§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0708200614044600
DOI 10.6846/TKU.2006.00132
論文名稱(中文) 考慮邊坡穩定效應下之輸電塔震力分析
論文名稱(英文) Seismic Analysis of Transmission Towers Considering Slope Stability
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 吳宗宜
研究生(英文) Tsung-I Wu
學號 693310467
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-06-30
論文頁數 76頁
口試委員 指導教授 - 雷英暉
委員 - 倪至寬
委員 - 段永定
關鍵字(中) 輸電塔
幾何非線性
邊坡穩定
關鍵字(英) transmission tower
geometric nonlinearity
slope stability
第三語言關鍵字
學科別分類
中文摘要
發電廠於傳輸電力至不同住宅或工商業區之過程中,相關傳輸路線常須因應地形及地貌之變化而呈現俯仰轉折之多變走勢,而台灣地區位處於環太平洋地震帶上,故構造物之抗震能力原本即為結構設計上之首要考量,復加以本島境內山巒綿亙、丘陵起伏,致眾多高壓輸電塔常須建造於邊坡毗鄰之處;影響所及,使得輸電塔構造在強震作用下之安全性將與邊坡之穩定息息相關。本文一方面建立有效之結構分析模式,精確模擬輸電塔之受震模式,並獲得各元件涵括幾何非線性之動力行為,另方面則縝密探討不同地質與地形條件之邊坡,於地震力及電塔慣性力共同作用下之安全度分析以及潛在滑動之破壞情形;冀期在建立包含輸電塔及邊坡兩子系統之三維全域系統之後,輸電塔之震力分析將可進ㄧ步獲致更佳之可靠性與實用性,研究結果顯示,輸電塔於邊坡上之興建位置及土壤之強度參數將與結構安全與否息息相關。
英文摘要
In the course of electricity conveyance beginning from power plant to some residential and industrial areas, the conveying route is often changeable both in its elevation and its orientation, due to the uneven topography or terrain which the transmission towers march across. Taiwan being situated in the vicinity of boundary zone between the Eurasian plate and the Philippine Sea plate, the ability in earthquake resistance is hence undoubtedly one of the essential requirements in structural design. On the other hand, plenty of mounds and mountains are found to extend uninterruptedly in Taiwan which makes many transmission towers here are inevitable to be built nearby the slope. As a consequence, the safety of these towers under strong ground motion would be closely related to the stability of slopes concerned. In this research, the effective analytical model of transmission towers will be established such that the precise dynamic behaviors, including both geometric and material nonlinearities, of tower members can be found. In addition, the detailed investigation on the potential sliding of the slopes with various patterns and under the combined action caused by seismic force and the inertia force from the tower will be undertaken. It is expected that through the establishment of the global 3-D system composed of both tower- and slope-subsystems, the better reliability and applicability for the analytical outcome will be accomplished. It is shown in the results that the structural safety for transmission towers will closely depend upon the spots where the tower is located at and upon the magnitudes of the strength parameters of soil concerned.
第三語言摘要
論文目次
目錄
本文目錄	Ⅰ
表目錄	Ⅲ
圖目錄	Ⅳ
符號說明	Ⅶ
第一章 前言	1
第二章 系統之分析模式與理論依據	7
2-1  輸電塔子系統	7
2-1.1  塔體結構	8
2-1.2  高壓電纜線	11
2-1.3  複支承運動方程式	15
2-1.4  地震輸入角及桿件破壞指數	20
2-2  邊坡子系統	23
2-2.1  土壤降伏準則及塑流法則	24
2-2.2  邊坡安全係數之評定	28
第三章 實例分析與討論	30
3-1  結構分析模型之介紹	30
3-2  上下子系統間之位移諧和性探討	31
3-3  各類參數對輸電塔之影響	33
3-3.1  纜索水平轉角 對輸電塔之影響	33
3-3.2  纜索垂直仰角 對輸電塔之影響	34
3-3.3  基腳邊距與土壤強度參數對輸電塔之影響	34
3-3.4  纜索質量對輸電塔之影響	35
3-4  邊坡穩定性評估	35
第四章 結論與展望	38
4-1  結論	38
