、吸附劑加藥量、初始濃度、pH、銻價數(Sb(Ⅲ)與Sb(Ⅴ))及共同離子(硝酸鹽、硫酸鹽、磷酸鹽),進行等溫吸附實驗與動力吸附實驗,結果分別以Freundlich與Langmuir等溫吸附公式與Lagergern速率公式分析,探討吸附去除水中銻之效率。
研究結果指出吸附劑去除Sb之效果依序為粒狀氫氧化鐵>錳砂>粉末活性碳,GFH吸附Sb之吸附量分別為PAC與錳砂的12倍與5倍,吸附Sb(V)之吸附量分別為PAC與錳砂的20倍與14倍。GFH吸附Sb之最適pH範圍為3~8,GFH對Sb(III)吸附量為Sb(V)吸附量之2.8倍。在相同濃度GFH下,Sb初始濃度越高則Sb吸附量越大。共離子競爭方面,硝酸鹽對Sb(III)之吸附影響不大,硫酸鹽會稍微影響Sb(III)之吸附,而磷酸鹽則是會大幅抑制Sb(III)之吸附,磷酸鹽對Sb(V)吸附之影響亦是如此。在等溫動力吸附模式上,Freundlich等溫吸附式較Langmuir等溫吸附式適用於說明GFH吸附Sb,Freundlich等溫吸附式之n值隨Sb初始濃度增加而增加,且Sb(III)之n值大於Sb(V)之n值。GFH吸附銻之動力可遵循擬二階(Pseudo-second-order)動力與孔隙擴散模式(intraparticle diffusion model)。
英文摘要 This research evaluated the capability of adsorbed Sb(III) and Sb(V) by three various adsorbents. The effects to the adsorption of Sb(III) and Sb(V) resulting from the type and dosage of adsorbents, reaction time, pH, initial Sb concentration, and competitive anions were investigated. Kinetic studies suggested that the adsorption equilibriums for both Sb(III) and Sb(V) were reached within 24 h.
The results show that the order of adsorption efficiency by different adsorbent is GFH>Mnz>PAC and the efficiency of GFH is 23 times better than PAC. The amount of Sb(III) been adsorbed by GFH is 2.9 times larger than Sb(V) due to the chemical formation of Sb(OH)3 and Sb(OH)6- respectively. The optimum pH for adsorption of Sb ranged from 3 to 8 and can reach more than 85% removal efficiency. In the pH range from 8 to 10, the adsorption of Sb by GFH decreased with increasing pH. PAC is not suitable as an adsorbent for adsorption of Sb while GFH is accessible. When the dosage of GFH is fixed, the adsorption efficiency of Sb increased with increasing of initial concentration of Sb. The Freundlich isotherm model could better describe the phenomena of Sb adsorption by GFH than Langmuir model. The n value in Freundlich model increased with increasing initial concentration of Sb and n value of Sb(III) is larger than Sb(V)’s. The best fit kinetic models of modeling adsorption of Sb by GFH are pseudo-second-order model and intraparticle diffusion model.
