淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0708200813591900
中文論文名稱 噴霧熱解在LaAlO3 奈米粉體上之製備應用
英文論文名稱 Application of the spray pyrolysis on preparing LaAlO3 nanoparticles
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 王順賢
研究生英文姓名 Shuen-Shian Wang
學號 695400217
學位類別 碩士
語文別 中文
口試日期 2008-07-09
論文頁數 110頁
口試委員 指導教授-余宣賦
委員-余宣賦
委員-張裕祺
委員-尹庚鳴
中文關鍵字 噴霧熱解  氣膠  檸檬酸  奈米粉體  LaAlO3 
英文關鍵字 spray pyrolysis  aerosol  citrate acid  nano-sized particles  Lanthanum aluminate 
學科別分類
中文摘要 利用噴霧熱解程序製備結晶的LaAlO3奈米粉體。以檸檬酸作為鏊合劑加入以化學計量比所配製而成的硝酸欄和硝酸鋁的水溶液中形成LaAlO3。將所獲得的溶液藉由氨水或硝酸調整至中性的水溶液。此中性水溶液經由雙流體式霧化器形成氣膠,所形成的氣膠導入管狀反應爐進行溶劑蒸發以及固體鹽類的分解,所形成的固體粉體使用靜電粒子收集器來收集。將處理過後的粉末藉由熱分析儀、紅外線光譜儀、X光繞射分析儀、掃瞄式電子顯微鏡及場發式電子顯微鏡等來探討粉末之特性。經程序後所直接收集到的粉體屬於非結晶形態的中空球形粉粒體,粉體粒徑尺寸為數個微米。粉體經煆燒熱處理700℃透過研磨可獲得結晶的奈米級LaAlO3粉體。
英文摘要 Crystalline LaAlO3 nanoparticles were prepared using a spray pyrolysis process. Citric acid, as a chelating agent, was added into the aqueous solution containing the stoichiometric amount of lanthanum nitrate and aluminum nitrate to form LaAlO3. The obtained solution was then adjusted to neutral condition using NH4OH and/or HNO3. The neutral aqueous solution was transform to solution aerosols by a two-fluid type atomizer. The formed aerosols were introduced to the reaction tube and after solvent evaporation and solid salt decomposion, the resultant solid particles were collected using an electrostatic precipitator. The as-formed particles and the post-treated particles were characterized using thermogravimetric analysis, thermal differential analysis, infrared spectroscopy, x-ray diffractomtry, scanning electron microscopy, and transmission electron microscopy. The particles directly collected on the end of the process were noncrystalline hollow spherical particles with particle sizes in several micrometers. After heating the as-formed particles at 700℃ and grinding the calcined particles, crystalline LaAlO3 nanoparticles were obtained.
論文目次 目 錄
頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
目 錄 Ⅲ
圖 目 錄 Ⅶ
表 目 錄 Ⅸ
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 文獻回顧及基礎原理 4
2-1 微波介電陶瓷簡介 4
2-2-1微波介電陶瓷 4
2-2 鈣鈦礦結構(Perovskite Structure) 5
2-3 LaAlO3 介紹 6
2-3-1傳統固態反應法 7
2-3-2 共沉澱法 9
2-3-1傳統固態反應法 7
2-3-2 共沉澱法 9
2-3-3溶膠凝膠法 12
2-3-4檸檬酸鹽先驅物法 13
2-4介電共振器(Dielectric Resonator;DR) 16
2-5介電陶瓷的微波特性需求 18
2-5-1介電常數(Dielectric Constant:εr) 18
2-5-2品質因數(Quality Factor:Q) 20
2-6介電理論 21
2-6-1極化機制 22
2-6-2介電損失 26
第三章 噴霧熱解程序 29
3-1噴霧熱解程序簡介 29
3-1-1氣膠生成...........................................................................30
3-1-2氣膠乾燥與熱解...............................................................31
