淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0708200811050300
中文論文名稱 共沉澱法製備LaAlO3粉體與粉體性質分析
英文論文名稱 Preparation and characterization of LaAlO3 powder by co-precipitation technique
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 程冠博
研究生英文姓名 Kuan-Po Cheng
學號 694360180
學位類別 碩士
語文別 中文
口試日期 2008-07-09
論文頁數 77頁
口試委員 指導教授-余宣賦
委員-張裕祺
委員-尹庚鳴
中文關鍵字 鋁酸鑭  共沉澱法  熱分析 
英文關鍵字 LaAlO3  co-precipitation  TG-DTA 
學科別分類
中文摘要 本研究是以共沉澱法,利用氨水共沉澱硝酸鋁和硝酸鑭溶液來製備鋁酸鑭。我們改變氨水的添加量,其添加量為硝酸根莫耳數的0.5、1、1.5和5倍,來觀察對合成粉體的影響。同時以化學沉澱法進行單成分元素的沉澱、分析,然後以物理混合之方式混合鑭與鋁之沉澱物再來與共沉澱做比較。
我們發現先用沉澱再物理混合的系統是分別形成氫氧化鋁與氫氧化鑭,而共沉澱則是形成鑭鋁氫氧錯合物。兩者在高溫處理後都會形成結晶之鋁酸鑭,但是利用共沉澱的方式其相態較單一,非結晶的雜質也較少,並且可以在較低的溫度下得到結晶之鋁酸鑭粉體。共沉過程中的氨水添加量會對乾燥粉體的組成造成改變,連帶的影響粉體整體的熱行為表現以及熱重損失。氨水對於這些變化的關係並不是線性,而是會隨著添加到達一最大值後產生相反的影響效能。氨水含量為硝酸根莫耳數1和1.5倍的條件下共沉澱鋁酸鑭前趨物粉體,經過700℃3小時的煆燒後即可得到結晶之鋁酸鑭粉體。
英文摘要 In the present study, crystalline LaAlO3 nanoparticles were synthesized at temperatures as low as 700 oC using a reverse precipitation technique. The aqueous solution, containing the stoichiometric ratios of lanthanum nitrate and aluminum nitrate to form LaAlO3, was dropped in an aqueous solution of NH4OH to form the insoluble metallic salts. The amount of NH4OH used were varied according to [NH4+ from NH4OH]/[NO3ˉ from total metallic nitrates] = 0.5, 1, 1.5, and 5.0, respectively. After centrifugation and drying, the solid precursors were calcined at different temperatures and the resultant particles were characterized using x-ray diffractometry, thermogrametric analysis, differential thermal analysis, infrared spectroscopy, and transmission electron microscopy. The results indicated that the solid precursors obtained by co-precipitating La3+ and Al3+ from the solution can transform to crystalline LaAlO3 at temperature much lower than those obtained by mixing the La3+-contained precipitates and Al3+-contained precipitates. The amount of NH4OH used slightly affected the formation of LaALO3. When [NH4+ from NH4OH]/[NO3ˉ from total metallic nitrates] was controlled at 1.5, the obtained solid precursor can decompose to form crystalline LaALO3 at 700 oC.
論文目次 本文目錄
摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VII


第一章 前言與研究動機 1
1-1 前言 1
1-2 研究動機 3
第二章 基本原理與文獻回顧 4
2-1 介電原理 4
2-2 LaAlO3介紹 13
2-3 LaAlO3合成方法 15
2-3-1 固態合成法 17
2-3-2 溶膠-凝膠法 18
2-3-3 共沉澱法 20
2-3-4 檸檬酸鹽先驅物法 22
2-3-5 其他合成法 23
第三章 實驗步驟與特性分析 25
3-1 實驗步驟 25
3-2 特性分析 28
3-2-1 X-ray繞射分析 28
3-2-2 傅立葉紅外線光譜分析 29
3-2-3 穿透式電子顯微分析 30
3-2-4 TG-DTA熱分析儀 31
第四章 結果與討論 33
4-1 起始原料特性分析 33
4-2 單成份化學沉澱分析 35
4-2-1 硝酸鋁沉澱物特性分析 35
4-2-2 硝酸鑭沉澱物特性分析 39
4-3 物理混合製備之鋁酸鑭特性分析 43
4-4 共沉澱製備之鋁酸鑭特性分析 48
4-5 共沉澱與物理混合之比較 55
4-6 不同氨水添加量共沉澱鋁酸鑭之比較 60
第五章 結論 72
第六章 參考文獻 74