4-2  展望	40
參考文獻	41
附表	45
附圖	50


表目錄
表3-1   輸電塔桿件之斷面尺寸與材料性質	45
表3-2   輸電塔基樁與輸電纜索之斷面尺寸及材料性質	46
表3-3   傾角 邊坡對應不同強度參數與邊距之安全係數	47
表3-4   傾角 邊坡對應不同強度參數與邊距之安全係數	48
表3-5   傾角 邊坡對應不同強度參數與邊距之安全係數	49


圖目錄
圖1-1      山區輸電塔群三維示意圖	50
圖2-1      端點束制彈簧配置示意圖	50
圖2-2      空間梁-柱元素對應元素座標之位移	51
圖2-3      空間梁-柱元素對應元素座標之節點力	51
圖2-4      纜索元素示意圖(a)	52
圖2-5      纜索元素示意圖(b)	52
圖2-6      複支承振動說明例	53
圖2-7      輸電塔結構與地震輸入角間之關係圖	53
圖2-8      角形斷面降伏強度包絡面	54
圖2-9      邊坡子系統之有限元素分析模型	54
圖2-10     截面四邊體元素示意圖	55
圖2-11     Drucker-Prager之 平面	55
圖2-12     Mohr-Coulomb 與 Drucker-Prager曲線相接於π平面	56
圖3-1      集集地震﹙CHY080﹚E-W向地表加速度歷時圖	56
圖3-2      集集地震﹙CHY080﹚擬加速度反應譜	57
圖3-3      輸電塔之三維有限元素分析模式與結構尺寸	58
圖3-4      輸電塔結構與邊坡間之3-D有限元素分析模式	59
圖3-5      輸電塔基腳之定義	59
圖3-6      纜索水平轉角θ與輸電塔位置關係圖	60
圖3-7      纜索垂直仰角 與輸電塔位置關係圖	60
圖3-8      邊坡子系統邊界條件之設定	61
圖3-9      邊距與邊坡傾斜角之定義	61
圖3-10     Soil typeⅠ下Leg A 之X向位移收斂情形	62
圖3-11      Soil typeⅡ下Leg A 之X向位移收斂情形	62
圖3-12      不同土壤性質下Leg A之X向位移最大值	63
圖3-13      不同土壤性質下Leg A之收斂前後X向位移相對誤差	63
圖3-14      Soil typeⅠ、 、 下各基腳之破壞指數	64
圖3-15      Soil typeⅡ、 、 下各基腳之破壞指數	64
圖3-16      Soil typeⅠ下改變纜索水平轉角 ,Leg A破壞指數之比較	65
圖3-17      Soil typeⅠ下改變纜索水平轉角 ,Leg B破壞指數之比較	65
圖3-18      Soil typeⅡ下改變纜索水平轉角 ,Leg A破壞指數之比較	66
圖3-19      Soil typeⅡ下改變纜索水平轉角 ,Leg B破壞指數之比較	66
圖3-20      Soil typeⅠ下改變纜索垂直仰角 ,Leg A破壞指數之比較	67
圖3-21      Soil typeⅠ下改變纜索垂直仰角 ,Leg B破壞指數之比較	67
圖3-22      Soil typeⅡ下改變纜索垂直仰角 ,Leg A破壞指數之比較	68
圖3-23      Soil typeⅡ下改變纜索垂直仰角 ,Leg B破壞指數之比較	68
圖3-24      Soil typeⅠ下改變基腳邊距L,Leg A破壞指數之比較	69
圖3-25      Soil typeⅠ下改變基腳邊距L,Leg B破壞指數之比較	69
圖3-26      Soil typeⅠ下改變土壤凝聚力c,Leg A破壞指數之比較	70
圖3-27      Soil typeⅠ下改變土壤凝聚力c,Leg B破壞指數之比較	70
圖3-28      Soil typeⅠ下改變土壤摩擦角 ,Leg A破壞指數之比較	71
圖3-29      Soil typeⅠ下改變土壤摩擦角 ,Leg B破壞指數之比較	71
圖3-30      考慮纜索質量對Leg A破壞指數之影響	72
圖3-31      考慮纜索質量對Leg B破壞指數之影響	72
圖3-32      破壞面切片表示法	73
圖3-33      case24臨界滑動面之頂視圖	73
圖3-34      case52臨界滑動面之頂視圖	74
圖3-35      case24臨界滑動面之垂直剖面圖	75
圖3-36      case52臨界滑動面之垂直剖面圖	76
參考文獻
1.	郭繁陽,「九二一震災對電力工程問題探討」,工程雙月刊,第七十三卷,第九期,2000年,第66-73頁。
2.	Roy, S., Fang, S. J. and Rossow, E. C., “Secondary Stresses on Transmission Tower Structures,” Journal of Energy Engineering, Vol. 110, No. 2, pp.157-171 (1984).
3.	AlBermani, F. G. A. and Kitipornchai, S., “Nonlinear Finite Element Analysis of Latticed Transmission Towers,” Engineering Structure, Vol. 15, No. 4, pp.259-269 (1993).
4.	Knight, G. M. S. and Santhakumar, A. R., “Joint Effects on Behavior of Transmission Towers,” Journal of Structural Engineering, Vol. 119, No. 3, pp. 698-712 (1993).
5.	G. M. Wilhoite, “Guide for Design of Steel Transmission Towers,” ASCE, 0-87262-667-9, 1988, 144 pp., Second Edition
6.	L. Duan and W. F. Chen, “A Yield Surface Equation for Doudly Symmetrical Section”, Engineering Structure, Vol. 12, No. 2, pp. 114-119(1990)
7.	Kitipornchai, S., Zhu, K., Xiang, Y. and Al-Bermani, F. G. A., “Single-Equation Yield Surfaces for Monosymmetric and Asymmetric Section,” Engineering Structure, Vol. 13, pp.366-370 (1991).