3-1-3旋風分離器.......................................................................32
3-1-4靜電集塵器.......................................................................32
3-1-5中空顆粒的形成...............................................................33
3-2噴霧熱解程序在陶瓷粉體製備上的應用 33
第四章 實驗步驟與儀器分析 35
4-1 實驗製程 35
4-2噴霧熱解程序之儀器設備..........................................................40
4-3儀器分析………………………………….…………………….41
4-3-1 X光繞射分析儀(XRD) 41
4-3-2 傅立葉轉換紅外線光譜分析儀(FT-IR) 42
4-3-3掃描式電子顯微鏡(SEM) 43
4-3-4穿透式電子顯微鏡(FETEM) 44
4-3-5熱重-熱差分析儀(TGA-DTA) 45
第五章 結果與討論 47
5-1收集器溫度對合成LaAlO3之熱行為表現 47
5-1.1 L-NF-TL之熱行為表現.....................................................47
5-1.2 L-NF-TH之熱行為表現 52
5-2燃料添加對合成LaAlO3之熱行為表現 47
5-2.1 H-NF-TH之熱行為表現.....................................................57
5-2.2 H-F-TH之熱行為表現........................................................62
5-3 L-NF與TH、TL對LaAlO3前驅粉體形態的影響 67
5-4 L-F與TH、TL對LaAlO3前驅粉體形態的影響 ..78
5-5H-NF與F對TH LaAlO3前驅粉體形態的影響 ...89
第六章 結論 100
參考文獻 101

圖 目 錄
頁次
圖2-1鈣鈦礦(ABO3)結構 6
圖2-2電磁波由介質 A(ε1,μ1)入射到介質 B(ε2,μ2) 17
圖2-3電磁波發生全反射之情形 18
圖2-4電子極化 22
圖2-5離子極化 23
圖2-6方向極化 24
圖2-7空間電荷極化 25
圖2-8各種極化形成的頻率範圍 26
圖2-9電容之相位變化圖 27
圖4-1實驗流程示意圖 39
圖4-2實驗所用噴霧熱解程序的示意圖 40
圖5-1.1(a) L-NF-TL前驅粉體TGA/DTA分析 49
圖5-1.1(b) L-NF-TL前驅粉體FTIR分析 50
圖5-1.1(c) L-NF-TL前驅粉體XRD分析 51
圖5-1.2(a) L-NF-TH前驅粉體TGA/DTA分析 54
圖5-1.2(b) L-NF-TH前驅粉體FTIR分析 55
圖5-1.2(c) L-NF-TH前驅粉體XRD分析 56
圖5-2.1(a) H- NF-TH前驅粉體TGA/DTA分析 59
圖5-2.1(b) H- NF-TH前驅粉體FTIR分析 60
圖5-2.1(c) H- NF-TH前驅粉體XRD分析 61
圖5-2.2(a) H- F-TH前驅粉體TGA/DTA分析 64
圖5-2.2(b) H- F-TH前驅粉體FTIR分析 65
圖5-2.2(c) H- F-TH前驅粉體XRD分析 66
圖5-3(a) L-NF-TH與L-NF-TL經700℃持溫3小時FTIR分析 71
圖5-3(b) L-NF-TH與L-NF-TL,經700℃持溫3小時XRD分析 72
圖5-3(c) L-NF前驅粉體之SEM圖 73
圖5-3(d) L-NF煆燒700℃3小時粉體之SEM圖 74
圖5-3(e) L-NF煆燒700℃3小時粉體研磨後之SEM圖 75
圖5-3(f) L-NF煆燒700℃3小時粉體研磨後之FE-SEM圖 76
圖5-3(g) L-NF煆燒700℃3小時粉體研磨後之TEM圖 77
圖5-4 (a) L-F-TH與L-F-TL,經700℃持溫3小時FTIR分析 82
圖5-4 (b) L-F-TH與L-F-TL,經700℃持溫3小時XRD分析 83
圖5-4(c) L-F前驅粉體之SEM圖 84
圖5-4(c) L-F前驅粉體之SEM圖 85
圖5-4(e)L-F煆燒700℃3小時粉體研磨後之SEM圖 86
圖5-4(f) L-F煆燒700℃3小時粉體研磨後之FE-SEM圖 87
圖5-4(g) L-F煆燒700℃3小時粉體研磨後之TEM圖 88
圖5-5(a) H-NF-TH與H-F-TL經700℃持溫3小時FTIR分析 93
圖5-5(b) H-NF-TH與H-F-TL經700℃持溫3小時XRD分析 94
圖5-5(c)H- TH前驅粉體之SEM圖 95
圖5-5(d) H- TH煆燒700℃3小時粉體之SEM圖 96
圖5-5(e) H- TH煆燒700℃3小時研磨後之SEM圖 97
圖5-5(f) H- TH煆燒700℃3小時研磨後之FE-SEM圖 98
圖5-5(f) H- TH煆燒700℃3小時研磨後之TEM圖 99

表 目 錄
頁次
表2-1目前開發之高介電微波陶瓷材料 5
表3-1霧化器種類及特性. 31
表4-1實驗所使用之化學藥品與級數及用. 31
表4-2前驅粉體代號表 38
表4-3設定儀器參數表 41

參考文獻 參考文獻
1. C.L. Huang and M.H. Weng, “Microwave Dielectric Characteristics with Addition on (Zr,Sn)TiO4 Ceramics, ” Journal Applied Physics.,38 p.5949, 1999.