圖目錄
圖2-1 極化機構種類圖 6
圖2-2 極化種類與頻率之關係圖 7
圖2-3 (a)理想介電材料與(b)實際介電材料內電壓、電荷、電流與時間對應圖 8
圖2-4 電流電場之相位圖 10
圖2-5 (a)鋁酸鑭結構圖;(b)菱形晶系對應六方晶系結構圖 13
圖3-1 實驗流程圖 26
圖3-2 X光對晶格所產生之繞射 29
圖4-1 硝酸鑭與硝酸鋁不同溫度煆燒3小時IR圖 34
圖4-2 AN-1.5N乾燥粉體TG-DTA圖 35
圖4-3 AN-1.5N不同溫度煆燒3小時IR圖 36
圖4-4 LN-1.5N乾燥粉體TG-DTA圖 39
圖4-5 LN-1.5N不同溫度煆燒3小時IR圖 40
圖4-6 LA-mix乾燥粉體TG-DTA圖 43
圖4-7 LA-mix不同溫度煆燒3小時IR圖 44
圖4-8 LA-1,1-1.5N乾燥粉體TG-DTA圖 48
圖4-9 LA-1,1-1.5N不同溫度煆燒3小時XRD圖 49
圖4-10 LA-1,1-1.5N不同溫度煆燒3小時IR圖 50
圖4-11 全部粉體沉澱之TG-DTA圖 55
圖4-12 不同方法製備樣品於不同溫度煆燒3小時XRD圖 58
圖4-13 不同方法製備樣品於不同溫度煆燒3小時IR圖 59
圖4-14 LA-1,1-0.5N不同溫度煆燒3小時XRD圖       61
圖4-15 LA-1,1-0.5N不同溫度煆燒3小時IR圖        62
圖4-16 LA-1,1-0.5N乾燥粉體TG-DTA圖 62
圖4-17 LA-1,1-1N不同溫度煆燒3小時XRD圖 63
圖4-18 LA-1,1-1N不同溫度煆燒3小時IR圖 63
圖4-19 LA-1,1-1N乾燥粉體TG-DTA圖 64
圖4-20 LA-1,1-5N不同溫度煆燒3小時XRD圖 64
圖4-21 LA-1,1-5N不同溫度煆燒3小時IR圖 65
圖4-22 LA-1,1-5N乾燥粉體TG-DTA圖 65
圖4-23 不同氨水比例沉澱粉體煆燒後TEM圖 68
圖4-24 不同氨水添加量之樣品TG-DTA圖 69


表目錄
表2-1 LaAlO3合成文獻表 15
表3-1 實驗藥品規格資料表 27
表3-2 實驗儀器規格資料表 32
表4-1 不同氨水添加比例之樣品粒徑表 69
表4-2 不同氨水比例共沉粉體之化學組成表 71
參考文獻 1. S.B. Chan, “Microwave Bandpass Filters Contain High Q Dielectric
Resonator”, IEEE Trans.on MTT,p.218-227,1968.

2. Seo-Yong Cho, In-Tae Kim, Kug Sun Hong, “Microwave dielectric properties and applications of rare-earth aluminates”, J. Mater. Res 14 , p. 114, 1999.

3. Pai-hsuan Sun, Tetsuro Nakamura, Yue Jin Shan, Yoshiyuki Ibaguma, Mitsuru Itoh and Toshiki Kitamura, “Dielectric behavior of (1-x)LaAlO3-xSrTiO3 solid solution system at microwave frequencies”, Jpn. J. Appl. Phys. Vol. 37, p. 5625-5629, 1998.

4. Seo-Yong Cho, Kug Sun Hong and Kyung-Hyun Ko, “Mixture-like behavior in the microwave dielectric properties of the (1−x)LaAlO3–xSrTiO3 system”, Mater. Res. Bull 34, p. 511, 1999.

