§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0708200716423600
DOI 10.6846/TKU.2007.00240
論文名稱(中文) 結合PVDF現地量測之拍撲式微飛行器製作
論文名稱(英文) Fabrication of the Flapping Micro Aerial Vehicle with PVDF On-Site Measurement
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 施宏明
研究生(英文) Hung-Ming Shih
學號 694340034
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-07-10
論文頁數 90頁
口試委員 指導教授 - 楊龍杰
委員 - 宛同
委員 - 施文彬
關鍵字(中) 微飛行器
拍撲式
PVDF壓電薄膜
齒輪傳動系統
關鍵字(英) MAV
flapping
PVDF
Gear transmission system
第三語言關鍵字
學科別分類
中文摘要
本研究利用微機電系統技術製作拍撲式飛行器之聚對二甲苯(parylene)機翼薄膜,並結合非微機電製程製作之拍撲式傳動機構、機身骨架與尾翼,成為全機重6gw以下,翼展尺寸為20cm之拍撲式飛行器。並放置於風洞內進行升力及推力量測,就不同膜厚、功率及有無肋(wing rib)等就升力及推力係數進行討論。
本研究另使用聚乙烯氟化物(PVDF)壓電薄膜材料,製作拍撲式機翼結構於風洞測試中進行現地量測(on-site lift measurement),並將新型機翼之壓電輸出訊號與風洞測力計升力訊號,進行比對探討。
本研究亦使用剛性優於壓克力的鋁金屬材料,利用線切割機進行各個元件之加工,取代雷射加工製作而成的壓克力馬達基座與各個連桿元件,達成齒輪傳動系統的輕量化。目前已成功將齒輪傳動系統(含馬達)總重量由第一代7克重減輕為2.3克重。
本研究最後為拍撲式微飛行器安裝高分子鋰電池進行遙控之飛行測試,飛行時間已超過半分鐘以上,飛行距離超過60m。
英文摘要
The micro aerial vehicle (M.A.V.) is a new field of  research, which attracts much attention in the advanced aeronautical area. The flapping wing, proved by many natural flyers, is the most appropriate way of flying objects which sizes are less than 8 inches. However, there is still plenty of room for studying on the unsteady aerodynamic characteristics of flapping wings. This research utilized MEMS technology layering parylene film as the wing skin and carbon rod as the wing skeleton. The transmission system with a reduction ratio of 26.6 is also fabricated. The total mass of the flapping MAV is less than 6 grams and the wing span is 20 cm. The wind tunnel test measured lift and thrust force corresponding to different membrane thicknesses, power consumption and the design of wing ribs.
The signals from a load cell in the wind tunnel and a PVDF sensor embedded in parylene wings are acquired simultaneously. Both of the lift signals from the PVDF and the load cell are basically similar with the same flapping frequency and the qualitative behavior.
In the past, we selected acrylic slab as the base of the transmission system which is cut by laser machining method. Herein we turn to choose the aluminum alloy with high strength-mass ratio as the linkages and the base of transmission system. We successfully reduced the mass of our transmission system including the motor from 7 grams to 2.3 grams.    
Finally, we integrated other the components including the receiver, actuator and poly lithium battery into the flapping MAV. The flight test was performed with remote control. The MAV had a successful flight with a range of 60 meters and an endurance of 32 seconds.