2. H. Ouchi and S. Kawashima: Pro. of the 6th meeting on Ferroelectricity, kobe , Japanese Journal Applied Physics., vol.24, p.60, 1985.
3. G. Edward Cristal, “Tapped-line coupled transmission lines with applications to interdigital and combline filters, ” IEEE Trans. Microwave Theory Tech., vol.23, pp.1007-1012, 1975.
4. J. A. Curits and S. J. Fiedziuszko, “Miniature dual mode microstrip filters, ” IEEE MTT-S Dig., pp. 443-446, 1991.
5. J. A. Curits and S. J. Fiedziuszko, “Multi-layered planar filters based on aperture coupled, dual mode microstrip or stripline resonators, ” IEEE MTT-S Dig., pp. 1203-1206, 1992.
6. S. B. Cohn, “Direct-coupled-resonator filter, ” Proc. IRE, pp.187-196, 1957.
7. J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters, ” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2109, 1996.
8. M. Korber, “New microstrip bandpass filter topologies, ” Microwave Journal, vol. 40, pp. 138-144, 1997.
9. M. Sagawa, K. Takahashi, and M. Makimoto, “Miniaturized hairpin resonator filters and their application to receiver front-end MIC’s, ” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1991-1997, 1989.
10. S. B. Chon, “Microwave Bandpass Filters Containg High Q Dielectric Resonator, ” IEEE Trans. On MTT,MTT, p.218 1968.
11. 王惠傑 通訊用借電陶瓷材料與元件, 工業材料, 115期, 1994
12. K. Nomura, S. Tanase, “Electrical conduction behavior in (La0.9Sr0.1)MIIIO3-δ(MIII=Al, Ga, Sc, In, and Lu) perovskites, ”solid state ionics., 98 229-236, 1997.
13. J. A. Kilner, P. Barrow, R. J. Brook and M. J. Norgett,“ Electrolyte for High Temperature Fuel Cell:Experimental and Theoretical Studies of the Perovskite LaAlO3, ” Journal of Power Source, 3, 67-80, 1978.
14. J. Mizusaki, I. Yasuda, J. Shimoyama, S. Yamauchi and K. Fueki, “Electrical Conductivity, Defect Equilibrium and Oxygen Vacancy Diffusion Coefficient of La1-xCaxAlO3-single Crystals , ” Journal of Electrochem Society., Vol 140, No.2, 467-471 1993.
15. S. Y. Cho, “Microwave Dielectric Properties and Application of Rare-earth Aluminates, ” Journal. Materia. Res., Vol. 14. No. 1, p. 114, 1999.
16. Calculated form ICSD using POWD-12++ 1997.
17. S. Geller, V.B. Bala, Acta Crystallogr., 9, 1019, 1956.
18. G. Y. Sung, K. Y. Kang and S. C. Park, “Synthesis and preparation of lanthanum aluminate target for radio-frequency magnetron sputtering, ” Journal America Ceramic Society., 74[2] 437-439, 1991.
19. M. Kakihana and T. Okubo, “Low temperature powder synthesis of LaAlO3 through in situ polymerization route utilizing citric acid and ethylene glycol,” Journal. Alloys and Compounds., 266 129-133, 1998.