5. Cheng-Liang Huang, Cheng-Shing Hsu, “Improved high Q value of 0.5LaAlO3-0.5SrTiO3 microwave dielectric ceramics at low sintering temperature”, Mater. Res. Bull 36, p.2677, 2001.

6. Cheng-Liang Huang, Kuo-Hau Chiang, “Dielectric properties of B2O3-doped (1-x)LaAlO3-xSrTiO3 ceramic system at microwave frequency”, Mater. Res. Bull 37, p.1941-1948, 2002.

7. Cheng-Shing Hsu, Cheng-Liang Huang, Jing-Fang Tseng, Cheng-Chi You, “Low temperature sintering and microwave dielectric properties of 0.5LaAlO3-0.5SrTiO3 ceramics using copper oxide additions”, Ceram. Int., 30,p.2067-2073, 2004.

8. T. Shimada, K. Kura, S. Ohtsuki, “Dielectric properties and far infrared reflectivity of lanthanum aluminate-strontium titanate ceramics”, J. Eur. Ceram. Soc. 26, p.2017–2021, 2006.

9. Y. Inagaki, S. Suzuki, I.Kagomiya, K. Kakimoto, H. Ohsato, K. Sasaki, K. Kuroda, T. Shimada, “Crystal structure and microwave dielectric properties of SrTiO3 doped LaAlO3 single crystal grown by FZ”, J. Eur. Ceram. Soc. 27, p.2861–2864, 2007.

10. Y. Sun, J.D. Guo, X.L. Xu, G.I. Lian, Y.Z. Wang and G.C. Xiong, “Superconducting HgBa CaCu O thin films growth on NdGaO3 , SrTiO3 , LaAlO3 and Y–ZrO2 substrates”, Physica C 312, p. 197, 1999.

11. T. Aytug, Y. Yu, S.L. Yan, Y.Y. Xie and J.Z. Wu, “Response of superconducting characteristics of Hg-based high-Tc thin films to photolithographic processes”, Physica C 325, p. 56, 1999.

12. Qingxi Fu, Frank Tietz, Detlev Stöver, “Synthesis and electrical conductivity of Sr- and Mn-substituted LaAlO3 as a possible SOFC anode material”, Solid State Ionics 177, p.1819-1822, 2006.

13. Q.X. Fu, F. Tietz, P. Lersch, D. Stöver, “Evaluation of Sr- and Mn-substituted LaAlO3 as potential SOFC anode materials”, Solid State Ionics 177, p.1059-1069, 2006.

14. R. Elsebrock, C. Makovicka, P. Meuffels and R. Waser, “Preparation and characterisation of high density, high purity lanthanum aluminate bulk ceramics”, J. Electroceramics, 10, p.193-202, 2003.

15. Ji Young Park, Gyeong Man Choi, “The effect of Ti addition on the electrical conductivity of Sr- and Mg-doped LaAlO3”, Solid State Ionics 176, p.2807-2812, 2005.

16. Te-Yuan Chen, Ruo-Ying Pan, Kuan-Zong Fung, “Effect of divalent dopants on crystal structure and electrical properties of LaAlO3 perovskite”, J. Phys. Chem. Solids, 2007.

17. S. Naci Koc, Faruk Oksuzomer, Erdem Yasar, Selcuk Akturk, M. Ali Gurkaynak, “Effect of sol–gel modifications on formation and morphology of nanocrystalline lanthanum aluminate”, Mater. Res. Bull 41, p.2291-2297, 2006.

18. A. Barrera, S. Fuentes, M. Viniegra, M. Avalos-Borja, N. Bogdanchikova, J. Campa-Molina, “Structural properties of Al2O3–La2O3 binary oxides prepared by sol–gel”, Mater. Res. Bull 42, p.640-648, 2007.

19. W. Li, M.W. Zhuo, J.L. Shi, “Synthesizing nano LaAlO3 powders via co-precipitation method”, Mater. Lett. 58, p.365-368, 2004.

20. Prashant K. Sahu, S.K. Behera, S.K. Pratihar, S. Bhattacharyya, “Low temperature synthesis of microwave dielectric LaAlO3 nanoparticles:effect of chloride on phase evolution and morphology”, Ceram. Int. 30,p.1231-1235, 2004.