第三語言摘要
論文目次
中文摘要......................................................................................Ⅰ
英文摘要......................................................................................Ⅱ
目錄..............................................................................................Ⅳ
圖目錄..........................................................................................Ⅸ
表目錄...................................................................................... XIV


第一章  緒論
1-1	研究動機............................................1
1-2	參考文獻...........................................................2
1-3	研究目的與架構...........................................5

第二章	飛行理論與材料特性
2-1  飛行方式概述...................................................................7
2-2  撲翼飛行機構的設計原理......................................................9
2-3  微飛行器尺度律與能量密度之估算.......................................11
2-4  Parylene材料特性介紹.................................................18
2-5  PVDF壓電材料特性介紹.........................................................20

第三章	微飛行器製作
3-1  拍翼式微飛行器製作架構........................................................24
3-2  傳動機構設計與製作................................................................25
3-2-1機構設計............................................................................25
3-2-2機構製作............................................................................26
3-3  機翼製作....................................................................................27
3-3-1巴沙木機翼製作................................................................27
3-3-2 parylene機翼薄膜製作.....................................................28
3-3-2 PVDF機翼製作.................................................................30
3-4  機身主要結構............................................................................29
3-4-1 傳動機構安裝..................................................................31
3-4-2 機身骨架..........................................................................31
3-4-3 尾舵與尾舵固定架..........................................................32
3-5  控制晶片和動力源....................................................................33
3-5-1 電池..................................................................................33
3-5-2 無線控制模組..................................................................35
3-6  組裝完成的拍撲式微飛行器....................................................36
3-7  全塑膠構型MAV之減重設計..................................................37
3-7-1馬達基座(設計一)........................................................37
3-7-2馬達基座(設計二).............................................................39
3-7-3機翼(設計ㄧ).....................................................................41
3-7-4機翼(設計二).....................................................................43
3-7-5尾翼....................................................................................44
3-7-6機身....................................................................................45
3-7-7模流分析............................................................................47
3-8  全鋁構型MAV之減重設計與製造..........................................49
3-8-1馬達基座............................................................................49
3-8-2第一桿................................................................................50
3-8-3第二桿................................................................................50
3-8-4第三桿................................................................................51
第四章	實驗架設與規劃
4-1  風洞實驗設備............................................................54
4-1-1數據擷取器.......................................................................54
4-1-2六軸力規..........................................................................54
4-1-3 MAV之夾具....................................................................55
4-1-2 實驗風洞..........................................................................56
4-2  實驗架設.......................................................................56