Keywords: antimony, granular ferric hydroxide, adsorption, competitive anions, Freundlich isotherm
論文目次 目錄
目錄 I
圖目錄 IV
表目錄 VI
第一章 前言 1
1-1研究背景 1
1-2研究目的 2
第二章 文獻回顧 3
2-1銻的化學特性 3
2-1-1銻的產生來源 3
2-1-2銻的水化學 3
2-1-3銻對人體的負面影響 5
2-1-4飲用水水質標準銻之限值 5
2-2銻之去除技術 6
2-3吸附理論 8
2-3-1吸附原理 8
2-3-2等溫吸附模式 8
2-3-3動力吸附模式 10
2-3-4孔隙擴散模式 12
2-4吸附去除銻 13
2-4-1錳砂吸附 13
2-4-2粒狀氫氧化鐵吸附 14
2-4-3活性碳吸附 15
2-4-4其他吸附劑吸附 16
第三章 研究方法與材料 17
3-1實驗材料及設備 17
3-1-1人工地下水 17
3-1-2吸附劑介紹 17
3-1-3實驗藥品 18
3-1-4實驗設備 18
3-2吸附實驗 18
3-2-1等溫吸附實驗 19
3-2-2吸附動力實驗 19
3-2-3競爭吸附實驗 19
3-3水質分析 20
第四章 結果與討論 23
4-1銻之水化學 23
4-1-1 pH對Sb(III)化學物種分佈之影響 23
4-1-2 pH對Sb(V)化學物種分佈之影響 23
4-2吸附劑種類對吸附銻之影響 25
4-2-1吸附劑種類對吸附Sb(III)之影響 25
4-2-2吸附劑種類對吸附Sb(V)之影響 25
4-3 pH對吸附銻之影響 29
4-3-1 pH對吸附Sb(III)之影響 29
4-3-2 pH對吸附Sb(V)之影響 29
4-4初始濃度與共同離子對吸附銻之影響 31
4-4-1初始濃度對吸附銻之影響 31
4-4-2共同離子對吸附銻之影響 33
4-5銻之等溫與動力吸附 36
4-5-1接觸時間對吸附銻之影響 36
4-5-2銻之等溫吸附 39
4-5-3銻之等溫動力吸附 44
第五章 結論 55
參考文獻 56


圖目錄
圖2-1 Sb(III)物種與pH平衡分布圖(CT = 10-5 M) 4
圖2-2 Sb(V)物種與pH平衡分布圖(CT = 10-5 M) 5
圖4-1 pH對Sb(III)水化學物種之影響(CT = 0.5 mg/L) 24
圖4-2 pH對Sb(V)水化學物種之影響(CT = 0.5 mg/L) 24
圖4-3 吸附劑種類對吸附Sb(III)之影響 28
圖4-4 吸附劑種類對吸附Sb(V)之影響 28
圖4-5 pH對粒狀氫氧化鐵吸附銻之影響 30
圖4-6 初始濃度對GFH吸附Sb(III)之影響 32
圖4-7 初始濃度對GFH吸附Sb(V)之影響 32
圖4-8 共同離子對GFH吸附Sb(III)之影響 35
圖4-9 共同離子對GFH吸附Sb(V)之影響 35
圖4-10 接觸時間對Sb(III)殘餘率之影響 38
圖4-11 接觸時間對Sb(V)殘餘率之影響 38
圖4-12 GFH吸附Sb(III)之Langmuir等溫吸附 42
圖4-13 GFH吸附Sb(V)之Langmuir等溫吸附 42
圖4-14 GFH吸附Sb(III)之Freundlich等溫吸附 43
圖4-15 GFH吸附Sb(V)之Freundlich等溫吸附 43
圖4-16 GFH吸附Sb(III)之擬一階動力吸附(Sb(III)初始濃度改變) 46
圖4-17 GFH吸附Sb(III)之擬一階動力吸附(GFH濃度改變) 47
圖4-18 GFH吸附Sb(V)之擬一階動力吸附(Sb(V)初始濃度改變) 47
圖4-19 GFH吸附Sb(V)之擬一階動力吸附(GFH濃度改變) 48
圖4-20 GFH吸附Sb(III)之擬二階動力吸附(Sb(III)初始濃度改變) 48
圖4-21 GFH吸附Sb(III)之擬二階動力吸附(GFH濃度改變) 49
圖4-22 GFH吸附Sb(V)之擬二階動力吸附(Sb(V)初始濃度改變) 49
圖4-23 GFH吸附Sb(V)之擬二階動力吸附(GFH濃度改變) 50
圖4-24 GFH吸附Sb(III)之內部孔隙擴散(Sb(III)初始濃度改變) 50
圖4-25 GFH吸附Sb(III)之內部孔隙擴散(GFH濃度改變) 51
圖4-26 GFH吸附Sb(V)之內部孔隙擴散(Sb(V)初始濃度改變) 51
圖4-27 GFH吸附Sb(V)之內部孔隙擴散(GFH濃度改變) 52

表目錄
表3-1 感應耦合電漿質譜儀操作參數 20
表4-1 其他廠牌活性碳對吸附銻之效果比較 27
表4-2 GFH吸附劑吸附銻之等溫吸附模式參數 41
表4-3 GFH吸附劑吸附Sb(III)之等溫動力吸附參數(Sb(III)初始濃度改變) 52
表4-4 GFH吸附劑吸附Sb(III)之等溫動力吸附參數(GFH濃度改變) 53
表4-5 GFH吸附劑吸附Sb(V)之等溫動力吸附參數(Sb(V)初始濃度改變) 54
表4-6 GFH吸附劑吸附Sb(V)之等溫動力吸附參數(GFH濃度改變) 54
參考文獻 1. Ambe, S. (1987) Adsorption kinetics of antimony(V) ions onto α-Fe2O3 surfaces from an aqueous solution. Langmuir 3, 489-493.