20. C. H. Kim, J. W. Jang, S. Y. Cho, I. T. Kim and K. S. Hong, “Ferroelastic twins in LaAlO3 polycrystals” Physica B 262 438-443, 1999.
21. R. Elsebrock,, C. Makovicka, P. Meuffels and R. Waser, “Preparation and Characterisation of High Density, High Purity Lanthanum Aluminate Bulk Ceramics, ” Journal of Electroceramics, 10, 193–202, 2003.
22. E. Taspinar and A.C. Tas, “Low-temperature chemical synthesis of lanthanum monoaluminate, ” American Ceramic Society., Volume 80, Issue 1, Pages 133-141, 1997.
23. P. K. Sahu, S. K. Behera, S. K. Pratihar and S. Bhattacharyya, “Low temperature synthesis of microwave dielectric LaAlO3 nanoparticles: effect of chloride on phase evolution and morphology, ” Ceramic International., 30 1231-1235, 2004.
24. W. Li, M. W. Zhuo and J. L. Shi, “Synthesizing nano LaAlO3 powders via co-precipitation method.” Materials Letters., 58 365-368 2004.
25. C. L. Kuo, C. L. Wang, T. Y. Chen, G. J. Chen, I. M. Hung, C. J. Shih and K.-Z. Fung, “Low temperature synthesis of nanocrystalline lanthanum monoaluminate powders by chemical coprecipitation.” Journal Alloys Compounds., 440 367-374, 2007.
26. S. K. Behera , P. K. Sahu, S. K. Pratihar and S. Bhattacharyya, “ Phase evolution in gel-precipitated LaAlO3 ceramics, ” Journal of Physics and Chemistry of Solids. doi:10.1016/j. jpcs. 02. 019, 2008.
27. A. K. Adak and P. Pramanik, “Synthesis and characterization of lanthanum aluminate powder at relatively low temperature, ” Materials Letters., 30 269-273, 1997.
28. M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene and A. Kareiva, “Processing and characterization of sol-gel fabricated mixed metal aluminates.” Ceramic International., 31 1123-1130, 2005.
29. S. N. Koc, F. Oksuzomer, E. Yasar, S. Akturk and M. A. Gurkaynak, “Effect of sol-gel modifications on formation and morphology of nanocrystalline lanthanum aluminate, ” Materials Research Bulletin., 41 2291-2297, 2006.
30. D. Zhou, G. Huang, X. Chen, J. Xu and S. Gong, “Synthesis of LaAlO3 via ethylenediaminetetraacetic acid precursor, ” Materials Chemistry and Physics., 84 33-36, 2004.
31. Z. Q. Tian, H. T. Yu and Z. L. Wang, “Combustion synthesis and characterization of nanocrystalline LaAlO3 powders, ” Materials Chemistry and Physics 106 126–129, 2007.
32. S. Ran and L. Guo, “Synthesis of LaAlO3 powder using triethanolamine, ” ceramics International 34, 443-446, 2008.
33. H. H. Wang, “Investigation for microstructure and microwave dielectric properties of xLaAlO3-(1-x)CaTiO3 ceramics sintering additive PBS、B2O3、CuO” Department of Mechanical Engineering Kun Shan University, 2006.
34. D. M. Pozar, “Microwave Engineering, ” Addison-Wesley, New York, 1998.
35. 吳朗 電子陶瓷, 全欣資訊讀書 1994
36. 汪建民 陶瓷技術手冊, 中華民國產業科技發展協進會 1994
37. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd Edition, John Wiley & Sons, New York , 497, 1976.
38. L. L. Hench, Principles of electronic ceramics, John Wiley & Sons, 1990.
39. 許俊傑“噴霧熱解霧滴顆粒系統模擬與分析”台灣科技大學化學工程學系碩士論文, 92學年
40. W. Li, M. W. Zhuo and J. L. Shi, “Synthesizing nano LaAlO3 powders via co-precipitation method” Materials Letters 58, 365-368, 2004.
41. N. E. Bogdanchikova, S. Fuentes, M. Avalos-Borja, M. H. Farias, A. Boronin and G. Diazd, “Structural properties of Pd catalysts supported on Al2O3-La2O3 prepared by sol-gel method, ”Applied Catalysis B: Environmental 17 221±231, 1998.