4-3  實驗規劃....................................................................57
4-3-1 有無rib對升推力的影響(實驗一)........................57
4-3-2 不同膜厚對升推力的影響(實驗二)..........................58
4-3-3以壓電翼膜調校拍撲式微飛行器(實驗三).............58
4-3-4	PVDF機翼薄膜之訊號量測(實驗四)............................60
4-4  數值計算方法............................................................................62
4-5  實驗參數....................................................................................62
4-5-1 無因次速度J.......................................................62
4-5-2 升力係數CL與推力係數CT值..............................63
第五章	實驗結果與討論
5-1  實驗一.........................................................................64
5-1-1	parylene機翼膜厚15μm.................................................64
5-1-2膜厚20μm.......................................................................66
5-1-3膜厚25μm………………………...………………........68
5-1-4膜厚30μm…………………...……………………........70
5-2  實驗二.......................................................................72
5-3  實驗三.......................................................................74
5-4  實驗四.......................................................................77
5-5  飛行測試.......................................................................79
5-5-1翼展30cm MAV試飛情形..............................................79
5-5-2翼展20cm MAV試飛情形一(第四桿寬度20mm)............80
5-5-3翼展20cm MAV試飛情形(第四桿寬度16mm)................80
5-5-4翼展20cm MAV試飛情形二(第四桿寬度20mm)............80
第六章	結論與未來建議
6-1  結論............................................................................................83
6-2  未來建議....................................................................................84
參考文獻...................................................................................................86
附錄...........................................................................................................90
圖 1.1   自然界飛行生物翼展與重量之關係.....................2
圖 2.1   柏努利效應造成之升力...............................8
圖 2.2   下撲時翼截面受力圖................................10
圖 2.3   上舉時翼截面受力圖................................10
圖 2.4   大飛行圖..........................................13
圖 2.5   鳥類本身重量(W)與機翼負載(W/S)關係...............14
圖 2.6   鳥類拍撲頻率與重量關係圖.........................16
圖 2.7   圖2.7 (a)時間對速度關係圖;(b) 時間對功率關係圖......17
圖 2.8   高分子材料聚對二甲苯材料及其化學結構..............18
圖 2.9   型號PDS-2010 Parylene鍍膜機.......................20
圖 2.10  PVDF壓電薄膜材料...............................23
圖 3.1   拍翼式微飛行器之製作架構..........................24
圖 3.2   以Ornithopter zone設計軟體分析傳動連桿尺寸.........25
圖 3.3   以Ornithopter zone設計軟體分析機翼拍動對稱性.......26
圖 3.4   拍撲式傳動機構之完成實體..........................27
圖 3.5   巴沙木機翼骨架的示意圖............................28
圖 3.6   parylene機翼製程圖.................................29
圖 3.7   PVDF製作流程....................................30
圖 3.8   PVDF壓電薄膜整合於拍撲翼........................31
圖 3.9   傳動機構基座之機身骨架插孔........................32
圖 3.10  機身結構完成之實體................................32
圖 3.11 .水平尾舵(意謂兼作水平尾翼與垂直尾翼).............33
圖 3.12  尾翼固定架........................................33
圖 3.13  鋰電池放電特性....................................34
圖 3.14  高分子鋰電池......................................34
圖 3.15  無線遙控器  ......................................35
圖 3.16  速度控制與無線接收器晶片模組......................36
圖 3.17  初步組裝完成20cm翼展之拍撲翼微飛行器.............36
圖 3.18  『全塑膠』拍翼式微飛行器(a)組裝圖(b)零件爆炸圖.......37
圖 3.19  馬達基座(設計ㄧ)之3D立體圖.......................38
圖 3.20  馬達基座(設計一)尺寸..............................38
圖 3.21  馬達基座(設計二)之3D立體圖.......................39
圖3.22  馬達基座(設計二)尺寸.............................40
圖 3.23  馬達基座(設計二)關鍵尺寸之局部放大................40
圖 3.24  機翼骨架強度分析位置..............................43
圖3.25  卜字形機翼斷面設計外觀............................43
圖3.26  卜字形機翼(a)翼尖 (b)翼中(c)翼根之剖面圖............44
圖3.27  機翼尾翼..........................................44
圖 3.28  尾翼之局部放大圖..................................45
圖3.29  尾翼(A-A)之剖面圖.................................45
圖3.30  機身外觀..........................................46