2. Asgari, A.R., Vaezi, F., Nasseri, S., Dordelmann, O., Mahvi, A.H. and Fard, E.D. (2008) Removal of hexavalent chromium from drinking water by granular ferric hydroxide. Iranian Journal of Environmental Health Science and Engineering 5, 277-282.
3. Banerjee, K., Amy, G.L., Prevost, M., Nour, S., Jekel, M., Gallagher, P.M. and Blumenschein, C.D. (2008) Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Research 42, 3371-3378.
4. Bhatnagar, A., Choi, Y., Yoon, Y., Shin, Y., Jeon, B.H. and Kang, J.W. (2009) Bromate removal from water by granular ferric hydroxide (GFH). Journal of Hazardous Materials 170, 134-140.
5. Communities, C.o.t.E. (1976) Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community. Official Journal of the European Communities 129.
6. Council of the European Union (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal L 330, 32-54.
7. Driehaus, W. (2002) Arsenic removal - Experience with the GEHR process in Germany. Water Science and Technology: Water Supply 2, 275-280.
8. Filella, M., Belzile, N. and Chen, Y.-W. (2002a) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth-Science Reviews 57, 125-176.
9. Filella, M., Belzile, N. and Chen, Y.W. (2002b) Antimony in the environment: A review focused on natural waters II. Relevant solution chemistry. Earth-Science Reviews 59, 265-285.
10. Gannon, K. and Wilson, D.J. (1986) Removal of Antimony from Aqueous Systems. Separation Science and Technology 21, 475-493.
11. Genz, A., Baumgarten, B., Goernitz, M. and Jekel, M. (2008) NOM removal by adsorption onto granular ferric hydroxide: Equilibrium, kinetics, filter and regeneration studies. Water Research 42, 238-248.
12. Guo, X., Wu, Z. and He, M. (2009) Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS). Water Research 43, 4327-4335.
13. Han, R., Lu, Z., Zou, W., Daotong, W., Shi, J. and Jiujun, Y. (2006a) Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: II. Equilibrium study and competitive adsorption. Journal of Hazardous Materials 137, 480-488.
14. Han, R., Zou, W., Li, H., Li, Y. and Shi, J. (2006b) Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. Journal of Hazardous Materials 137, 934-942.
15. Hu, P.Y., Hsieh, Y.H., Chen, J.C. and Chang, C.Y. (2004) Characteristics of manganese-coated sand using SEM and EDAX analysis. Journal of Colloid and Interface Science 272, 308-313.
16. Kang, M., Kamei, T. and Magara, Y. (2003) Comparing polyaluminum chloride and ferric chloride for antimony removal. Water Research 37, 4171.
17. Kang, M., Kawasaki, M., Tamada, S., Kamei, T. and Magara, Y. (2000) Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination 131, 293-298.
18. Kolbe, F., Weiss, H., Morgenstern, P., Wennrich, R., Lorenz, W., Schurk, K., Stanjek, H. and Daus, B. (2011) Sorption of aqueous antimony and arsenic species onto akaganeite. Journal of Colloid and Interface Science 357, 460.
19. Koparal, A.S., Ozgur, R., Oǧutveren, U.B. and Bergmann, H. (2004) Antimony removal from model acid solutions by electrodeposition. Separation and Purification Technology 37, 107-116.
20. Kumar, E., Bhatnagar, A., Choi, J.A., Kumar, U., Min, B., Kim, Y., Song, H., Paeng, K.J., Jung, Y.M., Abou-Shanab, R.A.I. and Jeon, B.H. (2010) Perchlorate removal from aqueous solutions by granular ferric hydroxide (GFH). Chemical Engineering Journal 159, 84-90.
21. Kumar, E., Bhatnagar, A., Ji, M., Jung, W., Lee, S.H., Kim, S.J., Lee, G., Song, H., Choi, J.Y., Yang, J.S. and Jeon, B.H. (2009) Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Research 43, 490-498.