42. D. Zhou, G. Huang, X. Chen, J. Xu and S. Gong, “Synthesis of LaAlO3 via ethylenediaminetetraacetic acid precursor, ”Materials Chemistry and Physics 84, 33–36, 2004.
43. M. Kakihana and T. Okubo, “Low temperature powder synthesis of LaAlO3 through in situ polymerization route utilizing citric acid and ethylene glycol, ”Journal of Alloys and Compounds 266, 129–133, 1998.
44. A. M. Gaballa and H. Yu, Journal Materials Research. 5, 2923, 1990.
45. S. C. Zhang, G. L. Messing and M. Borden, America Ceramic Society. 73, 61 ,1990.
46. F. V. Shaw, America Ceramic Society Bulletin 69, 1484, 1990.
47. A. M. Gadalla and H. Yu, Journal of Materials Research 5, 1233, 1990.
48. K. K. Lee, Y. C. Kang, K. Y. Jung and J. H. Kim, “Preparation of nano-sized BaTiO3 particle by citric acid-assisted spray pyrolysis, ” Journal of Alloys and Compounds 395 , 280–285, 2005.
49. C. Y. Chen , T. K. Tseng , S. C. Tsai , C. K. Lin and H. M. Lin, “Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, ” Ceramics International 34, 409–416, 2008.
50. I. Taniguchi , N. Fukuda and M. Konarova, “Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method, ” Powder Technology 181, 228-236, 2008.
51. G. L. Messing, S. C. Zhang and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis” Journal of the American Ceramic Society, 76, 2707-2726, 1993.
52. D. S. Jung, S. K. Hong, J. S. Cho and Y. C. Kang, “Nano-sized barium titanate powders with tetragonal crystal structure prepared by flame spray pyrolysis, ” Journal of the European Ceramic Society 28, 109-115, 2008.
53. K. K. Lee, Y. C. Kang, K. Y. Jung and J. H. Kim, “Preparation of nano-sized BaTiO3 particle by citric acid-assisted spray pyrolysis, ” Journal of Alloys and Compounds 395, 280-285, 2005
54. 許樹恩 吳泰伯 X光繞射原理與材料結構分析, 中國材料科學學會出版, 1996
55. R. E. Lee, Scanning Electron microscopy and X-ray microanalysis, New Jersey:PTR Prentice Hall, 1993.
56. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, Jr., C. E. Lymen, C. Fiori and E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis, 2nd ed., New York:Plenum Press, 1992.
57. 陳力俊等著, 材料電子顯微鏡學, 科儀叢書, 修訂版.
58. Y. Xu, G. Huang, H. Long, “Synthesis of lanthanum aluminate via theethylenediaminetetraacetic acid gel route, ”Ceramics International 29, 837-840, 2003.
58. M. Couzi and P.V. Huong, Journal Chim. Physics. Physico-chim.Biol. 69, 1339, 1972.
59. AK. Adak and P. Pramanik, “Synthesis and characterization of lanthanum aluminate powder at relatively low temperature, ” Materials Letters 30, 269-273, 1997.
60. A. Osaka, K. Tsuru, H. Iida, C. Ohtsuki and S. Hayakawa“Spray Pyrolysis Preparation of Apatite-Composite Particles for Biological Application”Journal of Sol-Gel Science and Technology 8, 655-661, 1997.
61. Y. C. Kang and S. B. Park, “Preparation of zinc oxide-dispersed silver particles by spray pyrolysis of colloidal solution, ” Materials Letters 40, 129-133, 1999.
62. I. S. Shim and C. S. Lee, “Synthesis and Characterization of Al2O3/ZrO2, Al2O3/TiO2 and Al2O3/ZrO2/TiO2 Ceramic Composite Particles Prepared by Ultrasonic Spray Pyrolysis, ” Bull. Korean Chemical Society, Vol. 23, No. 8, 2002.
63. Wei-Ning Wang, Yoshifumi Itoh, I. Wuled Lenggoro, Kikuo Okuyama, “Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis, ” Materials Science and Engineering B 111, 69-76, 2004.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-08-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-08-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信