圖3.31  機身之設計尺寸....................................46
圖 3.32  機身(B-B)之剖面圖.................................47
圖 3.33  基座1之射出時間、壓力、溫度模擬圖..................47
圖 3.34  基座2之射出時間、壓力、溫度模擬圖..................48
圖 3.35  機身骨架之射出時間、壓力、溫度模擬圖................48
圖 3.36  尾翼之射出時間、壓力、溫度模擬圖....................48
圖 3.37  機翼之射出時間、壓力、溫度模擬圖(矩形截面)..........48
圖 3.38  尾翼之射出時間、壓力、溫度模擬圖(卜字形截面)........49
圖 3.39  馬達基座(a)尺寸設計圖 (b)實體圖....................50
圖 3.40  第一桿(a)設計圖 (b)實體圖..........................50
圖 3.41  第二桿(a)設計圖 (b)實體圖..........................51
圖 3.42  第三桿(a)設計圖 (b)實體圖..........................52
圖 3.43  鋁金屬減重並組裝完成之拍撲翼微飛行器..............52
圖 4.1   數據擷取器........................................54
圖 4.2   六軸力規..........................................55
圖 4.3   MAV夾具(可調整攻角)..............................55
圖 4.4   實驗風洞..........................................56
圖 4.5   風洞實驗架構說明..................................57
圖 4.6   組裝完成後之傳動系統..............................59
圖 4.7   左右翼之拍撲行程..................................59
圖 4.8   機翼之PVDF輸出電壓與測力計訊號擷取圖.............60
圖 4.9   PVDF接受外力輸出電壓訊號示意圖...................61
圖 4.10  數據擷取器所得到PVDF和六軸力規訊號..............61
圖 4.11  拍動時的升推力曲線...............................62
圖 5.1   推力係數CT與J之關係圖(15μm).....................65
圖 5.2   升力係數CL與J之關係圖(15μm).....................65
圖 5.3   推力係數CT與J之關係圖(20μm).....................67
圖 5.4   升力係數CL與J之關係圖(20μm).....................67
圖 5.5   推力係數CT與J之關係圖(25μm).....................69
圖 5.6   升力係數CL與J之關係圖(25μm).....................69
圖 5.7   推力係數CT與J之關係圖(30μm).....................71
圖 5.8   升力係數CL與J之關係圖(30μm).....................71
圖 5.9   各個膜厚推力係數CT與J之關係圖....................73
圖 5.10  各個膜厚升力係數CL與J之關係圖....................73
圖 5.11  風速0.8m/s,各個膜厚之升力與功率的關係.............73
圖 5.12  風速1.5m/s,各個膜厚之升力與功率的關係.............74
圖 5.13  風速2.5m/s,各個膜厚之升力與功率的關係.............74
圖 5.14  風速3.5m/s,各個膜厚之升力與功率的關係.............74
圖 5.15  聚對二甲苯與PVDF之複合機翼......................76
圖 5.16  拍撲式微飛行器之升力訊號。(a) PVDF訊號(b)力規訊號..76
圖 5.17  將圖5.15(a)與本身延遲之訊號疊加後,獲得相似的波形...76
圖 5.18  藉由標準差來判斷相似程度..........................76
圖 5.19  處理過之PVDF升力訊號與不同相位差之傳動系統......77
圖 5.20  PVDF薄膜(左右翼相加)在各個風速的波形圖比較.......78
圖 5.21  PVDF薄膜(左右翼相加)在各個攻角的波形圖比較.......79
圖 5.22  MAV遙控飛行約10秒40公尺........................81
圖 5.23  MAV遙控飛行11秒.................................81
圖 5.24  MAV遙控飛行時間19秒.............................82
圖 5.25  MAV遙控飛行時間32秒.............................82
表 2.1   parylene的物理性質與機械性質.......................19
表 2.2   parylene的熱性質...................................19
表 3.1   減數比尺寸設計表..................................41
表 3.2   巴沙木與塑膠之強度估算表..........................42
表 3.3   巴沙木與塑膠之重量估算表..........................42
表 3.4   傳動機構重量表....................................53
表 4.1   傳動機構連桿尺寸設計..............................59
表 5.1   在不同J值之推力係數比對照表(15um有無rib)..........65
表 5.2   在不同J值之升力係數比對照表(15um有無rib)..........66
表 5.3   在不同J值之推力係數比對照表(20um有無rib)..........67
表 5.4   在不同J值之升力係數比對照表(20um有無rib)..........68
表 5.5   在不同J值之推力係數比對照表(25um有無rib)..........69
表 5.6   在不同J值之升力係數比對照表(25um有無rib)..........70
表 5.7   在不同J值之推力係數比對照表(30um有無rib)..........71
表 5.8   在不同J值之升力係數比對照表(30um有無rib)..........72
參考文獻
[1]	S. Ashley, “Palm-size spy plane,” The American Society of Mechanical Engineers, pp. 74 -78, 1998.
[2]	W. Shyy, M. Berg, and D. Ljungqvist, “Flapping and flexible wings for biological and micro air vehicles,” Progress in Aerospace Sciences, Vol. 35, pp. 455-505, 1999.
[3]	U. M. Norberg, Vertebrate flight: mechanics, physiology, morphology, ecology and evolution, Springer, New York, USA, 1990.
[4]	D. DeLaurier, “An ornithopter wing design ,” Canadian Aeronautics and Space Journal, Vol. 40, No. 1, pp. 10-18, 1994.
[5]	M. H. Dickinson, F. O. Lehmann, S. P. Sane, “Wing rotation and the aerodynamic basis of insect flight,” Science, Vol. 284, pp. 1954-1960, 1999.
[6]	L. Zeng, Q. Hao, K. Kawachi, “A scanning projected line method for measuring a beating bumblebee wing,” Optics Communications, Vol. 183, pp. 37-43, 2000.