21. Chia-Liang Kuo, Cheng-Li Wang, Te-Yuan Chen, Guo-Ju Chen, I-Ming Hung, Chi-Jen Shih, Kuan-Zong Fung, “Low temperature synthesis of nanocrystalline lanthanum monoaluminate powders by chemical coprecipitation”, J. Alloys Compd. 440, p.367-374, 2007.

22. Chia-Liang Kuo, Yen-Hwei Chang, Moo-Chin Wang, “Crystallization kinetics of lanthanum monoaluminate (LaAlO3) nanopowders prepared by co-precipitation process”, Ceram. Int., 2008.

23. Masato Kakihana, Toru Okubo, “Low temperature powder synthesis of LaAlO3 through in situ polymerization route utilizing citric acid and ethylene glycol”, J. Alloys Compd. 266, p.129-133, 1998.

24. D. Hreniak, W. Strek, P. Dere′n, A. Bednarkiewicz, A. Łukowiak, “Synthesis and luminescence properties of Eu3+-doped LaAlO3 nanocrystals”, J. Alloys Compd. 408-412, p.828-830, 2006.

25. P.J. Deren, M.A. Weglarowicz, P. Mazur, W. Strek, “Spectroscopic properties of LaAlO3 nanocrystals doped with Tb3+ ions”, J. Lumin. 122-123, p.780-783, 2007.

26. Songlin Ran, Lian Gao, “Synthesis of LaAlO3 powder using triethanolamine”, Ceram. Int., 2006.

27. L. John Berchmans, S. Angappan, A. Visuvasam, K.B. Ranjith Kumar, “Preparation and characterization of LaAlO3”, Mater. Chem. Phys., 2007.

28. Zhong-Qing Tian, Hong-Tao Yu, Zhen-Lin Wang, “Combustion synthesis and characterization of nanocrystalline LaAlO3 powders”, Mater. Chem. Phys. 106, p.126-129, 2007.

29. Dongxiang Zhou, Guohua Huang, Xiaoping Chen, Jianmei Xu, Shuping Gong, “Synthesis of LaAlO3 via ethylenediaminetetraacetic acid precursor”, Mater. Chem. Phys. 84, p.33-36, 2004.

30. Zushu Li, Shaowei Zhang, William Edward Lee, “Molten salt synthesis of LaAlO3 powder at low temperatures”, J. Eur. Ceram. Soc. 27, p.3201–3205, 2007.

31. J.J. Lee, Y.S. Park, C.S. Yang, H.S. Kim, K.H. Kim, K.Y. Kang, T.W. Kang, S.H. Park, J.Y. Lee, J. Crystal Growth 213 , p.33, 2000.

32. S. Geller, B.V. Bala, Acta Crystallogr. 9, p.1019, 1956.

33. YueFeng Tang, YiNong Lu, AiDong Li, XiaoYun Li, ShuZhe Shi, ZhiDa Ling, “Fabrication of fine mullite powders by α-Al(OH)3–SiO2 core–shell structure precursors”, Appl. Surf. Sci. 202, p.211-217, 2002.

34. Nobuhito Imanaka, Toshiyuki Masui, Yasuhiro Kato, “Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3”, J. Solid State Chem. 178, p.395-398, 2005.

35. Hongliang Zhu, Deren Yang, Hong Yang, Luming Zhu, Dongsheng Li, Dalai Jin, Kuihong Yao, “Reductive hydrothermal synthesis of La(OH)3:Tb3+ nanorods as a new green emitting phosphor”, J Nanopart Res 10, p.307-312, 2008.

36. Bo Tang, Jiechao Ge, ChangjuWu, Linhai Zhuo, Jinye Niu, Zhenzhen Chen, Zhiqiang Shi and Yubin Dong, “Sol–solvothermal synthesis and microwave evolution of La(OH)3 nanorods to La2O3 nanorods”, Nanotechnology 15, p.1273-1276, 2004.

37. S. Mentus, Dijana Jeli, Veselinka Grudic, “Lanthanum nitrate decomposition by both temperature programmed heating and citrate gel combustion Comparative study” J. Therm. Anal. Cal., 90, p.393-397, 2007.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-08-11公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-08-11起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信