8.	Oran, C., “Tangent Stiffness in Space Frames,” Journal of the Structure Division, Vol. 99, ST 6, pp. 987-1001 (1973).
9.	See, T. and McConnel, R. E., “Large Displacement Elastic Buckling of Space Structures,” Journal of Structure Engineering, Vol. 112, No. 5, pp. 1052-1069 (1987).
10.	Irvine, H. Max, “Statics and Dynamics of Cable Trusses”, ASCE J Eng Mech Div, Vol. 101, No. 4, pp. 429-446 (Aug,1975)
11.	O’Brien, T., “General Solution of Suspended Cable Problems,” J. Structural Div. ASCE 93, pp.1-26 (1967).
12.	Peyrot, A. H. and Goulois, A. M., “Analysis of Cable Structures,” Computers & Structures, Vol. 10, pp.805-813 (1979).
13.	Jayaraman, H. B. and Knudson, W. C., “A Curved Element for the Analysis of Cable Structure, ” Computers & Structures, Vol.14, No.3-4, pp. 325-333 (1981).
14.	Desai, Y. M., Yu, P., Popplewell, N. and Shah, A. H., “Finite Element Modelling of Transmission Line Galloping,” Computers & Structures, Vol.57, No.3, pp. 407-420 (1995).
15.	Kmet, Stanislav and Kokorudova, Zuzana, “Nonlinear analytical solution for cable truss”, Journal of Engineering Mechanics, Vol. 132, No.1, pp.119-123 (2006).
16.	Hovland, H. John, “ THREE-DIMENSIONAL SLOPE STABILITY ANALYSIS METHOD,” Journal of the Geotechnical Engineering Division, Vol. 103, No. 9, pp. 971-986 (1977).
17.	Backer, R., and Garber, M., “Theoretical Analysis of the Stability of Slopes,” Geotechnique, Vol. 28, No. 4, pp. 395-411 (1978).
18.	D. L., “Slope Stability Analysis: Generalized Approach,” Journal of Geotechnical Engineering, Vol. 116, No. 5, pp. 851-867 (1990).
19.	Clough, R. W. ,and Woodward, R. J.,’’Analysis of embankment stress and deformations’’, Journal of the Soil Mechanics and Foundation Division,ASCE,93(4),pp. 529-549 (967).
20.	Bishop, A. W., and Morgenstern, N. R., “Stability Coefficients for Earth Slopes,” Geotechnique, Vol. 10, pp. 129-150 (1960).
21.	Griffiths, D. V. and Lane, P. A., “Slope Stability Analysis by Finite Elements,” Geotechnique, Vol. 49, No. 3, pp. 387-403 (1999).
22.	Bishop, A. W., “The Use of the Slip Circle in the Stability Analysis of Slopes,” Geotechnique, Vol. 5, No. 1, pp. 7-17 (1955).
23.	黃添坤,「有限元素法於邊坡穩定分析之應用」,中國土木水利工程學刊,第十二卷,第四期,2000年,第695-702頁。
24.	Newmark, N. M., “Effect of Earthquakes on Dams and Embankments,” Geotechnique, Vol. 15, No. 2, pp. 139-159 (1965).
25.	Chang, C. J., Chen, W. F. and Yao, T. P., “Seismic Displacements in Slopes by Limit Analysis,” Journal of Geotechnical Engineering, Vol. 110, No. 7, pp. 860-874 (1984).
26.	Keizo Ugai and Dov Leshchinsky, “Three-Dimensional Limit Equilibrium and Finite Element Analysis: A Comparison of Results,” Soils and Foundations, Vol. 35, No. 4, pp. 1-7 (1995).
27.	Wright, S. G., Kulhawy, F. H. and Duncan, J. M., “Accuracy of Equilibrium Slope Stability Analysis,” Journal of the Soil Mechanics and Foundation Division, Vol. 10, pp. 190-195 (1973).
28.	Zienkiewicz, O.C., Humpheson, C. and Lewis, R.W.,’’Associated and non-associated visco-plasticity & plasticity in soil mechanics’’.Geotechnique, Vol.25, No.4, pp671-689 (1975)
29.	曾恭慶,「斜張橋之非線性分析」,碩士論文,淡江大學土木工程研究所,淡水(1996)。
30.	Raid K., “Some Modeling Aspect in The Nonlinear Finite Element Analysis of Cable Supported Bridge,” Computer and Structures, 71, pp. 397-412(1999).
31.	Kitipornchai, S., Zhu, K., Xiang, Y. and Al-Bermani, F. G. A., “Single-Equation Yield Surfaces for Monosymmetric and Asymmetric Section,” Engineering Structure, Vol. 13, pp.366-370 (1991).
32.	林溢賢,「輸電塔之非線性震力分析-考慮土壤結構互制效應」,碩士論文,淡江大學土木工程研究所,淡水(2001)。
33.	葉信汎,「輸電塔於不同幾何配置下之震力分析-考慮土壤結構互制效應」,碩士論文,淡江大學土木工程研究所,淡水(2002)。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信