[7]	Z. J. Wang, “Vortex shedding and frequency selection in flapping flight,” Journal of Fluid Mechanics, Vol. 410, pp. 323-341, 2000.
[8]	S. Sunada; C. P. Ellington, “A new method for explaining the generation of aerodynamic forces in flapping fight,” Mathematical Methods In The Applied Sciences, Vol. 24, pp. 1377-1386, 2001.
[9]	張嘉原、路非遙、楊明浩、蕭飛賓,“振動翼型飛行載具之空氣動力特性測試與分析研究” ,第二十五屆全國力學會議,p. 350,2001。
[10]	蘇漢威「微飛行器結構設計製作」,碩士論文,工程與系統科學系,國立清華大學,台北,2001。
[11]	M. Liger, N. Pornsin-Sirirak, Y. C. Tai, “Large-area electrostatic valved skins for adaptive flow control on orinthopter wings,” Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, South Carolina, pp. 247-250, 2002.
[12]	M. D. Bugajska and A. C. Schultz, “Coevolution of form and function in the design of micro air vehicles,” NASA/DoD Conference on Evolvable Hardware, pp. 154 -163, 2002.
[13]	Y.F. Li, R.G.J. Flay, P.J. Richards, “Cross-wind excitation of a 2D square prism withvibrating leading edge,” Journal of Wind Engineeringand Industrial Aerodynamics, Vol. 91, pp. 185-197, 2003.
[14]	Z. Jane Wang, “The role of drag in insect hovering,” Journal of Experimental Biology, Vol. 207, pp. 4147-4155, 2004.
[15]	A. Hedenström, “A general law for animal locomotion,” Trends in Ecology and Evolution, Vol. 19, No. 5, pp. 217-219, 2004.
[16]	S. Wang, T. M. Wang, J. H. Liang, X. Y. Li, L. Pu, “Effect of angle of attack profiles in flapping foil propulsion”, Journal of Fluids and Structures, Vol. 19, pp. 37-47, 2004
[17]	R. Żbikowski, C. Galiński, C. B. Pedersen, “Four-Bar linkage mechanism for insectlike flapping wings in hover: concept and an outline of its realization”, Journal of Mechanical Design, Transactions of the ASME, Vol. 127, No. 4, pp. 817-824, 2005.
[18]	S. K. Banala, S. K. Agrawal, “Design and optimization of a mechanism for out-of-plane insect winglike motion with twist,” Journal of Mechanical Design, Transactions of the ASME, Vol. 127, No. 4, pp. 841-844, 2005.
[19]	H. Tanaka, K. Hoshino, K. Matsumoto and I. Shimoyama, “Flight dynamics of a butterfly-type ornithopter,” Intelligent Robots and systems, pp. 310~315, 2005.
[20]	M. Syaifuddin, H. C. Park and N. S. Goo, “Design and evaluation of a LIPCA-actuated flapping device,” Smart Materials and Structures, Vol. 15, No. 5, art. no. 009, pp. 1225-1230, 2006.
[21]	C. S. Lin, C. Hwu, W. B. Young, “The thrust and lift of an ornithopter’s membrane wings with simple flapping motion,” Aerospace Science and Technology, Vol. 10, No.2, pp. 111-119, 2006.
[22]	X. He, K. Yao, B. K. Gan, “Ferroelectric poly(vinylidene fluoride Hexafluoropropylene) thin films on silicon substrates,” Asia Pacific Conference of Transducers and Micro-Nano Technology—APCOT 2006.
[23]	S. H. McIntosh, Fellow, IEEE, S. K. Agrawal, Member, IEEE and Z. Khan, “Design of a mechanism for biaxial rotation of a wing for a hovering vehicle,” IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 2, pp. 145-153, 2006.
[24]	郭智賢,”微飛行器(MAV)氣動力最佳化之研究”, 中正理工學院機械工程學系,陸軍官校基礎學術研討會暨國科會國防科技航空技術學門研究成果發表會,國科會計畫編號:NSC 92-2623-7-014-008。
[25]	Z. J. Wang, J. M. Birch and M.H. Dickinson, “Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments,” The Journal of Experimental Biology, Vol. 207, pp. 449-460, 2004.