22. Leuz, A.-K., Monch, H. and Johnson, C.A. (2006) Sorption of Sb(III) and Sb(V) to Goethite:  Influence on Sb(III) Oxidation and Mobilization. Environmental Science and Technology 40, 7277-7282.
23. Maliyekkal, S.M., Sharma, A.K. and Philip, L. (2006) Manganese-oxide-coated alumina: a promising sorbent for defluoridation of water. Water Research 40, 3497-3506.
24. Mohan, D. and Pittman Jr, C.U. (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials 137, 762-811.
25. Momčilović, M., Purenović, M., Bojić, A., Zarubica, A. and Ranđelović, M. (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276, 53-59.
26. Navarro, P. and Alguacil, F.J. (2002) Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy 66, 101-105.
27. Riveros, P.A., Dutrizac, J.E. and Lastra, R. (2008) A study of the ion exchange removal of antimony(III) and antimony(V) from copper electrolytes. Canadian Metallurgical Quarterly 47, 307-316.
28. Sarı, A., Cıtak, D. and Tuzen, M. (2010) Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite. Chemical Engineering Journal 162, 521-527.
29. Sperlich, A. (2010) Phosphate adsorption onto granular ferric hydroxide (GFH) for wastewater reuse. Doctoral dissertation, Department of environmental technology, Technische Universitat Berlin, Germany.
30. Taffarel, S.R. and Rubio, J. (2010) Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Minerals Engineering 23, 1131-1138.
31. Thanabalasingam, P. and Pickering, W.F. (1990) Specific sorption of antimony (III) by the hydrous oxides of Mn, Fe, and Al. Water, Air, and Soil Pollution 49, 175-185.
32. Thirunavukkarasu, O.S., Viraraghavan, T. and Subramanian, K.S. (2003) Arsenic removal from drinking water using granular ferric hydroxide. Water SA 29, 161-170.
33. USEPA (1979) Water-related environmental fate of 129 priority pollutants, Vol1. Office of Water Planning and Standards, Washington, DC.
34. USEPA (2011) 2011 Edition of the Drinking Water Standards and Health Advisories. EPA 820-R-11-002.
35. Watkins, R., Weiss, D., Dubbin, W., Peel, K., Coles, B. and Arnold, T. (2006) Investigations into the kinetics and thermodynamics of Sb(III) adsorption on goethite ([alpha]-FeOOH). Journal of Colloid and Interface Science 303, 639-646.
36. WHO (2011) Guidelines for drinking-water quality, 4th ed.
37. Wu, Z., He, M., Guo, X. and Zhou, R. (2010) Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis. Separation and Purification Technology 76, 184-190.
38. Xi, J., He, M. and Lin, C. (2010) Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid. Environmental Earth Sciences 60, 715-722.
39. Xi, J., He, M. and Lin, C. (2011) Adsorption of antimony(III) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition. Microchemical Journal 97, 85-91.
40. Xie, B., Fan, M., Banerjee, K. and Van Leeuwen, J. (2007) Modeling of arsenic(V) adsorption onto granular ferric hydroxide. American Water Works Association 99, 92-102.
41. Xu, Y.H., Ohki, A. and Maeda, S. (2001) Adsorption and removal of antimony from aqueous solution by an activated alumina. 1. Adsorption capacity of adsorbent and effect of process variables. Toxicological and Environmental Chemistry 80, 133-144.
42. Yuan, B. and Bartkiewicz, B. (2009) The removal of Cr(VI) from the aqueous solution by granular ferric hydroxide (GFH). Archives of Environmental Protection 35, 115-123.
43. Zhang, L., Lin, Q., Guo, X. and Verpoort, F. (2011) Sorption behavior of florisil for the removal of antimony ions from aqueous solutions. Water Science and Technology 63, 2114-2122.
44. Zou, W., Han, R., Chen, Z., Shi, J. and Liu (2006) Characterization and Properties of Manganese Oxide Coated Zeolite as Adsorbent for Removal of Copper(II) and Lead(II) Ions from Solution. Journal of Chemical and Engineering Data 51, 534-541.
45. 康世芳,雷佳蓉,黃耀輝,王根樹,徐錠基、2008、化學混凝程序去除水中鉛、銻之研究。第二十五屆自來水技術發表會。
46. 楊萬發,1987,水及廢水處理化學。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信