[26]	黃邦豪,「引擎動力遙控撲翼機之開發」,碩士論文,機械工程學系,大同大學,台北,2006。
[27]	H. Tennekes, The simple science of flight (from insects to jumbo jets), MA: MIT Press, Boston, 1996.
[28]	C. H. Greenewalt, Dimensional relationships for flying animals, Smithson Misc collect, pp.1-46, 1962.
[29]	S. Wei, “Flapping and flexible wings for biological and micro air vehicles,” Progress in Aerospace Science, Vol. 35, pp. 455-505, 1999.
[30]	Parylene特性參考網址:http://www.scscoatings.com/parylene_knowledge/specifications.cfm
[31]	J. Noordegraaf and H. Hull, “C-shield parylene allows major weight saving for EM shielding of microelectronic,” The First IEEE International Symposium on Polymeric Packaging, pp. 189~196, 1997.
[32]	T. N. Pornsin-sirirak, Y. C. Tai, H. Nassef, C. M. Ho, ”Titanium-alloy MEMS wing technology for a micro aerial vehicle application,” Sensors and Actuators A, Vol. 89, pp. 95-103, 2001.
[33]	L. J. Yang, C. K. Hsu, J. Y. Ho, H. H. Wang, G.. H. Feng, ”The micro aerial vehicle (MAV) with flapping wings,” Proceedings of the 2005 IEEE International Conference on Mechatronics, ICM '05, art. no. 1529366, pp. 811-815, 2005.
[34]	何仁揚,「拍撲式微飛行器之製作及其現地升力之量測研究」,碩士論文,機械與機電工程學系,淡江大學,台北,2005。
[35]	楊龍杰,認識微機電,滄海書局(2001年10月出版),第四章,pp.171-177。
[36]	G. Rizzoni, Principles and application of electrical engineering, 4th ed., Irwin, 2003, cheap. 8, p. 420.
[37]	T. N. Pornsin-Sirirak, S.W. Lee, H. Nassef, J. Grasmeyer, Y. C. Tai, C. M. Ho and M. Keennon, “MEMS wing technology for a battery-powered ornithopter,” Proceedings of the 13th IEEE Annual International Conference on MEMS, pp. 709-804, 2000.
[38]	加州理工學院微加工研究群:http://mems.caltech.edu
[39]	S. K. Agrawal, R. Madangopal and Z. A. Khan, “Energetics based design of small flapping wing air vehicles,” International Conference on Roboticts and Automation, pp. 2367-2372, 2004. 
[40]	機構分析軟體參考網址:http://www.ornithopter.org
[41]	鋰電池放電特性參考網址:http://www.nsc.gov.tw/dept/acro/version01/battery/electric/types/liplus.htm
[42]	L. J. Yang, C. K. Hsu, C. K. Feng, H. M. Shih, G.. H. Feng and M. W. Gao, “Smart flapping wings with a PVDF sensor to modify aerodynamic performance of a micro UAV,” International Conference on Transducers, France, pp.1705-1708, 2007.
[43]	C. K. Hsu, J. Y. Ho, G. H. Feng, H. M. Shih and L. J. Yang, “A flapping MAV with PVDF-parylene composite skin,” Proceedings of APCOT-2006 (SASN-A0019), Singapore, p. 253, 2006; or to appear in Sensors and Actuators A: Physical.
[44]	T. N. Pornsin-sirirak, “Parylene MEMS Technology for Adaptive Flow Control of Flapping Flight,” Ph. D Thesis, University of Caltech, USA, 2002.
[45]	D. L. Raney et al. “Mechanization and control concepts for biologically inspired micro aerial vehicles,” Society of Automotive Engineers, pp. 1-11, 2003.
[46]	NASA Glenn Learning Technologies Project (LTP) http://www.grc.nasa.gov/WWW/K-12/WindTunnel/Activities/lift_formula.html
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信